Tag Archives: Agility Robotics
#439693 Agility Robotics’ Digit is Getting ...
Agility Robotics' Digit humanoid has been taking a bit of a break from work during the pandemic. Most of what we've seen from Agility and Digit over the past year and a half has been decidedly research-y. Don't get me wrong, Digit's been busy making humans look bad and not falling over when it really should have done, but remember that Agility's goal is to make Digit into a useful, practical robot. It's not a research platform—as Agility puts it, Digit is intended to “accelerate business productivity and people's pursuit of a more fulfilling life.” As far as I can make out, this is a fancier way of saying that Digit should really be spending its time doing dull repetitive tasks so that humans don't have to, and in a new video posted today, the robot shows how it can help out with boring warehouse tote shuffling.
The highlights here for me are really in the combination of legged mobility and object manipulation. Right at the beginning of the video, you see Digit squatting all the way down, grasping a tote bin, shuffling backwards to get the bin out from under the counter, and then standing again. There's an unfortunate cut there, but the sequence is shown again at 0:44, and you can see how Digit pulls the tote towards itself and then regrasps it before lifting. Clever. And at 1:20, the robot gives a tote that it just placed on a shelf a little nudge with one arm to make sure it's in the right spot.
These are all very small things, but I think of them as highlights because all of the big things seem to be more or less solved in this scenario. Digit has no problem lifting things, walking around, and not mowing over the occasional human, and once that stuff is all sorted, whether the robot is able to effectively work in an environment like this is to some extent reflected in all of these other little human-obvious things that often make the difference between success and failure.
The clear question, though, is why Digit (or, more broadly, any bipedal robot) is the right robot to be doing this kind of job. There are other robots out there already doing tasks like these in warehouses, and they generally have wheeled bases and manipulation systems specifically designed to move totes and do nothing else. If you were to use one of those robots instead of Digit, my guess is that you'd pay less for it, it would be somewhat safer, and it would likely do the job more efficiently. Fundamentally, Digit can't out box-move a box-moving robot. But the critical thing to consider here is that as soon as you run out of boxes to move, Digit can do all kinds of other things thanks to its versatile humanoid design, while your box-moving robot can only sit in the corner and be sad until more boxes show up.
“We did not set out to build a humanoid robot. We set out to solve mobility.”
—Agility CTO Jonathan Hurst
“Digit is very, very flexible automation,” Agility CTO Jonathan Hurst told us when we asked him about this. “The value of what we're doing is in generality, and having a robot that's going be able to work carrying totes for three or four hours, then go unload boxes from trailers for three or four hours, keep up with you if you change your workflow entirely. Many of these spaces are designed specifically around the human form factor, and it's possible for a robot like Digit to do all of these different boring, repetitive jobs. And then when things get complicated, humans are still doing it.”
The value of having a human-like robot in a human environment comes into play as soon as you start thinking about typical warehouse situations that would be trivial for a human to solve but that are impossible for wheeled robots. For example, Hurst says that Digit is capable of using a stool to reach objects on high shelves. You could, of course, design a wheeled robot with an extension system to allow it to reach high shelves, but you're now adding more cost and complexity, and the whole point of a generalist humanoid robot is that in human environments, you just don't have to worry about environmental challenges. Or that's the idea, anyway, but as Hurst explains, the fact that Digit ended up with a mostly humanoid form factor was more like a side effect of designing with specific capabilities in mind:
We did not set out to build a humanoid robot. We set out to solve mobility, and we've been on a methodical path towards understanding physical interaction in the world. Agility started with our robot Cassie, and one of the big problems with Cassie was that we didn't have enough inertia in the robot's body to counteract the leg swinging forward, which is why Digit has an upright torso. We wanted to give ourselves more control authority in the yaw direction with Cassie, so we experimented with putting a tail on the robot, and it turns out that the best tail is a pair of bilaterally symmetrical tails, one on either side.
Our goal was to design a machine that can go where people go while manipulating things in the world, and we ended up with this kind of form factor. It's a very different path for us to have gotten here than the vast majority of humanoid robots, and there's an awful lot of subtlety that is in our machine that is absent in most other machines.IEEE Spectrum: So are you saying that Digit's arms sort of started out as tails to help Cassie with yaw control?
Jonathan Hurst: There are many examples like this—we've been going down this path where we find a solution to a problem like yaw control, and it happens to look like it does with animals, but it's also a solution that's optimal in several different ways, like physical interaction and being able to catch the robot when it falls. It's not like it's a compromise between one thing and another thing, it's straight up the right solution for these three different performance design goals.
Looking back, we started by asking, should we put a reaction wheel or a gyro on Cassie for yaw control? Well, that's just wasted mass. We could use a tail, and there are a lot of nice robots with tails, but usually they're for controlling pitch. It's the same with animals; if you look at lizards, they use their tails for mid-air reorienting to land on their feet after they jump. Cassie doesn't need a tail for that, but we only have a couple of small feet on the ground to work with. And if you look at other bipedal animals, every one of them has some other way of getting that yaw authority. If you watch an ostrich run, when it turns, it sticks its wing out to get the control that it needs.
And so all of these things just fall into place, and a bilaterally symmetrical pair of tails is the best way to control yaw in a biped. When you see Digit walking and its arms are swinging, that's not something that we added to make the motion look right. It looks right because it literally is right—it's the physics of mobility. And that's a good sign for us that we're on the right path to getting the performance that we want.
“We're going for general purpose, but starting with some of the easiest use cases.”
—Agility CTO Jonathan Hurst
Spectrum: We've seen Digit demonstrating very impressive mobility skills. Why are we seeing a demo in a semi-constrained warehouse environment instead of somewhere that would more directly leverage Digit's unique advantages?
Jonathan Hurst: It's about finding the earliest, most appropriate, and most valuable use cases. There's a lot to this robot, and we're not going to be just a tote packing robot. We're not building a specialized robot for this one application, but we have a couple of pretty big logistics partners who are interested in the flexibility and the manipulation capabilities of this machine. And yeah, what you're seeing now is the robot on a flattish floor, but it's also not going to be tripped up by a curb, or a step, or, a wire cover, or other things on the ground. You don't have to worry about anything like that. So next, it's an easy transition next to unloading trailers, where it's going to have to be stepping over gaps and up and down things and around boxes on the floor and stuff like that. We're going for general purpose, but starting with some of the easiest use cases.
Damion Shelton, CEO: We're trying to prune down the industry space, to get to something where there's a clear value proposition with a partner and deploying there. We can respect the difficulty of the general purpose use case and work to deploy early and profitably, as opposed to continuing to push for the outdoor applications. The blessing and the curse of the Ford opportunity is that it's super interesting, but also super hard. And so it's very motivating, and it's clear to us that that's where one of the ultimate opportunities is, but it's also far enough away from a deployment timeline that it just doesn't map on to a viable business model.
This is a point that every robotics company runs into sooner or later, where aspirations have to succumb to the reality of selling robots in a long-term sustainable way. It's definitely not a bad thing, it just means that we may have to adjust our expectations accordingly. No matter what kind of flashy cutting-edge capabilities your robot has, if it can't cost effectively do dull or dirty or dangerous stuff, nobody's going to pay you money for it. And cost effective usefulness is, arguably, one of the biggest challenges in bipedal robotics right now. In the past, I've been impressed by Digit's weightlifting skills, or its ability to climb steep and muddy hills. I'll be just as impressed when it starts making money for Agility by doing boring repetitive tasks in warehouses, because that means that Agility will be able to keep working towards those more complex, more exciting things. “It's not general manipulation, and we're not solving the grand challenges of robotics,” says Hurst. “Yet. But we're on our way.” Continue reading
#439237 Agility Robotics’ Cassie Is Now ...
Bipedal robots are a huge hassle. They’re expensive, complicated, fragile, and they spend most of their time almost but not quite falling over. That said, bipeds are worth it because if you want a robot to go everywhere humans go, the conventional wisdom is that the best way to do so is to make robots that can walk on two legs like most humans do. And the most frequent, most annoying two-legged thing that humans do to get places? Going up and down stairs.
Stairs have been a challenge for robots of all kinds (bipeds, quadrupeds, tracked robots, you name it) since, well, forever. And usually, when we see bipeds going up or down stairs nowadays, it involves a lot of sensing, a lot of computation, and then a fairly brittle attempt that all too often ends in tears for whoever has to put that poor biped back together again.
You’d think that the solution to bipedal stair traversal would just involve better sensing and more computation to model the stairs and carefully plan footsteps. But an approach featured in upcoming Robotics Science and Systems conference paper from Oregon State University and Agility Robotics does away will all of that out and instead just throws a Cassie biped at random outdoor stairs with absolutely no sensing at all. And it works spectacularly well.
A couple of things to bear in mind: Cassie is “blind” in the sense that it has no information about the stairs that it’s going up or down. The robot does get proprioceptive feedback, meaning that it knows what kind of contact its limbs are making with the stairs. Also, the researchers do an admirable job of keeping that safety tether slack, and Cassie isn’t being helped by it in the least—it’s just there to prevent a catastrophic fall.
What really bakes my noodle about this video is how amazing Cassie is at being kind of terrible at stair traversal. The robot is a total klutz: it runs into railings, stubs its toes, slips off of steps, misses steps completely, and occasionally goes backwards. Amazingly, Cassie still manages not only to not fall, but also to keep going until it gets where it needs to be.
And this is why this research is so exciting—rather than try to develop some kind of perfect stair traversal system that relies on high quality sensing and a lot of computation to optimally handle stairs, this approach instead embraces real-world constraints while managing to achieve efficient performance that’s real-world robust, if perhaps not the most elegant.
The secret to Cassie’s stair mastery isn’t much of a secret at all, since there’s a paper about it on arXiv. The researchers used reinforcement learning to train a simulated Cassie on permutations of stairs based on typical city building codes, with sets of stairs up to eight individual steps. To transfer the learned stair-climbing strategies (referred to as policies) effectively from simulation to the real world, the simulation included a variety of disturbances designed to represent the kinds of things that are hard to simulate accurately. For example, Cassie had its simulated joints messed with, its simulated processing speed tweaked, and even the simulated ground friction was jittered around. So, even though the simulation couldn’t perfectly mimic real ground friction, randomly mixing things up ensures that the controller (the software telling the robot how to move) gains robustness to a much wider range of situations.
One peculiarity of using reinforcement learning to train a robot is that even if you come up with something that works really well, it’s sometimes unclear exactly why. You may have noticed in the first video that the researchers are only able to hypothesize about the reasons for the controller’s success, and we asked one of the authors, Kevin Green, to try and explain what’s going on:
“Deep reinforcement learning has similar issues that we are seeing in a lot of machine learning applications. It is hard to understand the reasoning for why a learned controller performs certain actions. Is it exploiting a quirk of your simulation or your reward function? Is it perhaps stuck in a local minima? Sometimes the reward function is not specific enough and the policy can exhibit strange, vestigial behaviors simply because they are not rewarded or penalized. On the other hand, a reward function can be too constraining and can lead to a policy which doesn’t fully explore the space of possible actions, limiting performance. We do our best to ensure our simulation is accurate and that our rewards are objective and descriptive. From there, we really act more like biomechanists, observing a functioning system for hints as to the strategies that it is using to be highly successful.”
One of the strategies that they observed, first author Jonah Siekmann told us, is that Cassie does better on stairs when it’s moving faster, which is a bit of a counterintuitive thing for robots generally:
“Because the robot is blind, it can choose very bad foot placements. If it tries to place its foot on the very corner of a stair and shift its weight to that foot, the resulting force pushes the robot back down the stairs. At walking speed, this isn’t much of an issue because the robot’s momentum can overcome brief moments where it is being pushed backwards. At low speeds, the momentum is not sufficient to overcome a bad foot placement, and it will keep getting knocked backwards down the stairs until it falls. At high speeds, the robot tends to skip steps which pushes the robot closer to (and sometimes over) its limits.”
These bad foot placements are what lead to some of Cassie’s more impressive feats, Siekmann says. “Some of the gnarlier descents, where Cassie skips a step or three and recovers, were especially surprising. The robot also tripped on ascent and recovered in one step a few times. The physics are complicated, so to see those accurate reactions embedded in the learned controller was exciting. We haven’t really seen that kind of robustness before.” In case you’re worried that all of that robustness is in video editing, here’s an uninterrupted video of ten stair ascents and ten stair descents, featuring plenty of gnarliness.
We asked the researchers whether Cassie is better at stairs than a blindfolded human would be. “It’s difficult to say,” Siekmann told us. “We’ve joked lots of times that Cassie is superhuman at stair climbing because in the process of filming these videos we have tripped going up the stairs ourselves while we’re focusing on the robot or on holding a camera.”
A robot being better than a human at a dynamic task like this is obviously a very high bar, but my guess is that most of us humans are actually less prepared for blind stair navigation than Cassie is, because Cassie was explicitly trained on stairs that were uneven: “a small amount of noise (± 1cm) is added to the rise and run of each step such that the stairs are never entirely uniform, to prevent the policy from deducing the precise dimensions of the stairs via proprioception and subsequently overfitting to perfectly uniform stairs.” Speaking as someone who just tried jogging up my stairs with my eyes closed in the name of science, I absolutely relied on the assumption that my stairs were uniform. And when humans can’t rely on assumptions like that, it screws us up, even if we have eyeballs equipped.
Like most robot-y things, Cassie is operating under some significant constraints here. If Cassie seems even stompier than it usually is, that’s because it’s using this specific stair controller which is optimized for stairs and stair-like things but not much else.
“When you train neural networks to act as controllers, over time the learning algorithm refines the network so that it maximizes the reward specific to the environment that it sees,” explains Green. “This means that by training on flights of stairs, we get a very different looking controller compared to training on flat ground.” Green says that the stair controller works fine on flat ground, it’s just less efficient (and noisier). They’re working on ways of integrating multiple gait controllers that the robot can call on depending on what it’s trying to do; conceivably this might involve some very simple perception system just to tell the robot “hey look, there are some stairs, better engage stair mode.”
The paper ends with the statement that “this work has demonstrated surprising capabilities for blind locomotion and leaves open the question of where the limits lie.” I’m certainly surprised at Cassie’s stair capabilities, and it’ll be exciting to see what other environments this technique can be applied to. If there are limits, I’m sure that Cassie is going to try and find them.
Blind Bipedal Stair Traversal via Sim-to-Real Reinforcement Learning, by Jonah Siekmann, Kevin Green, John Warila, Alan Fern, and Jonathan Hurst from Oregon State University and Agility Robotics, will be presented at RSS 2021 in July. Continue reading
#438785 Video Friday: A Blimp For Your Cat
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.
Shiny robotic cat toy blimp!
I am pretty sure this is Google Translate getting things wrong, but the About page mentions that the blimp will “take you to your destination after appearing in the death of God.”
[ NTT DoCoMo ] via [ RobotStart ]
If you have yet to see this real-time video of Perseverance landing on Mars, drop everything and watch it.
During the press conference, someone commented that this is the first time anyone on the team who designed and built this system has ever seen it in operation, since it could only be tested at the component scale on Earth. This landing system has blown my mind since Curiosity.
Here's a better look at where Percy ended up:
[ NASA ]
The fact that Digit can just walk up and down wet, slippery, muddy hills without breaking a sweat is (still) astonishing.
[ Agility Robotics ]
SkyMul wants drones to take over the task of tying rebar, which looks like just the sort of thing we'd rather robots be doing so that we don't have to:
The tech certainly looks promising, and SkyMul says that they're looking for some additional support to bring things to the pilot stage.
[ SkyMul ]
Thanks Eohan!
Flatcat is a pet-like, playful robot that reacts to touch. Flatcat feels everything exactly: Cuddle with it, romp around with it, or just watch it do weird things of its own accord. We are sure that flatcat will amaze you, like us, and caress your soul.
I don't totally understand it, but I want it anyway.
[ Flatcat ]
Thanks Oswald!
This is how I would have a romantic dinner date if I couldn't get together in person. Herman the UR3 and an OptiTrack system let me remotely make a romantic meal!
[ Dave's Armoury ]
Here, we propose a novel design of deformable propellers inspired by dragonfly wings. The structure of these propellers includes a flexible segment similar to the nodus on a dragonfly wing. This flexible segment can bend, twist and even fold upon collision, absorbing force upon impact and protecting the propeller from damage.
[ Paper ]
Thanks Van!
In the 1970s, The CIA created the world's first miniaturized unmanned aerial vehicle, or UAV, which was intended to be a clandestine listening device. The Insectothopter was never deployed operationally, but was still revolutionary for its time.
It may never have been deployed (not that they'll admit to, anyway), but it was definitely operational and could fly controllably.
[ CIA ]
Research labs are starting to get Digits, which means we're going to get a much better idea of what its limitations are.
[ Ohio State ]
This video shows the latest achievements for LOLA walking on undetected uneven terrain. The robot is technically blind, not using any camera-based or prior information on the terrain.
[ TUM ]
We define “robotic contact juggling” to be the purposeful control of the motion of a three-dimensional smooth object as it rolls freely on a motion-controlled robot manipulator, or “hand.” While specific examples of robotic contact juggling have been studied before, in this paper we provide the first general formulation and solution method for the case of an arbitrary smooth object in single-point rolling contact on an arbitrary smooth hand.
[ Paper ]
Thanks Fan!
A couple of new cobots from ABB, designed to work safely around humans.
[ ABB ]
Thanks Fan!
It's worth watching at least a little bit of Adam Savage testing Spot's new arm, because we get to see Spot try, fail, and eventually succeed at an autonomous door-opening behavior at the 10 minute mark.
[ Tested ]
SVR discusses diversity with guest speakers Dr. Michelle Johnson from the GRASP Lab at UPenn; Dr Ariel Anders from Women in Robotics and first technical hire at Robust.ai; Alka Roy from The Responsible Innovation Project; and Kenechukwu C. Mbanesi and Kenya Andrews from Black in Robotics. The discussion here is moderated by Dr. Ken Goldberg—artist, roboticist and Director of the CITRIS People and Robots Lab—and Andra Keay from Silicon Valley Robotics.
[ SVR ]
RAS presents a Soft Robotics Debate on Bioinspired vs. Biohybrid Design.
In this debate, we will bring together experts in Bioinspiration and Biohybrid design to discuss the necessary steps to make more competent soft robots. We will try to answer whether bioinspired research should focus more on developing new bioinspired material and structures or on the integration of living and artificial structures in biohybrid designs.
[ RAS SoRo ]
IFRR presents a Colloquium on Human Robot Interaction.
Across many application domains, robots are expected to work in human environments, side by side with people. The users will vary substantially in background, training, physical and cognitive abilities, and readiness to adopt technology. Robotic products are expected to not only be intuitive, easy to use, and responsive to the needs and states of their users, but they must also be designed with these differences in mind, making human-robot interaction (HRI) a key area of research.
[ IFRR ]
Vijay Kumar, Nemirovsky Family Dean and Professor at Penn Engineering, gives an introduction to ENIAC day and David Patterson, Pardee Professor of Computer Science, Emeritus at the University of California at Berkeley, speaks about the legacy of the ENIAC and its impact on computer architecture today. This video is comprised of lectures one and two of nine total lectures in the ENIAC Day series.
There are more interesting ENIAC videos at the link below, but we'll highlight this particular one, about the women of the ENIAC, also known as the First Programmers.
[ ENIAC Day ] Continue reading
#438613 Video Friday: Digit Takes a Hike
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.
It's winter in Oregon, so everything is damp, all the time. No problem for Digit!
Also the case for summer in Oregon.
[ Agility Robotics ]
While other organisms form collective flocks, schools, or swarms for such purposes as mating, predation, and protection, the Lumbriculus variegatus worms are unusual in their ability to braid themselves together to accomplish tasks that unconnected individuals cannot. A new study reported by researchers at the Georgia Institute of Technology describes how the worms self-organize to act as entangled “active matter,” creating surprising collective behaviors whose principles have been applied to help blobs of simple robots evolve their own locomotion.
No, this doesn't squick me out at all, why would it.
[ Georgia Tech ]
A few years ago, we wrote about Zhifeng Huang's jet-foot equipped bipedal robot, and he's been continuing to work on it to the point where it can now step over gaps that are an absolutely astonishing 147% of its leg length.
[ Paper ]
Thanks Zhifeng!
The Inception Drive is a novel, ultra-compact design for an Infinitely Variable Transmission (IVT) that uses nested-pulleys to adjust the gear ratio between input and output shafts. This video shows the first proof-of-concept prototype for a “Fully Balanced” design, where the spinning masses within the drive are completely balanced to reduce vibration, thereby allowing the drive to operate more efficiently and at higher speeds than achievable on an unbalanced design.
As shown in this video, the Inception Drive can change both the speed and direction of rotation of the output shaft while keeping the direction and speed of the input shaft constant. This ability to adjust speed and direction within such a compact package makes the Inception Drive a compelling choice for machine designers in a wide variety of fields, including robotics, automotive, and renewable-energy generation.
[ SRI ]
Robots with kinematic loops are known to have superior mechanical performance. However, due to these loops, their modeling and control is challenging, and prevents a more widespread use. In this paper, we describe a versatile Inverse Kinematics (IK) formulation for the retargeting of expressive motions onto mechanical systems with loops.
[ Disney Research ]
Watch Engineered Arts put together one of its Mesmer robots in a not at all uncanny way.
[ Engineered Arts ]
There's been a bunch of interesting research into vision-based tactile sensing recently; here's some from Van Ho at JAIST:
[ Paper ]
Thanks Van!
This is really more of an automated system than a robot, but these little levitating pucks are very very slick.
ACOPOS 6D is based on the principle of magnetic levitation: Shuttles with integrated permanent magnets float over the surface of electromagnetic motor segments. The modular motor segments are 240 x 240 millimeters in size and can be arranged freely in any shape. A variety of shuttle sizes carry payloads of 0.6 to 14 kilograms and reach speeds of up to 2 meters per second. They can move freely in two-dimensional space, rotate and tilt along three axes and offer precise control over the height of levitation. All together, that gives them six degrees of motion control freedom.
[ ACOPOS ]
Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.
[ CHARM Lab ]
The quadrotor experts at UZH have been really cranking it up recently.
Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modelling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14m/s and accelerations beyond 4g.
[ Paper ]
I have not heard much from Harvest Automation over the last couple years and their website was last updated in 2016, but I guess they're selling robots in France, so that's good?
[ Harvest Automation ]
Last year, Clearpath Robotics introduced a ROS package for Spot which enables robotics developers to leverage ROS capabilities out-of-the-box. Here at OTTO Motors, we thought it would be a compelling test case to see just how easy it would be to integrate Spot into our test fleet of OTTO materials handling robots.
[ OTTO Motors ]
Video showcasing recent robotics activities at PRISMA Lab, coordinated by Prof. Bruno Siciliano, at Università di Napoli Federico II.
[ PRISMA Lab ]
Thanks Fan!
State estimation framework developed by the team CoSTAR for the DARPA Subterranean Challenge, where the team achieved 2nd and 1st places in the Tunnel and Urban circuits.
[ Paper ]
Highlights from the 2020 ROS Industrial conference.
[ ROS Industrial ]
Thanks Thilo!
Not robotics, but entertaining anyway. From the CHI 1995 Technical Video Program, “The Tablet Newspaper: a Vision for the Future.”
[ CHI 1995 ]
This week's GRASP on Robotics seminar comes from Allison Okamura at Stanford, on “Wearable Haptic Devices for Ubiquitous Communication.”
Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. We explore the design of a wide array of haptic feedback mechanisms, ranging from devices that can be actively touched by the fingertips to multi-modal haptic actuation mounted on the arm. We demonstrate how these devices are effective in virtual reality, human-machine communication, and human-human communication.
[ UPenn ] Continue reading