Tag Archives: ai

#438448 Build humanoid robots with today’s ...

Is it possible to build advanced AI humanoid androids with today’s tech, if there’s a drastic shift in human perception and aversity, or a sudden critical need arises? This video explores the very real possibility.

Posted in Human Robots

#438001 How an Israeli Startup Is Using AI to ...

The first baby conceived using in-vitro fertilization (IVF) was born in the UK in 1978. Over 40 years later, the technique has become commonplace, but its success rate is still fairly low at around 22 to 30 percent. A female-founded Israeli startup called Embryonics is setting out to change this by using artificial intelligence to screen embryos.

IVF consists of fertilizing a woman’s egg with her partner’s or a donor’s sperm outside of her body, creating an embryo that’s then implanted in the uterus. It’s not an easy process in any sense of the word—physically, emotionally, or financially. Insurance rarely covers IVF, and the costs run anywhere from $12,000 to $25,000 per cycle (a cycle takes about a month and includes stimulating a woman’s ovaries to produce eggs, extracting the eggs, inseminating them outside the body, and implanting an embryo).

Women have to give themselves daily hormone shots to stimulate egg production, and these can cause uncomfortable side effects. After so much stress and expense, it’s disheartening to think that the odds of a successful pregnancy are, at best, one in three.

A crucial factor in whether or not an IVF cycle works—that is, whether the embryo implants in the uterus and begins to develop into a healthy fetus—is the quality of the embryo. Doctors examine embryos through a microscope to determine how many cells they contain and whether they appear healthy, and choose the one that looks most viable.

But the human eye can only see so much, even with the help of a microscope; despite embryologists’ efforts to select the “best” embryo, success rates are still relatively low. “Many decisions are based on gut feeling or personal experience,” said Embryonics founder and CEO Yael Gold-Zamir. “Even if you go to the same IVF center, two experts can give you different opinions on the same embryo.”

This is where Embryonics’ technology comes in. They used 8,789 time-lapse videos of developing embryos to train an algorithm that predicts the likelihood of successful embryo implantation. A little less than half of the embryos from the dataset were graded by embryologists, and implantation data was integrated when it was available (as a binary “successful” or “failed” metric).

The algorithm uses geometric deep learning, a technique that takes a traditional convolutional neural network—which filters input data to create maps of its features, and is most commonly used for image recognition—and applies it to more complex data like 3D objects and graphs. Within days after fertilization, the embryo is still at the blastocyst stage, essentially a microscopic clump of just 200-300 cells; the algorithm uses this deep learning technique to spot and identify patterns in embryo development that human embryologists either wouldn’t see at all, or would require massive collation of data to validate.

On top of the embryo videos, Embryonics’ team incorporated patient data and environmental data from the lab into its algorithm, with encouraging results: the company reports that using its algorithm resulted in a 12 percent increase in positive predictive value (identifying embryos that would lead to implantation and healthy pregnancy) and a 29 percent increase in negative predictive value (identifying embyros that would not result in successful pregnancy) when compared to an external panel of embryologists.

TechCrunch reported last week that in a pilot of 11 women who used Embryonics’ algorithm to select their embryos, 6 are enjoying successful pregnancies, while 5 are still awaiting results.

Embryonics wasn’t the first group to think of using AI to screen embryos; a similar algorithm developed in 2019 by researchers at Weill Cornell Medicine was able to classify the quality of a set of embryo images with 97 percent accuracy. But Embryonics will be one of the first to bring this sort of technology to market. The company is waiting to receive approval from European regulatory bodies to be able to sell the software to fertility clinics in Europe.

Its timing is ripe: as more and more women delay having kids due to lifestyle and career-related factors, demand for IVF is growing, and will likely accelerate in coming years.

The company ultimately hopes to bring its product to the US, as well as to expand its work to include using data to improve hormonal stimulation.

Image Credit: Gerd Altmann from Pixabay Continue reading

Posted in Human Robots

#437992 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
This Chinese Lab Is Aiming for Big AI Breakthroughs
Will Knight | Wired
“China produces as many artificial intelligence researchers as the US, but it lags in key fields like machine learning. The government hopes to make up ground. …It set AI researchers the goal of making ‘fundamental breakthroughs by 2025’ and called for the country to be ‘the world’s primary innovation center by 2030.’ BAAI opened a year later, in Zhongguancun, a neighborhood of Beijing designed to replicate US innovation hubs such as Boston and Silicon Valley.”

ENVIRONMENT
What Elon Musk’s $100 Million Carbon Capture Prize Could Mean
James Temple | MIT Technology Review
“[Elon Musk] announced on Twitter that he plans to give away $100 million of [his $180 billion net worth] as a prize for the ‘best carbon capture technology.’ …Another $100 million could certainly help whatever venture, or ventures, clinch Musk’s prize. But it’s a tiny fraction of his wealth and will also only go so far. …Money aside, however, one thing Musk has a particular knack for is generating attention. And this is a space in need of it.”

HEALTH
Synthetic Cornea Helped a Legally Blind Man Regain His Sight
Steve Dent | Engadget
“While the implant doesn’t contain any electronics, it could help more people than any robotic eye. ‘After years of hard work, seeing a colleague implant the CorNeat KPro with ease and witnessing a fellow human being regain his sight the following day was electrifying and emotionally moving, there were a lot of tears in the room,’ said CorNeat Vision co-founder Dr. Gilad Litvin.”

BIOTECH
MIT Develops Method for Lab-Grown Plants That May Eventually Lead to Alternatives to Forestry and Farming
Darrell Etherington | TechCrunch
“If the work of these researchers can eventually be used to create a way to produce lab-grown wood for use in construction and fabrication in a way that’s scalable and efficient, then there’s tremendous potential in terms of reducing the impact on forestry globally. Eventually, the team even theorizes you could coax the growth of plant-based materials into specific target shapes, so you could also do some of the manufacturing in the lab, by growing a wood table directly for instance.”

AUTOMATION
FAA Approves First Fully Automated Commercial Drone Flights
Andy Pasztor and Katy Stech Ferek | The Wall Street Journal
“US aviation regulators have approved the first fully automated commercial drone flights, granting a small Massachusetts-based company permission to operate drones without hands-on piloting or direct observation by human controllers or observers. …The company’s Scout drones operate under predetermined flight programs and use acoustic technology to detect and avoid drones, birds, and other obstacles.”

SPACE
China’s Surging Private Space Industry Is Out to Challenge the US
Neel V. Patel | MIT Technology Review
“[The Ceres-1] was a commercial rocket—only the second from a Chinese company ever to go into space. And the launch happened less than three years after the company was founded. The achievement is a milestone for China’s fledgling—but rapidly growing—private space industry, an increasingly critical part of the country’s quest to dethrone the US as the world’s preeminent space power.”

CRYPTOCURRENCY
Janet Yellen Will Consider Limiting Use of Cryptocurrency
Timothy B. Lee | Ars Technica
“Cryptocurrencies could come under renewed regulatory scrutiny over the next four years if Janet Yellen, Joe Biden’s pick to lead the Treasury Department, gets her way. During Yellen’s Tuesday confirmation hearing before the Senate Finance Committee, Sen. Maggie Hassan (D-N.H.) asked Yellen about the use of cryptocurrency by terrorists and other criminals. ‘Cryptocurrencies are a particular concern,’ Yellen responded. ‘I think many are used—at least in a transactions sense—mainly for illicit financing.’i”

SCIENCE
Secret Ingredient Found to Power Supernovas
Thomas Lewton | Quanta
“…Only in the last few years, with the growth of supercomputers, have theorists had enough computing power to model massive stars with the complexity needed to achieve explosions. …These new simulations are giving researchers a better understanding of exactly how supernovas have shaped the universe we see today.”

Image Credit: Ricardo Gomez Angel / Unsplash Continue reading

Posted in Human Robots

#437982 Superintelligent AI May Be Impossible to ...

It may be theoretically impossible for humans to control a superintelligent AI, a new study finds. Worse still, the research also quashes any hope for detecting such an unstoppable AI when it’s on the verge of being created.

Slightly less grim is the timetable. By at least one estimate, many decades lie ahead before any such existential computational reckoning could be in the cards for humanity.

Alongside news of AI besting humans at games such as chess, Go and Jeopardy have come fears that superintelligent machines smarter than the best human minds might one day run amok. “The question about whether superintelligence could be controlled if created is quite old,” says study lead author Manuel Alfonseca, a computer scientist at the Autonomous University of Madrid. “It goes back at least to Asimov’s First Law of Robotics, in the 1940s.”

The Three Laws of Robotics, first introduced in Isaac Asimov's 1942 short story “Runaround,” are as follows:

A robot may not injure a human being or, through inaction, allow a human being to come to harm.
A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

In 2014, philosopher Nick Bostrom, director of the Future of Humanity Institute at the University of Oxford, not only explored ways in which a superintelligent AI could destroy us but also investigated potential control strategies for such a machine—and the reasons they might not work.

Bostrom outlined two possible types of solutions of this “control problem.” One is to control what the AI can do, such as keeping it from connecting to the Internet, and the other is to control what it wants to do, such as teaching it rules and values so it would act in the best interests of humanity. The problem with the former is that Bostrom thought a supersmart machine could probably break free from any bonds we could make. With the latter, he essentially feared that humans might not be smart enough to train a superintelligent AI.

Now Alfonseca and his colleagues suggest it may be impossible to control a superintelligent AI, due to fundamental limits inherent to computing itself. They detailed their findings this month in the Journal of Artificial Intelligence Research.

The researchers suggested that any algorithm that sought to ensure a superintelligent AI cannot harm people had to first simulate the machine’s behavior to predict the potential consequences of its actions. This containment algorithm then would need to halt the supersmart machine if it might indeed do harm.

However, the scientists said it was impossible for any containment algorithm to simulate the AI’s behavior and predict with absolute certainty whether its actions might lead to harm. The algorithm could fail to correctly simulate the AI’s behavior or accurately predict the consequences of the AI’s actions and not recognize such failures.

“Asimov’s first law of robotics has been proved to be incomputable,” Alfonseca says, “and therefore unfeasible.”

We may not even know if we have created a superintelligent machine, the researchers say. This is a consequence of Rice’s theorem, which essentially states that one cannot in general figure anything out about what a computer program might output just by looking at the program, Alfonseca explains.

On the other hand, there’s no need to spruce up the guest room for our future robot overlords quite yet. Three important caveats to the research still leave plenty of uncertainty to the group’s predictions.

First, Alfonseca estimates AI’s moment of truth remains, he says, “At least two centuries in the future.”

Second, he says researchers do not know if so-called artificial general intelligence, also known as strong AI, is theoretically even feasible. “That is, a machine as intelligent as we are in an ample variety of fields,” Alfonseca explains.

Last, Alfonseca says, “We have not proved that superintelligences can never be controlled—only that they can’t always be controlled.”

Although it may not be possible to control a superintelligent artificial general intelligence, it should be possible to control a superintelligent narrow AI—one specialized for certain functions instead of being capable of a broad range of tasks like humans. “We already have superintelligences of this type,” Alfonseca says. “For instance, we have machines that can compute mathematics much faster than we can. This is [narrow] superintelligence, isn’t it?” Continue reading

Posted in Human Robots

#437978 How Mirroring the Architecture of the ...

While AI can carry out some impressive feats when trained on millions of data points, the human brain can often learn from a tiny number of examples. New research shows that borrowing architectural principles from the brain can help AI get closer to our visual prowess.

The prevailing wisdom in deep learning research is that the more data you throw at an algorithm, the better it will learn. And in the era of Big Data, that’s easier than ever, particularly for the large data-centric tech companies carrying out a lot of the cutting-edge AI research.

Today’s largest deep learning models, like OpenAI’s GPT-3 and Google’s BERT, are trained on billions of data points, and even more modest models require large amounts of data. Collecting these datasets and investing the computational resources to crunch through them is a major bottleneck, particularly for less well-resourced academic labs.

It also means today’s AI is far less flexible than natural intelligence. While a human only needs to see a handful of examples of an animal, a tool, or some other category of object to be able pick it out again, most AI need to be trained on many examples of an object in order to be able to recognize it.

There is an active sub-discipline of AI research aimed at what is known as “one-shot” or “few-shot” learning, where algorithms are designed to be able to learn from very few examples. But these approaches are still largely experimental, and they can’t come close to matching the fastest learner we know—the human brain.

This prompted a pair of neuroscientists to see if they could design an AI that could learn from few data points by borrowing principles from how we think the brain solves this problem. In a paper in Frontiers in Computational Neuroscience, they explained that the approach significantly boosts AI’s ability to learn new visual concepts from few examples.

“Our model provides a biologically plausible way for artificial neural networks to learn new visual concepts from a small number of examples,” Maximilian Riesenhuber, from Georgetown University Medical Center, said in a press release. “We can get computers to learn much better from few examples by leveraging prior learning in a way that we think mirrors what the brain is doing.”

Several decades of neuroscience research suggest that the brain’s ability to learn so quickly depends on its ability to use prior knowledge to understand new concepts based on little data. When it comes to visual understanding, this can rely on similarities of shape, structure, or color, but the brain can also leverage abstract visual concepts thought to be encoded in a brain region called the anterior temporal lobe (ATL).

“It is like saying that a platypus looks a bit like a duck, a beaver, and a sea otter,” said paper co-author Joshua Rule, from the University of California Berkeley.

The researchers decided to try and recreate this capability by using similar high-level concepts learned by an AI to help it quickly learn previously unseen categories of images.

Deep learning algorithms work by getting layers of artificial neurons to learn increasingly complex features of an image or other data type, which are then used to categorize new data. For instance, early layers will look for simple features like edges, while later ones might look for more complex ones like noses, faces, or even more high-level characteristics.

First they trained the AI on 2.5 million images across 2,000 different categories from the popular ImageNet dataset. They then extracted features from various layers of the network, including the very last layer before the output layer. They refer to these as “conceptual features” because they are the highest-level features learned, and most similar to the abstract concepts that might be encoded in the ATL.

They then used these different sets of features to train the AI to learn new concepts based on 2, 4, 8, 16, 32, 64, and 128 examples. They found that the AI that used the conceptual features yielded much better performance than ones trained using lower-level features on lower numbers of examples, but the gap shrunk as they were fed more training examples.

While the researchers admit the challenge they set their AI was relatively simple and only covers one aspect of the complex process of visual reasoning, they said that using a biologically plausible approach to solving the few-shot problem opens up promising new avenues in both neuroscience and AI.

“Our findings not only suggest techniques that could help computers learn more quickly and efficiently, they can also lead to improved neuroscience experiments aimed at understanding how people learn so quickly, which is not yet well understood,” Riesenhuber said.

As the researchers note, the human visual system is still the gold standard when it comes to understanding the world around us. Borrowing from its design principles might turn out to be a profitable direction for future research.

Image Credit: Gerd Altmann from Pixabay Continue reading

Posted in Human Robots