Tag Archives: abilities

#439066 Video Friday: Festo’s BionicSwift

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Festo's Bionic Learning Network for 2021 presents a flock of BionicSwifts.

To execute the flight maneuvers as true to life as possible, the wings are modeled on the plumage of birds. The individual lamellae are made of an ultralight, flexible but very robust foam and lie on top of each other like shingles. Connected to a carbon quill, they are attached to the actual hand and arm wings as in the natural model.

During the wing upstroke, the individual lamellae fan out so that air can flow through the wing. This means that the birds need less force to pull the wing up. During the downstroke, the lamellae close up so that the birds can generate more power to fly. Due to this close-to-nature replica of the wings, the BionicSwifts have a better flight profile than previous wing-beating drives.

[ Festo ]

While we've seen a wide variety of COVID-motivated disinfecting robots, they're usually using either ultraviolet light or a chemical fog. This isn't the way that humans clean—we wipe stuff down, which gets rid of surface dirt and disinfects at the same time. Fraunhofer has been working on a mobile manipulator that can clean in the same ways that we do.

It's quite the technical challenge, but it has the potential to be both more efficient and more effective.

[ Fraunhofer ]

In recent years, robots have gained artificial vision, touch, and even smell. “Researchers have been giving robots human-like perception,” says MIT Associate Professor Fadel Adib. In a new paper, Adib’s team is pushing the technology a step further. “We’re trying to give robots superhuman perception,” he says. The researchers have developed a robot that uses radio waves, which can pass through walls, to sense occluded objects. The robot, called RF-Grasp, combines this powerful sensing with more traditional computer vision to locate and grasp items that might otherwise be blocked from view.

[ MIT ]

Ingenuity is now scheduled to fly on April 11.

[ JPL ]

The legendary Zenta is back after a two year YouTube hiatus with “a kind of freaky furry hexapod bunny creature.”

[ Zenta ]

It is with great pride and excitement that the South Australia Police announce a new expansion to their kennel by introducing three new Police Dog (PD) recruits. These dogs have been purposely targeted to bring a whole new range of dog operational capabilities known as the ‘small area urban search and guided evacuation’ dogs. Police have been working closely with specialist vets and dog trainers to ascertain if the lightweight dogs could be transported safely by drones and released into hard-to-access areas where at the moment the larger PDs just simply cannot get in due to their size.

[ SA Police ]

SoftBank may not have Spot cheerleading robots for their baseball team anymore, but they've more than made up for it with a full century of Peppers. And one dude doing the robot.

[ SoftBank ]

MAB Robotics is a Polish company developing walking robots for inspection, and here's a prototype they've been working on.

[ MAB Robotics ]

Thanks Jakub!

DoraNose: Smell your way to a better tomorrow.

[ Dorabot ]

Our robots need to learn how to cope with their new neighbors, and we have just the solution for this, the egg detector! Using cutting-edge AI, it provides incredible precision in detecting a vast variety of eggs. We have deployed this new feature on Boston Dynamics Spot, one of our fleet's robots. It can now detect eggs with its cameras and avoid them on his autonomous missions.

[ Energy Robotics ]

When dropping a squishy robot from an airplane 1,000 feet up, make sure that you land as close to people's cars as you can.

Now do it from orbit!

[ Squishy Robotics ]

An autonomous robot that is able to physically guide humans through narrow and cluttered spaces could be a big boon to the visually-impaired. Most prior robotic guiding systems are based on wheeled platforms with large bases with actuated rigid guiding canes. The large bases and the actuated arms limit these prior approaches from operating in narrow and cluttered environments. We propose a method that introduces a quadrupedal robot with a leash to enable the robot-guiding-human system to change its intrinsic dimension (by letting the leash go slack) in order to fit into narrow spaces.

[ Hybrid Robotics ]

How to prove that your drone is waterproof.

[ UNL ]

Well this ought to be pretty good once it gets out of simulation.

[ Hybrid Robotics ]

MIDAS is Aurora’s AI-enabled, multi-rotor sUAV outfitted with optical sensors and a customized payload that can defeat multiple small UAVs per flight with low-collateral effects.

[ Aurora ]

The robots​ of the DFKI have the advantage of being able to reach extreme environments: they can be used for decontamination purposes in high-risk areas or inspect and maintain underwater​ structures, for which they are tested in the North Sea near Heligoland​.

[ DFKI ]

After years of trying, 60 Minutes cameras finally get a peek inside the workshop at Boston Dynamics, where robots move in ways once only thought possible in movies. Anderson Cooper reports.

[ 60 Minutes ]

In 2007, Noel Sharky stated that “we are sleepwalking into a brave new world where robots decide who, where and when to kill.” Since then thousands of AI and robotics researchers have joined his calls to regulate “killer robots.” But sometime this year, Turkey will deploy fully autonomous home-built kamikaze drones on its border with Syria. What are the ethical choices we need to consider? Will we end up in an episode of Black Mirror? Or is the UN listening to calls and starting the process of regulating this space? Prof. Toby Walsh will discuss this important issue, consider where we are at and where we need to go.

[ ICRA 2020 ]

In the second session of HAI's spring conference, artists and technologists discussed how technology can enhance creativity, reimagine meaning, and support racial and social justice. The conference, called “Intelligence Augmentation: AI Empowering People to Solve Global Challenges,” took place on 25 March 2021.

[ Stanford HAI ]

This spring 2021 GRASP SFI comes from Monroe Kennedy III at Stanford University, on “Considerations for Human-Robot Collaboration.”

The field of robotics has evolved over the past few decades. We’ve seen robots progress from the automation of repetitive tasks in manufacturing to the autonomy of mobilizing in unstructured environments to the cooperation of swarm robots that are centralized or decentralized. These abilities have required advances in robotic hardware, modeling, and artificial intelligence. The next frontier is robots collaborating in complex tasks with human teammates, in environments traditionally configured for humans. While solutions to this challenge must utilize all the advances of robotics, the human element adds a unique aspect that must be addressed. Collaborating with a human teammate means that the robot must have a contextual understanding of the task as well as all participant’s roles. We will discuss what constitutes an effective teammate and how we can capture this behavior in a robotic collaborator.

[ UPenn ] Continue reading

Posted in Human Robots

#439032 To Learn To Deal With Uncertainty, This ...

AI is endowing robots, autonomous vehicles and countless of other forms of tech with new abilities and levels of self-sufficiency. Yet these models faithfully “make decisions” based on whatever data is fed into them, which could have dangerous consequences. For instance, if an autonomous car is driving down a highway and the sensor picks up a confusing signal (e.g., a paint smudge that is incorrectly interpreted as a lane marking), this could cause the car to swerve into another lane unnecessarily.

But in the ever-evolving world of AI, researchers are developing new ways to address challenges like this. One group of researchers has devised a new algorithm that allows the AI model to account for uncertain data, which they describe in a study published February 15 in IEEE Transactions on Neural Networks and Learning Systems.

“While we would like robots to work seamlessly in the real world, the real world is full of uncertainty,” says Michael Everett, a post-doctoral associate at MIT who helped develop the new approach. “It's important for a system to be aware of what it knows and what it is unsure about, which has been a major challenge for modern AI.”

His team focused on a type of AI called reinforcement learning (RL), whereby the model tries to learn the “value” of taking each action in a given scenario through trial-and-error. They developed a secondary algorithm, called Certified Adversarial Robustness for deep RL (CARRL), that can be built on top of an existing RL model.

“Our key innovation is that rather than blindly trusting the measurements, as is done today [by AI models], our algorithm CARRL thinks through all possible measurements that could have been made, and makes a decision that considers the worst-case outcome,” explains Everett.

In their study, the researchers tested CARRL across several different tasks, including collision avoidance simulations and Atari pong. For younger readers who may not be familiar with it, Atari pong is a classic computer game whereby an electronic paddle is used to direct a ping pong on the screen. In the test scenario, CARRL helped move the paddle slightly higher or lower to compensate for the possibility that the ball could approach at a slightly different point than what the input data indicated. All the while, CARRL would try to ensure that the ball would make contact with at least some part of paddle.

Gif: MIT Aerospace Controls Laboratory

In a perfect world, the information that an AI model is fed would be accurate all the time and AI model will perform well (left). But in some cases, the AI may be given inaccurate data, causing it to miss its targets (middle). The new algorithm CARRL helps AIs account for uncertainty in its data inputs, yielding a better performance when relying on poor data (right).

Across all test scenarios, the RL model was better at compensating for potential inaccurate or “noisy” data with CARRL, than without CARRL.

But the results also show that, like with humans, too much self-doubt and uncertainty can be unhelpful. In the collision avoidance scenario, for example, indulging in too much uncertainty caused the main moving object in the simulation to avoid both the obstacle and its goal. “There is definitely a limit to how ‘skeptical’ the algorithm can be without becoming overly conservative,” Everett says.

This research was funded by Ford Motor Company, but Everett notes that it could be applicable under many other commercial applications requiring safety-aware AI, including aerospace, healthcare, or manufacturing domains.

“This work is a step toward my vision of creating ‘certifiable learning machines’—systems that can discover how to explore and perform in the real world on their own, while still having safety and robustness guarantees,” says Everett. “We'd like to bring CARRL into robotic hardware while continuing to explore the theoretical challenges at the interface of robotics and AI.” Continue reading

Posted in Human Robots

#438801 This AI Thrashes the Hardest Atari Games ...

Learning from rewards seems like the simplest thing. I make coffee, I sip coffee, I’m happy. My brain registers “brewing coffee” as an action that leads to a reward.

That’s the guiding insight behind deep reinforcement learning, a family of algorithms that famously smashed most of Atari’s gaming catalog and triumphed over humans in strategy games like Go. Here, an AI “agent” explores the game, trying out different actions and registering ones that let it win.

Except it’s not that simple. “Brewing coffee” isn’t one action; it’s a series of actions spanning several minutes, where you’re only rewarded at the very end. By just tasting the final product, how do you learn to fine-tune grind coarseness, water to coffee ratio, brewing temperature, and a gazillion other factors that result in the reward—tasty, perk-me-up coffee?

That’s the problem with “sparse rewards,” which are ironically very abundant in our messy, complex world. We don’t immediately get feedback from our actions—no video-game-style dings or points for just grinding coffee beans—yet somehow we’re able to learn and perform an entire sequence of arm and hand movements while half-asleep.

This week, researchers from UberAI and OpenAI teamed up to bestow this talent on AI.

The trick is to encourage AI agents to “return” to a previous step, one that’s promising for a winning solution. The agent then keeps a record of that state, reloads it, and branches out again to intentionally explore other solutions that may have been left behind on the first go-around. Video gamers are likely familiar with this idea: live, die, reload a saved point, try something else, repeat for a perfect run-through.

The new family of algorithms, appropriately dubbed “Go-Explore,” smashed notoriously difficult Atari games like Montezuma’s Revenge that were previously unsolvable by its AI predecessors, while trouncing human performance along the way.

It’s not just games and digital fun. In a computer simulation of a robotic arm, the team found that installing Go-Explore as its “brain” allowed it to solve a challenging series of actions when given very sparse rewards. Because the overarching idea is so simple, the authors say, it can be adapted and expanded to other real-world problems, such as drug design or language learning.

Growing Pains
How do you reward an algorithm?

Rewards are very hard to craft, the authors say. Take the problem of asking a robot to go to a fridge. A sparse reward will only give the robot “happy points” if it reaches its destination, which is similar to asking a baby, with no concept of space and danger, to crawl through a potential minefield of toys and other obstacles towards a fridge.

“In practice, reinforcement learning works very well, if you have very rich feedback, if you can tell, ‘hey, this move is good, that move is bad, this move is good, that move is bad,’” said study author Joost Huinzinga. However, in situations that offer very little feedback, “rewards can intentionally lead to a dead end. Randomly exploring the space just doesn’t cut it.”

The other extreme is providing denser rewards. In the same robot-to-fridge example, you could frequently reward the bot as it goes along its journey, essentially helping “map out” the exact recipe to success. But that’s troubling as well. Over-holding an AI’s hand could result in an extremely rigid robot that ignores new additions to its path—a pet, for example—leading to dangerous situations. It’s a deceptive AI solution that seems effective in a simple environment, but crashes in the real world.

What we need are AI agents that can tackle both problems, the team said.

Intelligent Exploration
The key is to return to the past.

For AI, motivation usually comes from “exploring new or unusual situations,” said Huizinga. It’s efficient, but comes with significant downsides. For one, the AI agent could prematurely stop going back to promising areas because it thinks it had already found a good solution. For another, it could simply forget a previous decision point because of the mechanics of how it probes the next step in a problem.

For a complex task, the end result is an AI that randomly stumbles around towards a solution while ignoring potentially better ones.

“Detaching from a place that was previously visited after collecting a reward doesn’t work in difficult games, because you might leave out important clues,” Huinzinga explained.

Go-Explore solves these problems with a simple principle: first return, then explore. In essence, the algorithm saves different approaches it previously tried and loads promising save points—once more likely to lead to victory—to explore further.

Digging a bit deeper, the AI stores screen caps from a game. It then analyzes saved points and groups images that look alike as a potential promising “save point” to return to. Rinse and repeat. The AI tries to maximize its final score in the game, and updates its save points when it achieves a new record score. Because Atari doesn’t usually allow people to revisit any random point, the team used an emulator, which is a kind of software that mimics the Atari system but with custom abilities such as saving and reloading at any time.

The trick worked like magic. When pitted against 55 Atari games in the OpenAI gym, now commonly used to benchmark reinforcement learning algorithms, Go-Explore knocked out state-of-the-art AI competitors over 85 percent of the time.

It also crushed games previously unbeatable by AI. Montezuma’s Revenge, for example, requires you to move Pedro, the blocky protagonist, through a labyrinth of underground temples while evading obstacles such as traps and enemies and gathering jewels. One bad jump could derail the path to the next level. It’s a perfect example of sparse rewards: you need a series of good actions to get to the reward—advancing onward.

Go-Explore didn’t just beat all levels of the game, a first for AI. It also scored higher than any previous record for reinforcement learning algorithms at lower levels while toppling the human world record.

Outside a gaming environment, Go-Explore was also able to boost the performance of a simulated robot arm. While it’s easy for humans to follow high-level guidance like “put the cup on this shelf in a cupboard,” robots often need explicit training—from grasping the cup to recognizing a cupboard, moving towards it while avoiding obstacles, and learning motions to not smash the cup when putting it down.

Here, similar to the real world, the digital robot arm was only rewarded when it placed the cup onto the correct shelf, out of four possible shelves. When pitted against another algorithm, Go-Explore quickly figured out the movements needed to place the cup, while its competitor struggled with even reliably picking the cup up.

Combining Forces
By itself, the “first return, then explore” idea behind Go-Explore is already powerful. The team thinks it can do even better.

One idea is to change the mechanics of save points. Rather than reloading saved states through the emulator, it’s possible to train a neural network to do the same, without needing to relaunch a saved state. It’s a potential way to make the AI even smarter, the team said, because it can “learn” to overcome one obstacle once, instead of solving the same problem again and again. The downside? It’s much more computationally intensive.

Another idea is to combine Go-Explore with an alternative form of learning, called “imitation learning.” Here, an AI observes human behavior and mimics it through a series of actions. Combined with Go-Explore, said study author Adrien Ecoffet, this could make more robust robots capable of handling all the complexity and messiness in the real world.

To the team, the implications go far beyond Go-Explore. The concept of “first return, then explore” seems to be especially powerful, suggesting “it may be a fundamental feature of learning in general.” The team said, “Harnessing these insights…may be essential…to create generally intelligent agents.”

Image Credit: Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune Continue reading

Posted in Human Robots

#438798 This AI Thrashes the Hardest Atari Games ...

Learning from rewards seems like the simplest thing. I make coffee, I sip coffee, I’m happy. My brain registers “brewing coffee” as an action that leads to a reward.

That’s the guiding insight behind deep reinforcement learning, a family of algorithms that famously smashed most of Atari’s gaming catalog and triumphed over humans in strategy games like Go. Here, an AI “agent” explores the game, trying out different actions and registering ones that let it win.

Except it’s not that simple. “Brewing coffee” isn’t one action; it’s a series of actions spanning several minutes, where you’re only rewarded at the very end. By just tasting the final product, how do you learn to fine-tune grind coarseness, water to coffee ratio, brewing temperature, and a gazillion other factors that result in the reward—tasty, perk-me-up coffee?

That’s the problem with “sparse rewards,” which are ironically very abundant in our messy, complex world. We don’t immediately get feedback from our actions—no video-game-style dings or points for just grinding coffee beans—yet somehow we’re able to learn and perform an entire sequence of arm and hand movements while half-asleep.

This week, researchers from UberAI and OpenAI teamed up to bestow this talent on AI.

The trick is to encourage AI agents to “return” to a previous step, one that’s promising for a winning solution. The agent then keeps a record of that state, reloads it, and branches out again to intentionally explore other solutions that may have been left behind on the first go-around. Video gamers are likely familiar with this idea: live, die, reload a saved point, try something else, repeat for a perfect run-through.

The new family of algorithms, appropriately dubbed “Go-Explore,” smashed notoriously difficult Atari games like Montezuma’s Revenge that were previously unsolvable by its AI predecessors, while trouncing human performance along the way.

It’s not just games and digital fun. In a computer simulation of a robotic arm, the team found that installing Go-Explore as its “brain” allowed it to solve a challenging series of actions when given very sparse rewards. Because the overarching idea is so simple, the authors say, it can be adapted and expanded to other real-world problems, such as drug design or language learning.

Growing Pains
How do you reward an algorithm?

Rewards are very hard to craft, the authors say. Take the problem of asking a robot to go to a fridge. A sparse reward will only give the robot “happy points” if it reaches its destination, which is similar to asking a baby, with no concept of space and danger, to crawl through a potential minefield of toys and other obstacles towards a fridge.

“In practice, reinforcement learning works very well, if you have very rich feedback, if you can tell, ‘hey, this move is good, that move is bad, this move is good, that move is bad,’” said study author Joost Huinzinga. However, in situations that offer very little feedback, “rewards can intentionally lead to a dead end. Randomly exploring the space just doesn’t cut it.”

The other extreme is providing denser rewards. In the same robot-to-fridge example, you could frequently reward the bot as it goes along its journey, essentially helping “map out” the exact recipe to success. But that’s troubling as well. Over-holding an AI’s hand could result in an extremely rigid robot that ignores new additions to its path—a pet, for example—leading to dangerous situations. It’s a deceptive AI solution that seems effective in a simple environment, but crashes in the real world.

What we need are AI agents that can tackle both problems, the team said.

Intelligent Exploration
The key is to return to the past.

For AI, motivation usually comes from “exploring new or unusual situations,” said Huizinga. It’s efficient, but comes with significant downsides. For one, the AI agent could prematurely stop going back to promising areas because it thinks it had already found a good solution. For another, it could simply forget a previous decision point because of the mechanics of how it probes the next step in a problem.

For a complex task, the end result is an AI that randomly stumbles around towards a solution while ignoring potentially better ones.

“Detaching from a place that was previously visited after collecting a reward doesn’t work in difficult games, because you might leave out important clues,” Huinzinga explained.

Go-Explore solves these problems with a simple principle: first return, then explore. In essence, the algorithm saves different approaches it previously tried and loads promising save points—once more likely to lead to victory—to explore further.

Digging a bit deeper, the AI stores screen caps from a game. It then analyzes saved points and groups images that look alike as a potential promising “save point” to return to. Rinse and repeat. The AI tries to maximize its final score in the game, and updates its save points when it achieves a new record score. Because Atari doesn’t usually allow people to revisit any random point, the team used an emulator, which is a kind of software that mimics the Atari system but with custom abilities such as saving and reloading at any time.

The trick worked like magic. When pitted against 55 Atari games in the OpenAI gym, now commonly used to benchmark reinforcement learning algorithms, Go-Explore knocked out state-of-the-art AI competitors over 85 percent of the time.

It also crushed games previously unbeatable by AI. Montezuma’s Revenge, for example, requires you to move Pedro, the blocky protagonist, through a labyrinth of underground temples while evading obstacles such as traps and enemies and gathering jewels. One bad jump could derail the path to the next level. It’s a perfect example of sparse rewards: you need a series of good actions to get to the reward—advancing onward.

Go-Explore didn’t just beat all levels of the game, a first for AI. It also scored higher than any previous record for reinforcement learning algorithms at lower levels while toppling the human world record.

Outside a gaming environment, Go-Explore was also able to boost the performance of a simulated robot arm. While it’s easy for humans to follow high-level guidance like “put the cup on this shelf in a cupboard,” robots often need explicit training—from grasping the cup to recognizing a cupboard, moving towards it while avoiding obstacles, and learning motions to not smash the cup when putting it down.

Here, similar to the real world, the digital robot arm was only rewarded when it placed the cup onto the correct shelf, out of four possible shelves. When pitted against another algorithm, Go-Explore quickly figured out the movements needed to place the cup, while its competitor struggled with even reliably picking the cup up.

Combining Forces
By itself, the “first return, then explore” idea behind Go-Explore is already powerful. The team thinks it can do even better.

One idea is to change the mechanics of save points. Rather than reloading saved states through the emulator, it’s possible to train a neural network to do the same, without needing to relaunch a saved state. It’s a potential way to make the AI even smarter, the team said, because it can “learn” to overcome one obstacle once, instead of solving the same problem again and again. The downside? It’s much more computationally intensive.

Another idea is to combine Go-Explore with an alternative form of learning, called “imitation learning.” Here, an AI observes human behavior and mimics it through a series of actions. Combined with Go-Explore, said study author Adrien Ecoffet, this could make more robust robots capable of handling all the complexity and messiness in the real world.

To the team, the implications go far beyond Go-Explore. The concept of “first return, then explore” seems to be especially powerful, suggesting “it may be a fundamental feature of learning in general.” The team said, “Harnessing these insights…may be essential…to create generally intelligent agents.”

Image Credit: Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune Continue reading

Posted in Human Robots

#438785 Video Friday: A Blimp For Your Cat

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

Shiny robotic cat toy blimp!

I am pretty sure this is Google Translate getting things wrong, but the About page mentions that the blimp will “take you to your destination after appearing in the death of God.”

[ NTT DoCoMo ] via [ RobotStart ]

If you have yet to see this real-time video of Perseverance landing on Mars, drop everything and watch it.

During the press conference, someone commented that this is the first time anyone on the team who designed and built this system has ever seen it in operation, since it could only be tested at the component scale on Earth. This landing system has blown my mind since Curiosity.

Here's a better look at where Percy ended up:

[ NASA ]

The fact that Digit can just walk up and down wet, slippery, muddy hills without breaking a sweat is (still) astonishing.

[ Agility Robotics ]

SkyMul wants drones to take over the task of tying rebar, which looks like just the sort of thing we'd rather robots be doing so that we don't have to:

The tech certainly looks promising, and SkyMul says that they're looking for some additional support to bring things to the pilot stage.

[ SkyMul ]

Thanks Eohan!

Flatcat is a pet-like, playful robot that reacts to touch. Flatcat feels everything exactly: Cuddle with it, romp around with it, or just watch it do weird things of its own accord. We are sure that flatcat will amaze you, like us, and caress your soul.

I don't totally understand it, but I want it anyway.

[ Flatcat ]

Thanks Oswald!

This is how I would have a romantic dinner date if I couldn't get together in person. Herman the UR3 and an OptiTrack system let me remotely make a romantic meal!

[ Dave's Armoury ]

Here, we propose a novel design of deformable propellers inspired by dragonfly wings. The structure of these propellers includes a flexible segment similar to the nodus on a dragonfly wing. This flexible segment can bend, twist and even fold upon collision, absorbing force upon impact and protecting the propeller from damage.

[ Paper ]

Thanks Van!

In the 1970s, The CIA​ created the world's first miniaturized unmanned aerial vehicle, or UAV, which was intended to be a clandestine listening device. The Insectothopter was never deployed operationally, but was still revolutionary for its time.

It may never have been deployed (not that they'll admit to, anyway), but it was definitely operational and could fly controllably.

[ CIA ]

Research labs are starting to get Digits, which means we're going to get a much better idea of what its limitations are.

[ Ohio State ]

This video shows the latest achievements for LOLA walking on undetected uneven terrain. The robot is technically blind, not using any camera-based or prior information on the terrain.

[ TUM ]

We define “robotic contact juggling” to be the purposeful control of the motion of a three-dimensional smooth object as it rolls freely on a motion-controlled robot manipulator, or “hand.” While specific examples of robotic contact juggling have been studied before, in this paper we provide the first general formulation and solution method for the case of an arbitrary smooth object in single-point rolling contact on an arbitrary smooth hand.

[ Paper ]

Thanks Fan!

A couple of new cobots from ABB, designed to work safely around humans.

[ ABB ]

Thanks Fan!

It's worth watching at least a little bit of Adam Savage testing Spot's new arm, because we get to see Spot try, fail, and eventually succeed at an autonomous door-opening behavior at the 10 minute mark.

[ Tested ]

SVR discusses diversity with guest speakers Dr. Michelle Johnson from the GRASP Lab at UPenn; Dr Ariel Anders from Women in Robotics and first technical hire at Robust.ai; Alka Roy from The Responsible Innovation Project; and Kenechukwu C. Mbanesi and Kenya Andrews from Black in Robotics. The discussion here is moderated by Dr. Ken Goldberg—artist, roboticist and Director of the CITRIS People and Robots Lab—and Andra Keay from Silicon Valley Robotics.

[ SVR ]

RAS presents a Soft Robotics Debate on Bioinspired vs. Biohybrid Design.

In this debate, we will bring together experts in Bioinspiration and Biohybrid design to discuss the necessary steps to make more competent soft robots. We will try to answer whether bioinspired research should focus more on developing new bioinspired material and structures or on the integration of living and artificial structures in biohybrid designs.

[ RAS SoRo ]

IFRR presents a Colloquium on Human Robot Interaction.

Across many application domains, robots are expected to work in human environments, side by side with people. The users will vary substantially in background, training, physical and cognitive abilities, and readiness to adopt technology. Robotic products are expected to not only be intuitive, easy to use, and responsive to the needs and states of their users, but they must also be designed with these differences in mind, making human-robot interaction (HRI) a key area of research.

[ IFRR ]

Vijay Kumar, Nemirovsky Family Dean and Professor at Penn Engineering, gives an introduction to ENIAC day and David Patterson, Pardee Professor of Computer Science, Emeritus at the University of California at Berkeley, speaks about the legacy of the ENIAC and its impact on computer architecture today. This video is comprised of lectures one and two of nine total lectures in the ENIAC Day series.

There are more interesting ENIAC videos at the link below, but we'll highlight this particular one, about the women of the ENIAC, also known as the First Programmers.

[ ENIAC Day ] Continue reading

Posted in Human Robots