Tag Archives: Alive

#439073 There’s a ‘New’ Nirvana Song Out, ...

One of the primary capabilities separating human intelligence from artificial intelligence is our ability to be creative—to use nothing but the world around us, our experiences, and our brains to create art. At present, AI needs to be extensively trained on human-made works of art in order to produce new work, so we’ve still got a leg up. That said, neural networks like OpenAI’s GPT-3 and Russian designer Nikolay Ironov have been able to create content indistinguishable from human-made work.

Now there’s another example of AI artistry that’s hard to tell apart from the real thing, and it’s sure to excite 90s alternative rock fans the world over: a brand-new, never-heard-before Nirvana song. Or, more accurately, a song written by a neural network that was trained on Nirvana’s music.

The song is called “Drowned in the Sun,” and it does have a pretty Nirvana-esque ring to it. The neural network that wrote it is Magenta, which was launched by Google in 2016 with the goal of training machines to create art—or as the tool’s website puts it, exploring the role of machine learning as a tool in the creative process. Magenta was built using TensorFlow, Google’s massive open-source software library focused on deep learning applications.

The song was written as part of an album called Lost Tapes of the 27 Club, a project carried out by a Toronto-based organization called Over the Bridge focused on mental health in the music industry.

Here’s how a computer was able to write a song in the unique style of a deceased musician. Music, 20 to 30 tracks, was fed into Magenta’s neural network in the form of MIDI files. MIDI stands for Musical Instrument Digital Interface, and the format contains the details of a song written in code that represents musical parameters like pitch and tempo. Components of each song, like vocal melody or rhythm guitar, were fed in one at a time.

The neural network found patterns in these different components, and got enough of a handle on them that when given a few notes to start from, it could use those patterns to predict what would come next; in this case, chords and melodies that sound like they could’ve been written by Kurt Cobain.

To be clear, Magenta didn’t spit out a ready-to-go song complete with lyrics. The AI wrote the music, but a different neural network wrote the lyrics (using essentially the same process as Magenta), and the team then sifted through “pages and pages” of output to find lyrics that fit the melodies Magenta created.

Eric Hogan, a singer for a Nirvana tribute band who the Over the Bridge team hired to sing “Drowned in the Sun,” felt that the lyrics were spot-on. “The song is saying, ‘I’m a weirdo, but I like it,’” he said. “That is total Kurt Cobain right there. The sentiment is exactly what he would have said.”

Cobain isn’t the only musician the Lost Tapes project tried to emulate; songs in the styles of Jimi Hendrix, Jim Morrison, and Amy Winehouse were also included. What all these artists have in common is that they died by suicide at the age of 27.

The project is meant to raise awareness around mental health, particularly among music industry professionals. It’s not hard to think of great artists of all persuasions—musicians, painters, writers, actors—whose lives are cut short due to severe depression and other mental health issues for which it can be hard to get help. These issues are sometimes romanticized, as suffering does tend to create art that’s meaningful, relatable, and timeless. But according to the Lost Tapes website, suicide attempts among music industry workers are more than double that of the general population.

How many more hit songs would these artists have written if they were still alive? We’ll never know, but hopefully Lost Tapes of the 27 Club and projects like it will raise awareness of mental health issues, both in the music industry and in general, and help people in need find the right resources. Because no matter how good computers eventually get at creating music, writing, or other art, as Lost Tapes’ website pointedly says, “Even AI will never replace the real thing.”

Image Credit: Edward Xu on Unsplash Continue reading

Posted in Human Robots

#438006 Smellicopter Drone Uses Live Moth ...

Research into robotic sensing has, understandably I guess, been very human-centric. Most of us navigate and experience the world visually and in 3D, so robots tend to get covered with things like cameras and lidar. Touch is important to us, as is sound, so robots are getting pretty good with understanding tactile and auditory information, too. Smell, though? In most cases, smell doesn’t convey nearly as much information for us, so while it hasn’t exactly been ignored in robotics, it certainly isn’t the sensing modality of choice in most cases.

Part of the problem with smell sensing is that we just don’t have a good way of doing it, from a technical perspective. This has been a challenge for a long time, and it’s why we either bribe or trick animals like dogs, rats, vultures, and other animals to be our sensing systems for airborne chemicals. If only they’d do exactly what we wanted them to do all the time, this would be fine, but they don’t, so it’s not.

Until we get better at making chemical sensors, leveraging biology is the best we can do, and what would be ideal would be some sort of robot-animal hybrid cyborg thing. We’ve seen some attempts at remote controlled insects, but as it turns out, you can simplify things if you don’t use the entire insect, but instead just find a way to use its sensing system. Enter the Smellicopter.

There’s honestly not too much to say about the drone itself. It’s an open-source drone project called Crazyflie 2.0, with some additional off the shelf sensors for obstacle avoidance and stabilization. The interesting bits are a couple of passive fins that keep the drone pointed into the wind, and then the sensor, called an electroantennogram.

Image: UW

The drone’s sensor, called an electroantennogram, consists of a “single excised antenna” from a Manduca sexta hawkmoth and a custom signal processing circuit.

To make one of these sensors, you just, uh, “harvest” an antenna from a live hawkmoth. Obligingly, the moth antenna is hollow, meaning that you can stick electrodes up it. Whenever the olfactory neurons in the antenna (which is still technically alive even though it’s not attached to the moth anymore) encounter an odor that they’re looking for, they produce an electrical signal that the electrodes pick up. Plug the other ends of the electrodes into a voltage amplifier and filter, run it through an analog to digital converter, and you’ve got a chemical sensor that weighs just 1.5 gram and consumes only 2.7 mW of power. It’s significantly more sensitive than a conventional metal-oxide odor sensor, in a much smaller and more efficient form factor, making it ideal for drones.

To localize an odor, the Smellicopter uses a simple bioinspired approach called crosswind casting, which involves moving laterally left and right and then forward when an odor is detected. Here’s how it works:

The vehicle takes off to a height of 40 cm and then hovers for ten seconds to allow it time to orient upwind. The smellicopter starts casting left and right crosswind. When a volatile chemical is detected, the smellicopter will surge 25 cm upwind, and then resume casting. As long as the wind direction is fairly consistent, this strategy will bring the insect or robot increasingly closer to a singular source with each surge.

Since odors are airborne, they need a bit of a breeze to spread very far, and the Smellicopter won’t be able to detect them unless it’s downwind of the source. But, that’s just how odors work— even if you’re right next to the source, if the wind is blowing from you towards the source rather than the other way around, you might not catch a whiff of it.

Whenever the olfactory neurons in the antenna encounter an odor that they’re looking for, they produce an electrical signal that the electrodes pick up

There are a few other constraints to keep in mind with this sensor as well. First, rather than detecting something useful (like explosives), it’s going to detect the smells of pretty flowers, because moths like pretty flowers. Second, the antenna will literally go dead on you within a couple hours, since it only functions while its tissues are alive and metaphorically kicking. Interestingly, it may be possible to use CRISPR-based genetic modification to breed moths with antennae that do respond to useful smells, which would be a neat trick, and we asked the researchers—Melanie Anderson, a doctoral student of mechanical engineering at the University of Washington, in Seattle; Thomas Daniel, a UW professor of biology; and Sawyer Fuller, a UW assistant professor of mechanical engineering—about this, along with some other burning questions, via email.

IEEE Spectrum, asking the important questions first: So who came up with “Smellicopter”?

Melanie Anderson: Tom Daniel coined the term “Smellicopter”. Another runner up was “OdorRotor”!

In general, how much better are moths at odor localization than robots?

Melanie Anderson: Moths are excellent at odor detection and odor localization and need to be in order to find mates and food. Their antennae are much more sensitive and specialized than any portable man-made odor sensor. We can't ask the moths how exactly they search for odors so well, but being able to have the odor sensitivity of a moth on a flying platform is a big step in that direction.

Tom Daniel: Our best estimate is that they outperform robotic sensing by at least three orders of magnitude.

How does the localization behavior of the Smellicopter compare to that of a real moth?

Anderson: The cast-and-surge odor search strategy is a simplified version of what we believe the moth (and many other odor searching animals) are doing. It is a reactive strategy that relies on the knowledge that if you detect odor, you can assume that the source is somewhere up-wind of you. When you detect odor, you simply move upwind, and when you lose the odor signal you cast in a cross-wind direction until you regain the signal.

Can you elaborate on the potential for CRISPR to be able to engineer moths for the detection of specific chemicals?

Anderson: CRISPR is already currently being used to modify the odor detection pathways in moth species. It is one of our future efforts to specifically use this to make the antennae sensitive to other chemicals of interest, such as the chemical scent of explosives.

Sawyer Fuller: We think that one of the strengths of using a moth's antenna, in addition to its speed, is that it may provide a path to both high chemical specificity as well as high sensitivity. By expressing a preponderance of only one or a few chemosensors, we are anticipating that a moth antenna will give a strong response only to that chemical. There are several efforts underway in other research groups to make such specific, sensitive chemical detectors. Chemical sensing is an area where biology exceeds man-made systems in terms of efficiency, small size, and sensitivity. So that's why we think that the approach of trying to leverage biological machinery that already exists has some merit.

You mention that the antennae lifespan can be extended for a few days with ice- how feasible do you think this technology is outside of a research context?

Anderson: The antennae can be stored in tiny vials in a standard refrigerator or just with an ice pack to extend their life to about a week. Additionally, the process for attaching the antenna to the electrical circuit is a teachable skill. It is definitely feasible outside of a research context.

Considering the trajectory that sensor development is on, how long do you think that this biological sensor system will outperform conventional alternatives?

Anderson: It's hard to speak toward what will happen in the future, but currently, the moth antenna still stands out among any commercially-available portable sensors.

There have been some experiments with cybernetic insects; what are the advantages and disadvantages of your approach, as opposed to (say) putting some sort of tracking system on a live moth?

Daniel: I was part of a cyber insect team a number of years ago. The challenge of such research is that the animal has natural reactions to attempts to steer or control it.

Anderson: While moths are better at odor tracking than robots currently, the advantage of the drone platform is that we have control over it. We can tell it to constrain the search to a certain area, and return after it finishes searching.

What can you tell us about the health, happiness, and overall wellfare of the moths in your experiments?

Anderson: The moths are cold anesthetized before the antennae are removed. They are then frozen so that they can be used for teaching purposes or in other research efforts.

What are you working on next?

Daniel: The four big efforts are (1) CRISPR modification, (2) experiments aimed at improving the longevity of the antennal preparation, (3) improved measurements of antennal electrical responses to odors combined with machine learning to see if we can classify different odors, and (4) flight in outdoor environments.

Fuller: The moth's antenna sensor gives us a new ability to sense with a much shorter latency than was previously possible with similarly-sized sensors (e.g. semiconductor sensors). What exactly a robot agent should do to best take advantage of this is an open question. In particular, I think the speed may help it to zero in on plume sources in complex environments much more quickly. Think of places like indoor settings with flow down hallways that splits out at doorways, and in industrial settings festooned with pipes and equipment. We know that it is possible to search out and find odors in such scenarios, as anybody who has had to contend with an outbreak of fruit flies can attest. It is also known that these animals respond very quickly to sudden changes in odor that is present in such turbulent, patchy plumes. Since it is hard to reduce such plumes to a simple model, we think that machine learning may provide insights into how to best take advantage of the improved temporal plume information we now have available.

Tom Daniel also points out that the relative simplicity of this project (now that the UW researchers have it all figured out, that is) means that even high school students could potentially get involved in it, even if it’s on a ground robot rather than a drone. All the details are in the paper that was just published in Bioinspiration & Biomimetics. Continue reading

Posted in Human Robots

#437471 How Giving Robots a Hybrid, Human-Like ...

Squeezing a lot of computing power into robots without using up too much space or energy is a constant battle for their designers. But a new approach that mimics the structure of the human brain could provide a workaround.

The capabilities of most of today’s mobile robots are fairly rudimentary, but giving them the smarts to do their jobs is still a serious challenge. Controlling a body in a dynamic environment takes a surprising amount of processing power, which requires both real estate for chips and considerable amounts of energy to power them.

As robots get more complex and capable, those demands are only going to increase. Today’s most powerful AI systems run in massive data centers across far more chips than can realistically fit inside a machine on the move. And the slow death of Moore’s Law suggests we can’t rely on conventional processors getting significantly more efficient or compact anytime soon.

That prompted a team from the University of Southern California to resurrect an idea from more than 40 years ago: mimicking the human brain’s division of labor between two complimentary structures. While the cerebrum is responsible for higher cognitive functions like vision, hearing, and thinking, the cerebellum integrates sensory data and governs movement, balance, and posture.

When the idea was first proposed the technology didn’t exist to make it a reality, but in a paper recently published in Science Robotics, the researchers describe a hybrid system that combines analog circuits that control motion and digital circuits that govern perception and decision-making in an inverted pendulum robot.

“Through this cooperation of the cerebrum and the cerebellum, the robot can conduct multiple tasks simultaneously with a much shorter latency and lower power consumption,” write the researchers.

The type of robot the researchers were experimenting with looks essentially like a pole balancing on a pair of wheels. They have a broad range of applications, from hoverboards to warehouse logistics—Boston Dynamics’ recently-unveiled Handle robot operates on the same principles. Keeping them stable is notoriously tough, but the new approach managed to significantly improve all digital control approaches by radically improving the speed and efficiency of computations.

Key to bringing the idea alive was the recent emergence of memristors—electrical components whose resistance relies on previous input, which allows them to combine computing and memory in one place in a way similar to how biological neurons operate.

The researchers used memristors to build an analog circuit that runs an algorithm responsible for integrating data from the robot’s accelerometer and gyroscope, which is crucial for detecting the angle and velocity of its body, and another that controls its motion. One key advantage of this setup is that the signals from the sensors are analog, so it does away with the need for extra circuitry to convert them into digital signals, saving both space and power.

More importantly, though, the analog system is an order of magnitude faster and more energy-efficient than a standard all-digital system, the authors report. This not only lets them slash the power requirements, but also lets them cut the processing loop from 3,000 microseconds to just 6. That significantly improves the robot’s stability, with it taking just one second to settle into a steady state compared to more than three seconds using the digital-only platform.

At the minute this is just a proof of concept. The robot the researchers have built is small and rudimentary, and the algorithms being run on the analog circuit are fairly basic. But the principle is a promising one, and there is currently a huge amount of R&D going into neuromorphic and memristor-based analog computing hardware.

As often turns out to be the case, it seems like we can’t go too far wrong by mimicking the best model of computation we have found so far: our own brains.

Image Credit: Photos Hobby / Unsplash Continue reading

Posted in Human Robots

#437267 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
OpenAI’s New Language Generator GPT-3 Is Shockingly Good—and Completely Mindless
Will Douglas Heaven | MIT Technology Review
“‘Playing with GPT-3 feels like seeing the future,’ Arram Sabeti, a San Francisco–based developer and artist, tweeted last week. That pretty much sums up the response on social media in the last few days to OpenAI’s latest language-generating AI.”

ROBOTICS
The Star of This $70 Million Sci-Fi Film Is a Robot
Sarah Bahr | The New York Times
“Erica was created by Hiroshi Ishiguro, a roboticist at Osaka University in Japan, to be ‘the most beautiful woman in the world’—he modeled her after images of Miss Universe pageant finalists—and the most humanlike robot in existence. But she’s more than just a pretty face: Though ‘b’ is still in preproduction, when she makes her debut, producers believe it will be the first time a film has relied on a fully autonomous artificially intelligent actor.”

VIRTUAL REALITY
My Glitchy, Glorious Day at a Conference for Virtual Beings
Emma Grey Ellis | Wired
“Spectators spent much of the time debating who was real and who was fake. …[Lars Buttler’s] eyes seemed awake and alive in a way that the faces of the other participants in the Zoom call—venture capitalist, a tech founder, and an activist, all of them puppeted by artificial intelligence—were not. ‘Pretty sure Lars is human,’ a (real-person) spectator typed in the in-meeting chat room. ‘I’m starting to think Lars is AI,’ wrote another.”

FUTURE OF FOOD
KFC Is Working With a Russian 3D Bioprinting Firm to Try to Make Lab-Produced Chicken Nuggets
Kim Lyons | The Verge
“The chicken restaurant chain will work with Russian company 3D Bioprinting Solutions to develop bioprinting technology that will ‘print’ chicken meat, using chicken cells and plant material. KFC plans to provide the bioprinting firm with ingredients like breading and spices ‘to achieve the signature KFC taste’ and will seek to replicate the taste and texture of genuine chicken.”

BIOTECH
A CRISPR Cow Is Born. It’s Definitely a Boy
Megan Molteni | Wired
“After nearly five years of research, at least half a million dollars, dozens of failed pregnancies, and countless scientific setbacks, Van Eenennaam’s pioneering attempt to create a line of Crispr’d cattle tailored to the needs of the beef industry all came down to this one calf. Who, as luck seemed sure to have it, was about to enter the world in the middle of a global pandemic.”

GOVERNANCE
Is the Pandemic Finally the Moment for a Universal Basic Income?
Brooks Rainwater and Clay Dillow | Fast Company
“Since February, governments around the globe—including in the US—have intervened in their citizens’ individual financial lives, distributing direct cash payments to backstop workers sidelined by the COVID-19 pandemic. Some are considering keeping such direct assistance in place indefinitely, or at least until the economic shocks subside.”

SCIENCE
How Gödel’s Proof Works
Natalie Wolchover | Wired
“In 1931, the Austrian logician Kurt Gödel pulled off arguably one of the most stunning intellectual achievements in history. Mathematicians of the era sought a solid foundation for mathematics: a set of basic mathematical facts, or axioms, that was both consistent—never leading to contradictions—and complete, serving as the building blocks of all mathematical truths. But Gödel’s shocking incompleteness theorems, published when he was just 25, crushed that dream.”

Image credit: Pierre Châtel-Innocenti / Unsplash Continue reading

Posted in Human Robots

#437157 A Human-Centric World of Work: Why It ...

Long before coronavirus appeared and shattered our pre-existing “normal,” the future of work was a widely discussed and debated topic. We’ve watched automation slowly but surely expand its capabilities and take over more jobs, and we’ve wondered what artificial intelligence will eventually be capable of.

The pandemic swiftly turned the working world on its head, putting millions of people out of a job and forcing millions more to work remotely. But essential questions remain largely unchanged: we still want to make sure we’re not replaced, we want to add value, and we want an equitable society where different types of work are valued fairly.

To address these issues—as well as how the pandemic has impacted them—this week Singularity University held a digital summit on the future of work. Forty-three speakers from multiple backgrounds, countries, and sectors of the economy shared their expertise on everything from work in developing markets to why we shouldn’t want to go back to the old normal.

Gary Bolles, SU’s chair for the Future of Work, kicked off the discussion with his thoughts on a future of work that’s human-centric, including why it matters and how to build it.

What Is Work?
“Work” seems like a straightforward concept to define, but since it’s constantly shifting shape over time, let’s make sure we’re on the same page. Bolles defined work, very basically, as human skills applied to problems.

“It doesn’t matter if it’s a dirty floor or a complex market entry strategy or a major challenge in the world,” he said. “We as humans create value by applying our skills to solve problems in the world.” You can think of the problems that need solving as the demand and human skills as the supply, and the two are in constant oscillation, including, every few decades or centuries, a massive shift.

We’re in the midst of one of those shifts right now (and we already were, long before the pandemic). Skills that have long been in demand are declining. The World Economic Forum’s 2018 Future of Jobs report listed things like manual dexterity, management of financial and material resources, and quality control and safety awareness as declining skills. Meanwhile, skills the next generation will need include analytical thinking and innovation, emotional intelligence, creativity, and systems analysis.

Along Came a Pandemic
With the outbreak of coronavirus and its spread around the world, the demand side of work shrunk; all the problems that needed solving gave way to the much bigger, more immediate problem of keeping people alive. But as a result, tens of millions of people around the world are out of work—and those are just the ones that are being counted, and they’re a fraction of the true total. There are additional millions in seasonal or gig jobs or who work in informal economies now without work, too.

“This is our opportunity to focus,” Bolles said. “How do we help people re-engage with work? And make it better work, a better economy, and a better set of design heuristics for a world that we all want?”

Bolles posed five key questions—some spurred by impact of the pandemic—on which future of work conversations should focus to make sure it’s a human-centric future.

1. What does an inclusive world of work look like? Rather than seeing our current systems of work as immutable, we need to actually understand those systems and how we want to change them.

2. How can we increase the value of human work? We know that robots and software are going to be fine in the future—but for humans to be fine, we need to design for that very intentionally.

3. How can entrepreneurship help create a better world of work? In many economies the new value that’s created often comes from younger companies; how do we nurture entrepreneurship?

4. What will the intersection of workplace and geography look like? A large percentage of the global workforce is now working from home; what could some of the outcomes of that be? How does gig work fit in?

5. How can we ensure a healthy evolution of work and life? The health and the protection of those at risk is why we shut down our economies, but we need to find a balance that allows people to work while keeping them safe.

Problem-Solving Doesn’t End
The end result these questions are driving towards, and our overarching goal, is maximizing human potential. “If we come up with ways we can continue to do that, we’ll have a much more beneficial future of work,” Bolles said. “We should all be talking about where we can have an impact.”

One small silver lining? We had plenty of problems to solve in the world before ever hearing about coronavirus, and now we have even more. Is the pace of automation accelerating due to the virus? Yes. Are companies finding more ways to automate their processes in order to keep people from getting sick? They are.

But we have a slew of new problems on our hands, and we’re not going to stop needing human skills to solve them (not to mention the new problems that will surely emerge as second- and third-order effects of the shutdowns). If Bolles’ definition of work holds up, we’ve got ours cut out for us.

In an article from April titled The Great Reset, Bolles outlined three phases of the unemployment slump (we’re currently still in the first phase) and what we should be doing to minimize the damage. “The evolution of work is not about what will happen 10 to 20 years from now,” he said. “It’s about what we could be doing differently today.”

Watch Bolles’ talk and those of dozens of other experts for more insights into building a human-centric future of work here.

Image Credit: www_slon_pics from Pixabay Continue reading

Posted in Human Robots