Tag Archives: 2018
#437912 “Boston Dynamics Will Continue to ...
Last week’s announcement that Hyundai acquired Boston Dynamics from SoftBank left us with a lot of questions. We attempted to answer many of those questions ourselves, which is typically bad practice, but sometimes it’s the only option when news like that breaks.
Fortunately, yesterday we were able to speak with Michael Patrick Perry, vice president of business development at Boston Dynamics, who candidly answered our questions about Boston Dynamics’ new relationship with Hyundai and what the near future has in store.
IEEE Spectrum: Boston Dynamics is worth 1.1 billion dollars! Can you put that valuation into context for us?
Michael Patrick Perry: Since 2018, we’ve shifted to becoming a commercial organization. And that’s included a number of things, like taking our existing technology and bringing it to market for the first time. We’ve gone from zero to 400 Spot robots deployed, building out an ecosystem of software developers, sensor providers, and integrators. With that scale of deployment and looking at the pipeline of opportunities that we have lined up over the next year, I think people have started to believe that this isn’t just a one-off novelty—that there’s actual value that Spot is able to create. Secondly, with some of our efforts in the logistics market, we’re getting really strong signals both with our Pick product and also with some early discussions around Handle’s deployment in warehouses, which we think are going to be transformational for that industry.
So, the thing that’s really exciting is that two years ago, we were talking about this vision, and people said, “Wow, that sounds really cool, let’s see how you do.” And now we have the validation from the market saying both that this is actually useful, and that we’re able to execute. And that’s where I think we’re starting to see belief in the long-term viability of Boston Dynamics, not just as a cutting-edge research shop, but also as a business.
Photo: Boston Dynamics
Boston Dynamics says it has deployed 400 Spot robots, building out an “ecosystem of software developers, sensor providers, and integrators.”
How would you describe Hyundai’s overall vision for the future of robotics, and how do they want Boston Dynamics to fit into that vision?
In the immediate term, Hyundai’s focus is to continue our existing trajectories, with Spot, Handle, and Atlas. They believe in the work that we’ve done so far, and we think that combining with a partner that understands many of the industries in which we’re targeting, whether its manufacturing, construction, or logistics, can help us improve our products. And obviously as we start thinking about producing these robots at scale, Hyundai’s expertise in manufacturing is going to be really helpful for us.
Looking down the line, both Boston Dynamics and Hyundai believe in the value of smart mobility, and they’ve made a number of plays in that space. Whether it’s urban air mobility or autonomous driving, they’ve been really thinking about connecting the digital and the physical world through moving systems, whether that’s a car, a vertical takeoff and landing multi-rotor vehicle, or a robot. We are well positioned to take on robotics side of that while also connecting to some of these other autonomous services.
Can you tell us anything about the kind of robotics that the Hyundai Motor Group has going on right now?
So they’re working on a lot of really interesting stuff—exactly how that connects, you know, it’s early days, and we don’t have anything explicitly to share. But they’ve got a smart and talented robotics team that’s working in a variety of directions that shares overlap with us. Obviously, a lot of things related to autonomous driving shares some DNA with the work that we’re doing in autonomy for Spot and Handle, so it’s pretty exciting to see.
What are you most excited about here? How do you think this deal will benefit Boston Dynamics?
I think there are a number of things. One is that they have an expertise in hardware, in a way that’s unique. They understand and appreciate the complexity of creating large complex robotic systems. So I think there’s some shared understanding of what it takes to create a great hardware product. And then also they have the resources to help us actually build those products with them together—they have manufacturing resources and things like that.
“Robotics isn’t a short term game. We’ve scaled pretty rapidly but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision”
Another thing that’s exciting is that Hyundai has some pretty visionary bets for autonomous driving and unmanned aerial systems, and all of that fits very neatly into the connected vision of robotics that we were talking about before. Robotics isn’t a short term game. We’ve scaled pretty rapidly for a robotics company in terms of the scale of robots we’ve able to deploy in the field, but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision.
And when you’ve been talking with Hyundai, what are they most excited about?
I think they’re really excited about our existing products and our technology. Looking at some of the things that Spot, Pick, and Handle are able to do now, there are applications that many of Hyundai’s customers could benefit from in terms of mobility, remote sensing, and material handling. Looking down the line, Hyundai is also very interested in smart city technology, and mobile robotics is going to be a core piece of that.
We tend to focus on Spot and Handle and Atlas in terms of platform capabilities, but can you talk a bit about some of the component-level technology that’s unique to Boston Dynamics, and that could be of interest to Hyundai?
Creating very power-dense actuator design is something that we’ve been successful at for several years, starting back with BigDog and LS3. And Handle has some hydraulic actuators and valves that are pretty unique in terms of their design and capability. Fundamentally, we have a systems engineering approach that brings together both hardware and software internally. You’ll often see different groups that specialize in something, like great mechanical or electrical engineering groups, or great controls teams, but what I think makes Boston Dynamics so special is that we’re able to put everything on the table at once to create a system that’s incredibly capable. And that’s why with something like Spot, we’re able to produce it at scale, while also making it flexible enough for all the different applications that the robot is being used for right now.
It’s hard to talk specifics right now, but there are obviously other disciplines within mechanical engineering or electrical engineering or controls for robots or autonomous systems where some of our technology could be applied.
Photo: Boston Dynamics
Boston Dynamics is in the process of commercializing Handle, iterating on its design and planning to get box-moving robots on-site with customers in the next year or two.
While Boston Dynamics was part of Google, and then SoftBank, it seems like there’s been an effort to maintain independence. Is it going to be different with Hyundai? Will there be more direct integration or collaboration?
Obviously it’s early days, but right now, we have support to continue executing against all the plans that we have. That includes all the commercialization of Spot, as well as things for Atlas, which is really going to be pushing the capability of our team to expand into new areas. That’s going to be our immediate focus, and we don’t see anything that’s going to pull us away from that core focus in the near term.
As it stands right now, Boston Dynamics will continue to be Boston Dynamics under this new ownership.
How much of what you do at Boston Dynamics right now would you characterize as fundamental robotics research, and how much is commercialization? And how do you see that changing over the next couple of years?
We have been expanding our commercial team, but we certainly keep a lot of the core capabilities of fundamental robotics research. Some of it is very visible, like the new behavior development for Atlas where we’re pushing the limits of perception and path planning. But a lot of the stuff that we’re working on is a little bit under the hood, things that are less obvious—terrain handling, intervention handling, how to make safe faults, for example. Initially when Spot started slipping on things, it would flail around trying to get back up. We’ve had to figure out the right balance between the robot struggling to stand, and when it should decide to just lock its limbs and fall over because it’s safer to do that.
I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us. So we’ve been ramping up a lot of work over the last several years trying to get to an early but still valuable iteration of the technology, and we’ll continue pushing on that as we start learning what’s most useful to our customers.
“I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us”
Looking back, Spot as a commercial robot has a history that goes back to robots like LS3 and BigDog, which were very ambitious projects funded by agencies like DARPA without much in the way of commercial expectations. Do you think these very early stage, very expensive, very technical projects are still things that Boston Dynamics can take on?
Yes—I would point to a lot of the things we do with Atlas as an example of that. While we don’t have immediate plans to commercialize Atlas, we can point to technologies that come out of Atlas that have enabled some of our commercial efforts over time. There’s not necessarily a clear roadmap of how every piece of Atlas research is going to feed over into a commercial product; it’s more like, this is a really hard fundamental robotics challenge, so let’s tackle it and learn things that we can then benefit from across the company.
And fundamentally, our team loves doing cool stuff with robots, and you’ll continue seeing that in the months to come.
Photo: Boston Dynamics
Spot’s arm with gripper is coming out early next year, and Boston Dynamics says that’s going to “unlock a new set of capabilities for us.”
What would it take to commercialize Atlas? And are you getting closer with Handle?
We’re in the process of commercializing Handle. We’re at a relatively early stage, but we have a plan to get the first versions for box moving on-site with customers in the next year or two. Last year, we did some on-site deployments as proof-of-concept trials, and using the feedback from that, we did a new design pass on the robot, and we’re looking at increasing our manufacturing capability. That’s all in progress.
For Atlas, it’s like the Formula 1 of robots—you’re not going to take a Formula 1 car and try to make it less capable so that you can drive it on the road. We’re still trying to see what are some applications that would necessitate an energy and computationally intensive humanoid robot as opposed to something that’s more inherently stable. Trying to understand that application space is something that we’re interested in, and then down the line, we could look at creating new morphologies to help address specific applications. In many ways, Handle is the first version of that, where we said, “Atlas is good at moving boxes but it’s very complicated and expensive, so let’s create a simpler and smaller design that can achieve some of the same things.”
The press release mentioned a mobile robot for warehouses that will be introduced next year—is that Handle?
Yes, that’s the work that we’re doing on Handle.
As we start thinking about a whole robotic solution for the warehouse, we have to look beyond a high power, low footprint, dynamic platform like Handle and also consider things that are a little less exciting on video. We need a vision system that can look at a messy stack of boxes and figure out how to pick them up, we need an interface between a robot and an order building system—things where people might question why Boston Dynamics is focusing on them because it doesn’t fit in with our crazy backflipping robots, but it’s really incumbent on us to create that full end-to-end solution.
Are you confident that under Hyundai’s ownership, Boston Dynamics will be able to continue taking the risks required to remain on the cutting edge of robotics?
I think we will continue to push the envelope of what robots are capable of, and I think in the near term, you’ll be able to see that realized in our products and the research that we’re pushing forward with. 2021 is going to be a great year for us. Continue reading →
#437872 AlphaFold Proves That AI Can Crack ...
Any successful implementation of artificial intelligence hinges on asking the right questions in the right way. That’s what the British AI company DeepMind (a subsidiary of Alphabet) accomplished when it used its neural network to tackle one of biology’s grand challenges, the protein-folding problem. Its neural net, known as AlphaFold, was able to predict the 3D structures of proteins based on their amino acid sequences with unprecedented accuracy.
AlphaFold’s predictions at the 14th Critical Assessment of protein Structure Prediction (CASP14) were accurate to within an atom’s width for most of the proteins. The competition consisted of blindly predicting the structure of proteins that have only recently been experimentally determined—with some still awaiting determination.
Called the building blocks of life, proteins consist of 20 different amino acids in various combinations and sequences. A protein's biological function is tied to its 3D structure. Therefore, knowledge of the final folded shape is essential to understanding how a specific protein works—such as how they interact with other biomolecules, how they may be controlled or modified, and so on. “Being able to predict structure from sequence is the first real step towards protein design,” says Janet M. Thornton, director emeritus of the European Bioinformatics Institute. It also has enormous benefits in understanding disease-causing pathogens. For instance, at the moment only about 18 of the 26 proteins in the SARS-CoV-2 virus are known.
Predicting a protein’s 3D structure is a computational nightmare. In 1969 Cyrus Levinthal estimated that there are 10300 possible conformational combinations for a single protein, which would take longer than the age of the known universe to evaluate by brute force calculation. AlphaFold can do it in a few days.
As scientific breakthroughs go, AlphaFold’s discovery is right up there with the likes of James Watson and Francis Crick’s DNA double-helix model, or, more recently, Jennifer Doudna and Emmanuelle Charpentier’s CRISPR-Cas9 genome editing technique.
How did a team that just a few years ago was teaching an AI to master a 3,000-year-old game end up training one to answer a question plaguing biologists for five decades? That, says Briana Brownell, data scientist and founder of the AI company PureStrategy, is the beauty of artificial intelligence: The same kind of algorithm can be used for very different things.
“Whenever you have a problem that you want to solve with AI,” she says, “you need to figure out how to get the right data into the model—and then the right sort of output that you can translate back into the real world.”
DeepMind’s success, she says, wasn’t so much a function of picking the right neural nets but rather “how they set up the problem in a sophisticated enough way that the neural network-based modeling [could] actually answer the question.”
AlphaFold showed promise in 2018, when DeepMind introduced a previous iteration of their AI at CASP13, achieving the highest accuracy among all participants. The team had trained its to model target shapes from scratch, without using previously solved proteins as templates.
For 2020 they deployed new deep learning architectures into the AI, using an attention-based model that was trained end-to-end. Attention in a deep learning network refers to a component that manages and quantifies the interdependence between the input and output elements, as well as between the input elements themselves.
The system was trained on public datasets of the approximately 170,000 known experimental protein structures in addition to databases with protein sequences of unknown structures.
“If you look at the difference between their entry two years ago and this one, the structure of the AI system was different,” says Brownell. “This time, they’ve figured out how to translate the real world into data … [and] created an output that could be translated back into the real world.”
Like any AI system, AlphaFold may need to contend with biases in the training data. For instance, Brownell says, AlphaFold is using available information about protein structure that has been measured in other ways. However, there are also many proteins with as yet unknown 3D structures. Therefore, she says, a bias could conceivably creep in toward those kinds of proteins that we have more structural data for.
Thornton says it’s difficult to predict how long it will take for AlphaFold’s breakthrough to translate into real-world applications.
“We only have experimental structures for about 10 per cent of the 20,000 proteins [in] the human body,” she says. “A powerful AI model could unveil the structures of the other 90 per cent.”
Apart from increasing our understanding of human biology and health, she adds, “it is the first real step toward… building proteins that fulfill a specific function. From protein therapeutics to biofuels or enzymes that eat plastic, the possibilities are endless.” Continue reading →
#437826 Video Friday: Skydio 2 Drone Is Back on ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.
Skydio, which makes what we’re pretty sure is the most intelligent consumer drone (or maybe just drone period) in existence, has been dealing with COVID-19 just like the rest of us. Even so, they’ve managed to push out a major software update, and pre-orders for the Skydio 2 are now open again.
If you think you might want one, read our review, after which you’ll be sure you want one.
[ Skydio ]
Worried about people with COVID entering your workplace? Misty II has your front desk covered, in a way that’s quite a bit friendlier than many other options.
Misty II provides a dynamic and interactive screening experience that delivers a joyful experience in an otherwise depressing moment while also delivering state of the art thermal scanning and health screening. We have already found that employees, customers, and visitors appreciate the novelty of interacting with a clever and personable robot. Misty II engages dynamically, both visually and verbally. Companies appreciate using a solution with a blackbody-referenced thermal camera that provides high accuracy and a short screening process for efficiency. Putting a robot to work in this role shifts not only how people look at the screening process but also how robots can take on useful assignments in business, schools and homes.
[ Misty Robotics ]
Thanks Tim!
I’m definitely the one in the middle.
[ Agility Robotics ]
NASA’s Ingenuity helicopter is traveling to Mars attached to the belly of the Perseverance rover and must safely detach to begin the first attempt at powered flight on another planet. Tests done at NASA’s Jet Propulsion Laboratory and Lockheed Martin Space show the sequence of events that will bring the helicopter down to the Martian surface.
[ JPL ]
Here’s a sequence of videos of Cassie Blue making it (or mostly making it) up a 22-degree slope.
My mood these days is Cassie at 1:09.
[ University of Michigan ]
Thanks Jesse!
This is somewhere on the line between home automation and robotics, but it’s a cool idea: A baby crib that “uses computer vision and machine learning to recognize subtle changes” in an infant’s movement, and proactively bounces them to keep them sleeping peacefully.
It costs $1000, but how much value do you put on 24 months of your own sleep?
[ Cradlewise ]
Thanks Ben!
As captive marine mammal shows have fallen from favor; and the catching, transporting and breeding of marine animals has become more restricted, the marine park industry as a viable business has become more challenging – yet the audience appetite for this type of entertainment and education has remained constant.
Real-time Animatronics provide a way to reinvent the marine entertainment industry with a sustainable, safe, and profitable future. Show venues include aquariums, marine parks, theme parks, fountain shows, cruise lines, resort hotels, shopping malls, museums, and more.
[ EdgeFX ] via [ Gizmodo ]
Robotic cabling is surprisingly complex and kinda cool to watch.
The video shows the sophisticated robot application “Automatic control cabinet cabling”, which Fraunhofer IPA implemented together with the company Rittal. The software pitasc, developed at Fraunhofer IPA, is used for force-controlled assembly processes. Two UR robot arms carry out the task together. The modular pitasc system enables the robot arms to move and rotate in parallel. They work hand in hand, with one robot holding the cable and the second bringing it to the starting position for the cabling. The robots can find, tighten, hold ready, lay, plug in, fix, move freely or immerse cables. They can also perform push-ins and pull tests.
[ Fraunhofer ]
This is from 2018, but the concept is still pretty neat.
We propose to perform a novel investigation into the ability of a propulsively hopping robot to reach targets of high science value on the icy, rugged terrains of Ocean Worlds. The employment of a multi-hop architecture allows for the rapid traverse of great distances, enabling a single mission to reach multiple geologic units within a timespan conducive to system survival in a harsh radiation environment. We further propose that the use of a propulsive hopping technique obviates the need for terrain topographic and strength assumptions and allows for complete terrain agnosticism; a key strength of this concept.
[ NASA ]
Aerial-aquatic robots possess the unique ability of operating in both air and water. However, this capability comes with tremendous challenges, such as communication incompati- bility, increased airborne mass, potentially inefficient operation in each of the environments and manufacturing difficulties. Such robots, therefore, typically have small payloads and a limited operational envelope, often making their field usage impractical. We propose a novel robotic water sampling approach that combines the robust technologies of multirotors and underwater micro-vehicles into a single integrated tool usable for field operations.
[ Imperial ]
Event cameras are bio-inspired vision sensors with microsecond latency resolution, much larger dynamic range and hundred times lower power consumption than standard cameras. This 20-minute talk gives a short tutorial on event cameras and show their applications on computer vision, drones, and cars.
[ UZH ]
We interviewed Paul Newman, Perla Maiolino and Lars Kunze, ORI academics, to hear what gets them excited about robots in the future and any advice they have for those interested in the field.
[ Oxford Robotics Institute ]
Two projects from the Rehabilitation Engineering Lab at ETH Zurich, including a self-stabilizing wheelchair and a soft exoskeleton for grasping assistance.
[ ETH Zurich ]
Silicon Valley Robotics hosted an online conversation about robotics and racism. Moderated by Andra Keay, the panel featured Maynard Holliday, Tom Williams, Monroe Kennedy III, Jasmine Lawrence, Chad Jenkins, and Ken Goldberg.
[ SVR ]
The ICRA Legged Locomotion workshop has been taking place online, and while we’re not getting a robot mosh pit, there are still some great talks. We’ll post two here, but for more, follow the legged robots YouTube channel at the link below.
[ YouTube ] Continue reading →
#437769 Q&A: Facebook’s CTO Is at War With ...
Photo: Patricia de Melo Moreira/AFP/Getty Images
Facebook chief technology officer Mike Schroepfer leads the company’s AI and integrity efforts.
Facebook’s challenge is huge. Billions of pieces of content—short and long posts, images, and combinations of the two—are uploaded to the site daily from around the world. And any tiny piece of that—any phrase, image, or video—could contain so-called bad content.
In its early days, Facebook relied on simple computer filters to identify potentially problematic posts by their words, such as those containing profanity. These automatically filtered posts, as well as posts flagged by users as offensive, went to humans for adjudication.
In 2015, Facebook started using artificial intelligence to cull images that contained nudity, illegal goods, and other prohibited content; those images identified as possibly problematic were sent to humans for further review.
By 2016, more offensive photos were reported by Facebook’s AI systems than by Facebook users (and that is still the case).
In 2018, Facebook CEO Mark Zuckerberg made a bold proclamation: He predicted that within five or ten years, Facebook’s AI would not only look for profanity, nudity, and other obvious violations of Facebook’s policies. The tools would also be able to spot bullying, hate speech, and other misuse of the platform, and put an immediate end to them.
Today, automated systems using algorithms developed with AI scan every piece of content between the time when a user completes a post and when it is visible to others on the site—just fractions of a second. In most cases, a violation of Facebook’s standards is clear, and the AI system automatically blocks the post. In other cases, the post goes to human reviewers for a final decision, a workforce that includes 15,000 content reviewers and another 20,000 employees focused on safety and security, operating out of more than 20 facilities around the world.
In the first quarter of this year, Facebook removed or took other action (like appending a warning label) on more than 9.6 million posts involving hate speech, 8.6 million involving child nudity or exploitation, almost 8 million posts involving the sale of drugs, 2.3 million posts involving bullying and harassment, and tens of millions of posts violating other Facebook rules.
Right now, Facebook has more than 1,000 engineers working on further developing and implementing what the company calls “integrity” tools. Using these systems to screen every post that goes up on Facebook, and doing so in milliseconds, is sucking up computing resources. Facebook chief technology officer Mike Schroepfer, who is heading up Facebook’s AI and integrity efforts, spoke with IEEE Spectrum about the team’s progress on building an AI system that detects bad content.
Since that discussion, Facebook’s policies around hate speech have come under increasing scrutiny, with particular attention on divisive posts by political figures. A group of major advertisers in June announced that they would stop advertising on the platform while reviewing the situation, and civil rights groups are putting pressure on others to follow suit until Facebook makes policy changes related to hate speech and groups that promote hate, misinformation, and conspiracies.
Facebook CEO Mark Zuckerberg responded with news that Facebook will widen the category of what it considers hateful content in ads. Now the company prohibits claims that people from a specific race, ethnicity, national origin, religious affiliation, caste, sexual orientation, gender identity, or immigration status are a threat to the physical safety, health, or survival of others. The policy change also aims to better protect immigrants, migrants, refugees, and asylum seekers from ads suggesting these groups are inferior or expressing contempt. Finally, Zuckerberg announced that the company will label some problematic posts by politicians and government officials as content that violates Facebook’s policies.
However, civil rights groups say that’s not enough. And an independent audit released in July also said that Facebook needs to go much further in addressing civil rights concerns and disinformation.
Schroepfer indicated that Facebook’s AI systems are designed to quickly adapt to changes in policy. “I don’t expect considerable technical changes are needed to adjust,” he told Spectrum.
This interview has been edited and condensed for clarity.
IEEE Spectrum: What are the stakes of content moderation? Is this an existential threat to Facebook? And is it critical that you deal well with the issue of election interference this year?
Schroepfer: It’s probably existential; it’s certainly massive. We are devoting a tremendous amount of our attention to it.
The idea that anyone could meddle in an election is deeply disturbing and offensive to all of us here, just as people and citizens of democracies. We don’t want to see that happen anywhere, and certainly not on our watch. So whether it’s important to the company or not, it’s important to us as people. And I feel a similar way on the content-moderation side.
There are not a lot of easy choices here. The only way to prevent people, with certainty, from posting bad things is to not let them post anything. We can take away all voice and just say, “Sorry, the Internet’s too dangerous. No one can use it.” That will certainly get rid of all hate speech online. But I don’t want to end up in that world. And there are variants of that world that various governments are trying to implement, where they get to decide what’s true or not, and you as a person don’t. I don’t want to get there either.
My hope is that we can build a set of tools that make it practical for us to do a good enough job, so that everyone is still excited about the idea that anyone can share what they want, and so that Facebook is a safe and reasonable place for people to operate in.
Spectrum: You joined Facebook in 2008, before AI was part of the company’s toolbox. When did that change? When did you begin to think that AI tools would be useful to Facebook?
Schroepfer: Ten years ago, AI wasn’t commercially practical; the technology just didn’t work very well. In 2012, there was one of those moments that a lot of people point to as the beginning of the current revolution in deep learning and AI. A computer-vision model—a neural network—was trained using what we call supervised training, and it turned out to be better than all the existing models.
Spectrum: How is that training done, and how did computer-vision models come to Facebook?
Image: Facebook
Just Broccoli? Facebook’s image analysis algorithms can tell the difference between marijuana [left] and tempura broccoli [right] better than some humans.
Schroepfer: Say I take a bunch of photos and I have people look at them. If they see a photo of a cat, they put a text label that says cat; if it’s one of a dog, the text label says dog. If you build a big enough data set and feed that to the neural net, it learns how to tell the difference between cats and dogs.
Prior to 2012, it didn’t work very well. And then in 2012, there was this moment where it seemed like, “Oh wow, this technique might work.” And a few years later we were deploying that form of technology to help us detect problematic imagery.
Spectrum: Do your AI systems work equally well on all types of prohibited content?
Schroepfer: Nudity was technically easiest. I don’t need to understand language or culture to understand that this is either a naked human or not. Violence is a much more nuanced problem, so it was harder technically to get it right. And with hate speech, not only do you have to understand the language, it may be very contextual, even tied to recent events. A week before the Christchurch shooting [New Zealand, 2019], saying “I wish you were in the mosque” probably doesn’t mean anything. A week after, that might be a terrible thing to say.
Spectrum: How much progress have you made on hate speech?
Schroepfer: AI, in the first quarter of 2020, proactively detected 88.8 percent of the hate-speech content we removed, up from 80.2 percent in the previous quarter. In the first quarter of 2020, we took action on 9.6 million pieces of content for violating our hate-speech policies.
Image: Facebook
Off Label: Sometimes image analysis isn’t enough to determine whether a picture posted violates the company’s policies. In considering these candy-colored vials of marijuana, for example, the algorithms can look at any accompanying text and, if necessary, comments on the post.
Spectrum: It sounds like you’ve expanded beyond tools that analyze images and are also using AI tools that analyze text.
Schroepfer: AI started off as very siloed. People worked on language, people worked on computer vision, people worked on video. We’ve put these things together—in production, not just as research—into multimodal classifiers.
[Schroepfer shows a photo of a pan of Rice Krispies treats, with text referring to it as a “potent batch”] This is a case in which you have an image, and then you have the text on the post. This looks like Rice Krispies. On its own, this image is fine. You put the text together with it in a bigger model; that can then understand what’s going on. That didn’t work five years ago.
Spectrum: Today, every post that goes up on Facebook is immediately checked by automated systems. Can you explain that process?
Image: Facebook
Bigger Picture: Identifying hate speech is often a matter of context. Either the text or the photo in this post isn’t hateful standing alone, but putting them together tells a different story.
Schroepfer: You upload an image and you write some text underneath it, and the systems look at both the image and the text to try to see which, if any, policies it violates. Those decisions are based on our Community Standards. It will also look at other signals on the posts, like the comments people make.
It happens relatively instantly, though there may be times things happen after the fact. Maybe you uploaded a post that had misinformation in it, and at the time you uploaded it, we didn’t know it was misinformation. The next day we fact-check something and scan again; we may find your post and take it down. As we learn new things, we’re going to go back through and look for violations of what we now know to be a problem. Or, as people comment on your post, we might update our understanding of it. If people are saying, “That’s terrible,” or “That’s mean,” or “That looks fake,” those comments may be an interesting signal.
Spectrum: How is Facebook applying its AI tools to the problem of election interference?
Schroepfer: I would split election interference into two categories. There are times when you’re going after the content, and there are times you’re going after the behavior or the authenticity of the person.
On content, if you’re sharing misinformation, saying, “It’s super Wednesday, not super Tuesday, come vote on Wednesday,” that’s a problem whether you’re an American sitting in California or a foreign actor.
Other times, people create a series of Facebook pages pretending they’re Americans, but they’re really a foreign entity. That is a problem on its own, even if all the content they’re sharing completely meets our Community Standards. The problem there is that you have a foreign government running an information operation.
There, you need different tools. What you’re trying to do is put pieces together, to say, “Wait a second. All of these pages—Martians for Justice, Moonlings for Justice, and Venusians for Justice”—are all run by an administrator with an IP address that’s outside the United States. So they’re all connected, even though they’re pretending to not be connected. That’s a very different problem than me sitting in my office in Menlo Park [Calif.] sharing misinformation.
I’m not going to go into lots of technical detail, because this is an area of adversarial nature. The fundamental problem you’re trying to solve is that there’s one entity coordinating the activity of a bunch of things that look like they’re not all one thing. So this is a series of Instagram accounts, or a series of Facebook pages, or a series of WhatsApp accounts, and they’re pretending to be totally different things. We’re looking for signals that these things are related in some way. And we’re looking through the graph [what Facebook calls its map of relationships between users] to understand the properties of this network.
Spectrum: What cutting-edge AI tools and methods have you been working on lately?
Schroepfer: Supervised learning, with humans setting up the instruction process for the AI systems, is amazingly effective. But it has a very obvious flaw: the speed at which you can develop these things is limited by how fast you can curate the data sets. If you’re dealing in a problem domain where things change rapidly, you have to rebuild a new data set and retrain the whole thing.
Self-supervision is inspired by the way people learn, by the way kids explore the world around them. To get computers to do it themselves, we take a bunch of raw data and build a way for the computer to construct its own tests. For language, you scan a bunch of Web pages, and the computer builds a test where it takes a sentence, eliminates one of the words, and figures out how to predict what word belongs there. And because it created the test, it actually knows the answer. I can use as much raw text as I can find and store because it’s processing everything itself and doesn’t require us to sit down and build the information set. In the last two years there has been a revolution in language understanding as a result of AI self-supervised learning.
Spectrum: What else are you excited about?
Schroepfer: What we’ve been working on over the last few years is multilingual understanding. Usually, when I’m trying to figure out, say, whether something is hate speech or not I have to go through the whole process of training the model in every language. I have to do that one time for every language. When you make a post, the first thing we have to figure out is what language your post is in. “Ah, that’s Spanish. So send it to the Spanish hate-speech model.”
We’ve started to build a multilingual model—one box where you can feed in text in 40 different languages and it determines whether it’s hate speech or not. This is way more effective and easier to deploy.
To geek out for a second, just the idea that you can build a model that understands a concept in multiple languages at once is crazy cool. And it not only works for hate speech, it works for a variety of things.
When we started working on this multilingual model years ago, it performed worse than every single individual model. Now, it not only works as well as the English model, but when you get to the languages where you don’t have enough data, it’s so much better. This rapid progress is very exciting.
Spectrum: How do you move new AI tools from your research labs into operational use?
Schroepfer: Engineers trying to make the next breakthrough will often say, “Cool, I’ve got a new thing and it achieved state-of-the-art results on machine translation.” And we say, “Great. How long does it take to run in production?” They say, “Well, it takes 10 seconds for every sentence to run on a CPU.” And we say, “It’ll eat our whole data center if we deploy that.” So we take that state-of-the-art model and we make it 10 or a hundred or a thousand times more efficient, maybe at the cost of a little bit of accuracy. So it’s not as good as the state-of-the-art version, but it’s something we can actually put into our data centers and run in production.
Spectrum: What’s the role of the humans in the loop? Is it true that Facebook currently employs 35,000 moderators?
Schroepfer: Yes. Right now our goal is not to reduce that. Our goal is to do a better job catching bad content. People often think that the end state will be a fully automated system. I don’t see that world coming anytime soon.
As automated systems get more sophisticated, they take more and more of the grunt work away, freeing up the humans to work on the really gnarly stuff where you have to spend an hour researching.
We also use AI to give our human moderators power tools. Say I spot this new meme that is telling everyone to vote on Wednesday rather than Tuesday. I have a tool in front of me that says, “Find variants of that throughout the system. Find every photo with the same text, find every video that mentions this thing and kill it in one shot.” Rather than, I found this one picture, but then a bunch of other people upload that misinformation in different forms.
Another important aspect of AI is that anything I can do to prevent a person from having to look at terrible things is time well spent. Whether it’s a person employed by us as a moderator or a user of our services, looking at these things is a terrible experience. If I can build systems that take the worst of the worst, the really graphic violence, and deal with that in an automated fashion, that’s worth a lot to me. Continue reading →
#437745 Video Friday: Japan’s Giant Gundam ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Co., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.
It’s coming together—literally! Japan’s giant Gundam appears nearly finished and ready for its first steps. In a recent video, Gundam Factory Yokohama, which is constructing the 18-meter-tall, 25-ton walking robot, provided an update on the project. The video shows the Gundam getting its head attached—after being blessed by Shinto priests.
In the video update, they say the project is “steadily progressing” and further details will be announced around the end of September.
[ Gundam Factory Yokohama ]
Creating robots with emotional personalities will transform the usability of robots in the real-world. As previous emotive social robots are mostly based on statically stable robots whose mobility is limited, this work develops an animation to real-world pipeline that enables dynamic bipedal robots that can twist, wiggle, and walk to behave with emotions.
So that’s where Cassie’s eyes go.
[ Berkeley ]
Now that the DARPA SubT Cave Circuit is all virtual, here’s a good reminder of how it’ll work.
[ SubT ]
Since July 20, anyone 11+ years of age must wear a mask in closed public places in France. This measure also is highly recommended in many European, African and Persian Gulf countries. To support businesses and public places, SoftBank Robotics Europe unveils a new feature with Pepper: AI Face Mask Detection.
[ Softbank ]
University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.
[ University of Michigan ]
Suzumori Endo Lab, Tokyo Tech has created various types of IPMC robots. Those robots are fabricated by novel 3D fabrication methods.
[ Suzimori Endo Lab ]
The most explode-y of drones manages not to explode this time.
[ SpaceX ]
At Amazon, we’re constantly innovating to support our employees, customers, and communities as effectively as possible. As our fulfillment and delivery teams have been hard at work supplying customers with items during the pandemic, Amazon’s robotics team has been working behind the scenes to re-engineer bots and processes to increase safety in our fulfillment centers.
While some folks are able to do their jobs at home with just a laptop and internet connection, it’s not that simple for other employees at Amazon, including those who spend their days building and testing robots. Some engineers have turned their homes into R&D labs to continue building these new technologies to better serve our customers and employees. Their creativity and resourcefulness to keep our important programs going is inspiring.
[ Amazon ]
Australian Army soldiers from 2nd/14th Light Horse Regiment (Queensland Mounted Infantry) demonstrated the PD-100 Black Hornet Nano unmanned aircraft vehicle during a training exercise at Shoalwater Bay Training Area, Queensland, on 4 May 2018.
This robot has been around for a long time—maybe 10 years or more? It makes you wonder what the next generation will look like, and if they can manage to make it even smaller.
[ FLIR ]
Event-based cameras are bio-inspired vision sensors whose pixels work independently from each other and respond asynchronously to brightness changes, with microsecond resolution. Their advantages make it possible to tackle challenging scenarios in robotics, such as high-speed and high dynamic range scenes. We present a solution to the problem of visual odometry from the data acquired by a stereo event-based camera rig.
[ Paper ] via [ HKUST ]
Emys can help keep kindergarteners sitting still for a long time, which is not small feat!
[ Emys ]
Introducing the RoboMaster EP Core, an advanced educational robot that was built to take learning to the next level and provides an all-in-one solution for STEAM-based classrooms everywhere, offering AI and programming projects for students of all ages and experience levels.
[ DJI ]
This Dutch food company Heemskerk uses ABB robots to automate their order picking. Their new solution reduces the amount of time the fresh produce spends in the supply chain, extending its shelf life, minimizing wastage, and creating a more sustainable solution for the fresh food industry.
[ ABB ]
This week’s episode of Pass the Torque features NASA’s Satellite Servicing Projects Division (NExIS) Robotics Engineer, Zakiya Tomlinson.
[ NASA ]
Massachusetts has been challenging Silicon Valley as the robotics capital of the United States. They’re not winning, yet. But they’re catching up.
[ MassTech ]
San Francisco-based Formant is letting anyone remotely take its Spot robot for a walk. Watch The Robot Report editors, based in Boston, take Spot for a walk around Golden Gate Park.
You can apply for this experience through Formant at the link below.
[ Formant ] via [ TRR ]
Thanks Steve!
An Institute for Advanced Study Seminar on “Theoretical Machine Learning,” featuring Peter Stone from UT Austin.
For autonomous robots to operate in the open, dynamically changing world, they will need to be able to learn a robust set of skills from relatively little experience. This talk begins by introducing Grounded Simulation Learning as a way to bridge the so-called reality gap between simulators and the real world in order to enable transfer learning from simulation to a real robot. It then introduces two new algorithms for imitation learning from observation that enable a robot to mimic demonstrated skills from state-only trajectories, without any knowledge of the actions selected by the demonstrator. Connections to theoretical advances in off-policy reinforcement learning will be highlighted throughout.
[ IAS ] Continue reading →