Tag Archives: 2016

#439081 Classify This Robot-Woven Sneaker With ...

For athletes trying to run fast, the right shoe can be essential to achieving peak performance. For athletes trying to run fast as humanly possible, a runner’s shoe can also become a work of individually customized engineering.

This is why Adidas has married 3D printing with robotic automation in a mass-market footwear project it’s called Futurecraft.Strung, expected to be available for purchase as soon as later this year. Using a customized, 3D-printed sole, a Futurecraft.Strung manufacturing robot can place some 2,000 threads from up to 10 different sneaker yarns in one upper section of the shoe.

Skylar Tibbits, founder and co-director of the Self-Assembly Lab and associate professor in MIT's Department of Architecture, says that because of its small scale, footwear has been an area of focus for 3D printing and additive manufacturing, which involves adding material bit by bit.

“There are really interesting complex geometry problems,” he says. “It’s pretty well suited.”

Photo: Adidas

Beginning with a 3D-printed sole, Adidas robots weave together some 2000 threads from up to 10 different sneaker yarns to make one Futurecraft.Strung shoe—expected on the marketplace later this year or sometime in 2022.

Adidas began working on the Futurecraft.Strung project in 2016. Then two years later, Adidas Futurecraft, the company’s innovation incubator, began collaborating with digital design studio Kram/Weisshaar. In less than a year the team built the software and hardware for the upper part of the shoe, called Strung uppers.

“Most 3D printing in the footwear space has been focused on the midsole or outsole, like the bottom of the shoe,” Tibbits explains. But now, he says, Adidas is bringing robotics and a threaded design to the upper part of the shoe. The company bases its Futurecraft.Strung design on high-resolution scans of how runners’ feet move as they travel.

This more flexible design can benefit athletes in multiple sports, according to an Adidas blog post. It will be able to use motion capture of an athlete’s foot and feedback from the athlete to make the design specific to the athlete’s specific gait. Adidas customizes the weaving of the shoe’s “fabric” (really more like an elaborate woven string figure, a cat’s cradle to fit the foot) to achieve a close and comfortable fit, the company says.

What they call their “4D sole” consists of a design combining 3D printing with materials that can change their shape and properties over time. In fact, Tibbits coined the term 4D printing to describe this process in 2013. The company takes customized data from the Adidas Athlete Intelligent Engine to make the shoe, according to Kram/Weisshaar’s website.

Photo: Adidas

Closeup of the weaving process behind a Futurecraft.Strung shoe

“With Strung for the first time, we can program single threads in any direction, where each thread has a different property or strength,” Fionn Corcoran-Tadd, an innovation designer at Adidas’ Futurecraft lab, said in a company video. Each thread serves a purpose, the video noted. “This is like customized string art for your feet,” Tibbits says.

Although the robotics technology the company uses has been around for many years, what Adidas’s robotic weavers can achieve with thread is a matter of elaborate geometry. “It’s more just like a really elegant way to build up material combining robotics and the fibers and yarns into these intricate and complex patterns,” he says.

Robots can of course create patterns with more precision than if someone wound it by hand, as well as rapidly and reliably changing the yarn and color of the fabric pattern. Adidas says it can make a single upper in 45 minutes and a pair of sneakers in 1 hour and 30 minutes. It plans to reduce this time down to minutes in the months ahead, the company said.

An Adidas spokesperson says sneakers incorporating the Futurecraft.Strung uppers design are a prototype, but the company plans to bring a Strung shoe to market in late 2021 or 2022. However, Adidas Futurecraft sneakers are currently available with a 3D-printed midsole.
Adidas plans to continue gathering data from athletes to customize the uppers of sneakers. “We’re building up a library of knowledge and it will get more interesting as we aggregate data of testing and from different athletes and sports,” the Adidas Futurecraft team writes in a blog post. “The more we understand about how data can become design code, the more we can take that and apply it to new Strung textiles. It’s a continuous evolution.” Continue reading

Posted in Human Robots

#439073 There’s a ‘New’ Nirvana Song Out, ...

One of the primary capabilities separating human intelligence from artificial intelligence is our ability to be creative—to use nothing but the world around us, our experiences, and our brains to create art. At present, AI needs to be extensively trained on human-made works of art in order to produce new work, so we’ve still got a leg up. That said, neural networks like OpenAI’s GPT-3 and Russian designer Nikolay Ironov have been able to create content indistinguishable from human-made work.

Now there’s another example of AI artistry that’s hard to tell apart from the real thing, and it’s sure to excite 90s alternative rock fans the world over: a brand-new, never-heard-before Nirvana song. Or, more accurately, a song written by a neural network that was trained on Nirvana’s music.

The song is called “Drowned in the Sun,” and it does have a pretty Nirvana-esque ring to it. The neural network that wrote it is Magenta, which was launched by Google in 2016 with the goal of training machines to create art—or as the tool’s website puts it, exploring the role of machine learning as a tool in the creative process. Magenta was built using TensorFlow, Google’s massive open-source software library focused on deep learning applications.

The song was written as part of an album called Lost Tapes of the 27 Club, a project carried out by a Toronto-based organization called Over the Bridge focused on mental health in the music industry.

Here’s how a computer was able to write a song in the unique style of a deceased musician. Music, 20 to 30 tracks, was fed into Magenta’s neural network in the form of MIDI files. MIDI stands for Musical Instrument Digital Interface, and the format contains the details of a song written in code that represents musical parameters like pitch and tempo. Components of each song, like vocal melody or rhythm guitar, were fed in one at a time.

The neural network found patterns in these different components, and got enough of a handle on them that when given a few notes to start from, it could use those patterns to predict what would come next; in this case, chords and melodies that sound like they could’ve been written by Kurt Cobain.

To be clear, Magenta didn’t spit out a ready-to-go song complete with lyrics. The AI wrote the music, but a different neural network wrote the lyrics (using essentially the same process as Magenta), and the team then sifted through “pages and pages” of output to find lyrics that fit the melodies Magenta created.

Eric Hogan, a singer for a Nirvana tribute band who the Over the Bridge team hired to sing “Drowned in the Sun,” felt that the lyrics were spot-on. “The song is saying, ‘I’m a weirdo, but I like it,’” he said. “That is total Kurt Cobain right there. The sentiment is exactly what he would have said.”

Cobain isn’t the only musician the Lost Tapes project tried to emulate; songs in the styles of Jimi Hendrix, Jim Morrison, and Amy Winehouse were also included. What all these artists have in common is that they died by suicide at the age of 27.

The project is meant to raise awareness around mental health, particularly among music industry professionals. It’s not hard to think of great artists of all persuasions—musicians, painters, writers, actors—whose lives are cut short due to severe depression and other mental health issues for which it can be hard to get help. These issues are sometimes romanticized, as suffering does tend to create art that’s meaningful, relatable, and timeless. But according to the Lost Tapes website, suicide attempts among music industry workers are more than double that of the general population.

How many more hit songs would these artists have written if they were still alive? We’ll never know, but hopefully Lost Tapes of the 27 Club and projects like it will raise awareness of mental health issues, both in the music industry and in general, and help people in need find the right resources. Because no matter how good computers eventually get at creating music, writing, or other art, as Lost Tapes’ website pointedly says, “Even AI will never replace the real thing.”

Image Credit: Edward Xu on Unsplash Continue reading

Posted in Human Robots

#438613 Video Friday: Digit Takes a Hike

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

It's winter in Oregon, so everything is damp, all the time. No problem for Digit!

Also the case for summer in Oregon.

[ Agility Robotics ]

While other organisms form collective flocks, schools, or swarms for such purposes as mating, predation, and protection, the Lumbriculus variegatus worms are unusual in their ability to braid themselves together to accomplish tasks that unconnected individuals cannot. A new study reported by researchers at the Georgia Institute of Technology describes how the worms self-organize to act as entangled “active matter,” creating surprising collective behaviors whose principles have been applied to help blobs of simple robots evolve their own locomotion.

No, this doesn't squick me out at all, why would it.

[ Georgia Tech ]

A few years ago, we wrote about Zhifeng Huang's jet-foot equipped bipedal robot, and he's been continuing to work on it to the point where it can now step over gaps that are an absolutely astonishing 147% of its leg length.

[ Paper ]

Thanks Zhifeng!

The Inception Drive is a novel, ultra-compact design for an Infinitely Variable Transmission (IVT) that uses nested-pulleys to adjust the gear ratio between input and output shafts. This video shows the first proof-of-concept prototype for a “Fully Balanced” design, where the spinning masses within the drive are completely balanced to reduce vibration, thereby allowing the drive to operate more efficiently and at higher speeds than achievable on an unbalanced design.

As shown in this video, the Inception Drive can change both the speed and direction of rotation of the output shaft while keeping the direction and speed of the input shaft constant. This ability to adjust speed and direction within such a compact package makes the Inception Drive a compelling choice for machine designers in a wide variety of fields, including robotics, automotive, and renewable-energy generation.

[ SRI ]

Robots with kinematic loops are known to have superior mechanical performance. However, due to these loops, their modeling and control is challenging, and prevents a more widespread use. In this paper, we describe a versatile Inverse Kinematics (IK) formulation for the retargeting of expressive motions onto mechanical systems with loops.

[ Disney Research ]

Watch Engineered Arts put together one of its Mesmer robots in a not at all uncanny way.

[ Engineered Arts ]

There's been a bunch of interesting research into vision-based tactile sensing recently; here's some from Van Ho at JAIST:

[ Paper ]

Thanks Van!

This is really more of an automated system than a robot, but these little levitating pucks are very very slick.

ACOPOS 6D is based on the principle of magnetic levitation: Shuttles with integrated permanent magnets float over the surface of electromagnetic motor segments. The modular motor segments are 240 x 240 millimeters in size and can be arranged freely in any shape. A variety of shuttle sizes carry payloads of 0.6 to 14 kilograms and reach speeds of up to 2 meters per second. They can move freely in two-dimensional space, rotate and tilt along three axes and offer precise control over the height of levitation. All together, that gives them six degrees of motion control freedom.

[ ACOPOS ]

Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.

[ CHARM Lab ]

The quadrotor experts at UZH have been really cranking it up recently.

Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modelling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14m/s and accelerations beyond 4g.

[ Paper ]

I have not heard much from Harvest Automation over the last couple years and their website was last updated in 2016, but I guess they're selling robots in France, so that's good?

[ Harvest Automation ]

Last year, Clearpath Robotics introduced a ROS package for Spot which enables robotics developers to leverage ROS capabilities out-of-the-box. Here at OTTO Motors, we thought it would be a compelling test case to see just how easy it would be to integrate Spot into our test fleet of OTTO materials handling robots.

[ OTTO Motors ]

Video showcasing recent robotics activities at PRISMA Lab, coordinated by Prof. Bruno Siciliano, at Università di Napoli Federico II.

[ PRISMA Lab ]

Thanks Fan!

State estimation framework developed by the team CoSTAR for the DARPA Subterranean Challenge, where the team achieved 2nd and 1st places in the Tunnel and Urban circuits.

[ Paper ]

Highlights from the 2020 ROS Industrial conference.

[ ROS Industrial ]

Thanks Thilo!

Not robotics, but entertaining anyway. From the CHI 1995 Technical Video Program, “The Tablet Newspaper: a Vision for the Future.”

[ CHI 1995 ]

This week's GRASP on Robotics seminar comes from Allison Okamura at Stanford, on “Wearable Haptic Devices for Ubiquitous Communication.”

Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. We explore the design of a wide array of haptic feedback mechanisms, ranging from devices that can be actively touched by the fingertips to multi-modal haptic actuation mounted on the arm. We demonstrate how these devices are effective in virtual reality, human-machine communication, and human-human communication.

[ UPenn ] Continue reading

Posted in Human Robots

#438080 Boston Dynamics’ Spot Robot Is Now ...

Boston Dynamics has been working on an arm for its Spot quadruped for at least five years now. There have been plenty of teasers along the way, including this 45-second clip from early 2018 of Spot using its arm to open a door, which at 85 million views seems to be Boston Dynamics’ most popular video ever by a huge margin. Obviously, there’s a substantial amount of interest in turning Spot from a highly dynamic but mostly passive sensor platform into a mobile manipulator that can interact with its environment.

As anyone who’s done mobile manipulation will tell you, actually building an arm is just the first step—the really tricky part is getting that arm to do exactly what you want it to do. In particular, Spot’s arm needs to be able to interact with the world with some amount of autonomy in order to be commercially useful, because you can’t expect a human (remote or otherwise) to spend all their time positioning individual joints or whatever to pick something up. So the real question about this arm is whether Boston Dynamics has managed to get it to a point where it’s autonomous enough that users with relatively little robotics experience will be able to get it to do useful tasks without driving themselves nuts.

Today, Boston Dynamics is announcing commercial availability of the Spot arm, along with some improved software called Scout plus a self-charging dock that’ll give the robot even more independence. And to figure out exactly what Spot’s new arm can do, we spoke with Zachary Jackowski, Spot Chief Engineer at Boston Dynamics.

Although Boston Dynamics’ focus has been on dynamic mobility and legged robots, the company has been working on manipulation for a very long time. We first saw an arm prototype on an early iteration of Spot in 2016, where it demonstrated some impressive functionality, including loading a dishwasher and fetching a beer in a way that only resulted in a minor catastrophe. But we’re guessing that Spot’s arm can trace its history back to BigDog’s crazy powerful hydraulic face-arm, which was causing mayhem with cinder blocks back in 2013:

Spot’s arm is not quite that powerful (it has to drag cinder blocks along the ground rather than fling them into space), but you can certainly see the resemblance. Here’s the video that Boston Dynamics posted yesterday to introduce Spot’s new arm:

A couple of things jumped out from this video right away. First, Spot is doing whole body manipulation with its arm, as opposed to just acting as a four-legged base that brings the arm where it needs to go. Planning looks to be very tightly integrated, such that if you ask the robot to manipulate an object, its arm, legs, and torso all work together to optimize that manipulation. Also, when Spot flips that electrical switch, you see the robot successfully grasp the switch, and then reposition its body in a way that looks like it provides better leverage for the flip, which is a neat trick. It looks like it may be able to use the strength of its legs to augment the strength of its arm, as when it’s dragging the cinder block around, which is surely an homage to BigDog. The digging of a hole is particularly impressive. But again, the real question is how much of this is autonomous or semi-autonomous in a way that will be commercially useful?

Before we get to our interview with Spot Chief Engineer Zack Jackowski, it’s worth watching one more video that Boston Dynamics shared with us:

This is notable because Spot is opening a door that’s not ADA compliant, and the robot is doing it with a simple two-finger gripper. Most robots you see interacting with doors rely on ADA compliant hardware, meaning (among other things) a handle that can be pushed rather than a knob that has to be twisted, because it’s much more challenging for a robot to grasp and twist a smooth round door knob than it is to just kinda bash down on a handle. That capability, combined with Spot being able to pass through a spring-loaded door, potentially opens up a much wider array of human environments to the robot, and that’s where we started our conversation with Jackowski.

IEEE Spectrum: At what point did you decide that for Spot’s arm to be useful, it had to be able to handle round door knobs?

Zachary Jackowski: We're like a lot of roboticists, where someone in a meeting about manipulation would say “it's time for the round doorknob” and people would start groaning a little bit. But the reality is that, in order to make a robot useful, you have to engage with the environments that users have. Spot’s arm uses a very simple gripper—it’s a one degree of freedom gripper, but a ton of thought has gone into all of the fine geometric contours of it such that it can grab that ADA compliant lever handle, and it’ll also do an enclosing grasp around a round door knob. The major point of a robot like Spot is to engage with the environment you have, and so you can’t cut out stuff like round door knobs.

We're thrilled to be launching the arm and getting it out with users and to have them start telling us what doors it works really well on, and what they're having trouble with. And we're going to be working on rapidly improving all this stuff. We went through a few campaigns of like, “this isn’t ready until we can open every single door at Boston Dynamics!” But every single door at Boston Dynamics and at our test lab is a small fraction of all the doors in the world. So we're prepared to learn a lot this year.

When we see Spot open a door, or when it does those other manipulation behaviors in the launch video, how much of that is autonomous, how much is scripted, and to what extent is there a human in the loop?

All of the scenes where the robot does a pick, like the snow scene or the laundry scene, that is actually an almost fully integrated autonomous behavior that has a bit of a script wrapped around it. We trained a detector for an object, and the robot is identifying that object in the environment, picking it, and putting it in the bin all autonomously. The scripted part of that is telling the robot to perform a series of picks.

One of the things that we’re excited about, and that roboticists have been excited about going back probably all the way to the DRC, is semi-autonomous manipulation. And so we have modes built into the interface where if you see an object that you want the robot to grab, all you have to do is tap that object on the screen, and the robot will walk up to it, use the depth camera in its gripper to capture a depth map, and plan a grasp on its own in real time. That’s all built-in, too.

The jump rope—robots don’t just go and jump rope on their own. We scripted an arm motion to move the rope, and wrote a script using our API to coordinate all three robots. Drawing “Boston Dynamics” in chalk in our parking lot was scripted also. One of our engineers wrote a really cool G-code interpreter that vectorizes graphics so that Spot can draw them.

So for an end user, if you wanted Spot to autonomously flip some switches for you, you’d just have to train Spot on your switches, and then Spot could autonomously perform the task?

There are a couple of ways that task could break down depending on how you’re interfacing with the robot. If you’re a tablet user, you’d probably just identify the switch yourself on the tablet’s screen, and the robot will figure out the grasp, and grasp it. Then you’ll enter a constrained manipulation mode on the tablet, and the robot will be able to actuate the switch. But the robot will take care of the complicated controls aspects, like figuring out how hard it has to pull, the center of rotation of the switch, and so on.

The video of Spot digging was pretty cool—how did that work?

That’s mostly a scripted behavior. There are some really interesting control systems topics in there, like how you’d actually do the right kinds of force control while you insert the trowel into the dirt, and how to maintain robot stability while you do it. The higher level task of how to make a good hole in the dirt—that’s scripted. But the part of the problem that’s actually digging, you need the right control system to actually do that, or you’ll dig your trowel into the ground and flip your robot over.

The last time we saw Boston Dynamics robots flipping switches and turning valves I think might have been during the DRC in 2015, when they had expert robot operators with control over every degree of freedom. How are things different now with Spot, and will non-experts in the commercial space really be able to get the robot to do useful tasks?

A lot of the things, like “pick the stuff up in the room,” or ‘turn that switch,” can all be done by a lightly trained operator using just the tablet interface. If you want to actually command all of Spot’s arm degrees of freedom, you can do that— not through the tablet, but the API does expose all of it. That’s actually a notable difference from the base robot; we’ve never opened up the part of the API that lets you command individual leg degrees of freedom, because we don’t think it’s productive for someone to do that. The arm is a little bit different. There are a lot of smart people working on arm motion planning algorithms, and maybe you want to plan your arm trajectory in a super precise way and then do a DRC-style interface where you click to approve it. You can do all that through the API if you want, but fundamentally, it’s also user friendly. It follows our general API design philosophy of giving you the highest level pieces of the toolbox that will enable you to solve a complex problem that we haven't thought of.

Looking back on it now, it’s really cool to see, after so many years, robots do the stuff that Gill Pratt was excited about kicking off with the DRC. And now it’s just a thing you can buy.

Is Spot’s arm safe?

You should follow the same safety rules that you’d follow when working with Spot normally, and that’s that you shouldn’t get within two meters of the robot when it’s powered on. Spot is not a cobot. You shouldn’t hug it. Fundamentally, the places where the robot is the most valuable are places where people don’t want to be, or shouldn’t be.

We’ve seen how people reacted to earlier videos of Spot using its arm—can you help us set some reasonable expectations for what this means for Spot?

You know, it gets right back to the normal assumptions about our robots that people make that aren’t quite reality. All of this manipulation work we’re doing— the robot’s really acting as a tool. Even if it’s an autonomous behavior, it’s a tool. The robot is digging a hole because it’s got a set of instructions that say “apply this much force over this much distance here, here, and here.”

It’s not digging a hole and planting a tree because it loves trees, as much as I’d love to build a robot that works like that.

Photo: Boston Dynamics

There isn’t too much to say about the dock, except that it’s a requirement for making Spot long-term autonomous. The uncomfortable looking charging contacts that Spot impales itself on also include hardwired network connectivity, which is important because Spot often comes back home with a huge amount of data that all needs to be offloaded and processed. Docking and undocking are autonomous— as soon as the robot sees the fiducial markers on the dock, auto docking is enabled and it takes one click to settle the robot down.

During a brief remote demo, we also learned some other interesting things about Spot’s updated remote interface. It’s very latency tolerant, since you don’t have to drive the robot directly (although you can if you want to). Click a point on the camera view and Spot will move there autonomously while avoiding obstacles, meaning that even if you’re dealing with seconds of lag, the robot will continue making safe progress. This will be especially important if (when?) Spot starts exploring the Moon.

The remote interface also has an option to adjust how close Spot can get to obstacles, or to turn the obstacle avoidance off altogether. The latter functionality is useful if Spot sees something as an obstacle that really isn’t, like a curtain, while the former is useful if the robot is operating in an environment where it needs to give an especially wide berth to objects that could be dangerous to run into. “The robot’s not perfect—robots will never be perfect,” Jackowski reminds us, which is something we really (seriously) appreciate hearing from folks working on powerful, dynamic robots. “No matter how good the robot is, you should always de-risk as much as possible.”

Another part of that de-risking is having the user let Spot know when it’s about to go up or down some stairs by putting into “Stair Mode” with a toggle switch in the remote interface. Stairs are still a challenge for Spot, and Stair Mode slows the robot down and encourages it to pitch its body more aggressively to get a better view of the stairs. You’re encouraged to use stair mode, and also encouraged to send Spot up and down stairs with its “head” pointing up the stairs both ways, but these are not requirements for stair navigation— if you want to, you can send Spot down stairs head first without putting it in stair mode. Jackowski says that eventually, Spot will detect stairways by itself even when not in stair mode and adjust itself accordingly, but for now, that de-risking is solidly in the hands of the user.

Spot’s sensor payload, which is what we were trying out for the demo, provided a great opportunity for us to hear Spot STOMP STOMP STOMPING all over the place, which was also an opportunity for us to ask Jackowski why they can’t make Spot a little quieter. “It’s advantageous for Spot to step a little bit hard for the same reason it’s advantageous for you to step a little bit hard if you’re walking around blindfolded—that reason is that it really lets you know where the ground is, particularly when you’re not sure what to expect.” He adds, “It’s all in the name of robustness— the robot might be a little louder, but it’s a little more sure of its footing.”

Boston Dynamics isn’t yet ready to disclose the price of an arm-equipped Spot, but if you’re a potential customer, now is the time to contact the Boston Dynamics sales team to ask them about it. As a reminder, the base model of Spot costs US $74,500, with extra sensing or compute adding a substantial premium on top of that.

There will be a livestream launch event taking place at 11am ET today, during which Boston Dynamics’ CEO Robert Playter, VP of Marketing Michael Perry, and other folks from Boston Dynamics will make presentations on this new stuff. It’ll be live at this link, or you can watch it below. Continue reading

Posted in Human Robots

#438076 Boston Dynamics’ Spot Robot Is Now ...

Boston Dynamics has been working on an arm for its Spot quadruped for at least five years now. There have been plenty of teasers along the way, including this 45-second clip from early 2018 of Spot using its arm to open a door, which at 85 million views seems to be Boston Dynamics’ most popular video ever by a huge margin. Obviously, there’s a substantial amount of interest in turning Spot from a highly dynamic but mostly passive sensor platform into a mobile manipulator that can interact with its environment.

As anyone who’s done mobile manipulation will tell you, actually building an arm is just the first step—the really tricky part is getting that arm to do exactly what you want it to do. In particular, Spot’s arm needs to be able to interact with the world with some amount of autonomy in order to be commercially useful, because you can’t expect a human (remote or otherwise) to spend all their time positioning individual joints or whatever to pick something up. So the real question about this arm is whether Boston Dynamics has managed to get it to a point where it’s autonomous enough that users with relatively little robotics experience will be able to get it to do useful tasks without driving themselves nuts.

Today, Boston Dynamics is announcing commercial availability of the Spot arm, along with some improved software called Scout plus a self-charging dock that’ll give the robot even more independence. And to figure out exactly what Spot’s new arm can do, we spoke with Zachary Jackowski, Spot Chief Engineer at Boston Dynamics.

Although Boston Dynamics’ focus has been on dynamic mobility and legged robots, the company has been working on manipulation for a very long time. We first saw an arm prototype on an early iteration of Spot in 2016, where it demonstrated some impressive functionality, including loading a dishwasher and fetching a beer in a way that only resulted in a minor catastrophe. But we’re guessing that Spot’s arm can trace its history back to BigDog’s crazy powerful hydraulic face-arm, which was causing mayhem with cinder blocks back in 2013:

Spot’s arm is not quite that powerful (it has to drag cinder blocks along the ground rather than fling them into space), but you can certainly see the resemblance. Here’s the video that Boston Dynamics posted yesterday to introduce Spot’s new arm:

A couple of things jumped out from this video right away. First, Spot is doing whole body manipulation with its arm, as opposed to just acting as a four-legged base that brings the arm where it needs to go. Planning looks to be very tightly integrated, such that if you ask the robot to manipulate an object, its arm, legs, and torso all work together to optimize that manipulation. Also, when Spot flips that electrical switch, you see the robot successfully grasp the switch, and then reposition its body in a way that looks like it provides better leverage for the flip, which is a neat trick. It looks like it may be able to use the strength of its legs to augment the strength of its arm, as when it’s dragging the cinder block around, which is surely an homage to BigDog. The digging of a hole is particularly impressive. But again, the real question is how much of this is autonomous or semi-autonomous in a way that will be commercially useful?

Before we get to our interview with Spot Chief Engineer Zack Jackowski, it’s worth watching one more video that Boston Dynamics shared with us:

This is notable because Spot is opening a door that’s not ADA compliant, and the robot is doing it with a simple two-finger gripper. Most robots you see interacting with doors rely on ADA compliant hardware, meaning (among other things) a handle that can be pushed rather than a knob that has to be twisted, because it’s much more challenging for a robot to grasp and twist a smooth round door knob than it is to just kinda bash down on a handle. That capability, combined with Spot being able to pass through a spring-loaded door, potentially opens up a much wider array of human environments to the robot, and that’s where we started our conversation with Jackowski.

IEEE Spectrum: At what point did you decide that for Spot’s arm to be useful, it had to be able to handle round door knobs?

Zachary Jackowski: We're like a lot of roboticists, where someone in a meeting about manipulation would say “it's time for the round doorknob” and people would start groaning a little bit. But the reality is that, in order to make a robot useful, you have to engage with the environments that users have. Spot’s arm uses a very simple gripper—it’s a one degree of freedom gripper, but a ton of thought has gone into all of the fine geometric contours of it such that it can grab that ADA compliant lever handle, and it’ll also do an enclosing grasp around a round door knob. The major point of a robot like Spot is to engage with the environment you have, and so you can’t cut out stuff like round door knobs.

We're thrilled to be launching the arm and getting it out with users and to have them start telling us what doors it works really well on, and what they're having trouble with. And we're going to be working on rapidly improving all this stuff. We went through a few campaigns of like, “this isn’t ready until we can open every single door at Boston Dynamics!” But every single door at Boston Dynamics and at our test lab is a small fraction of all the doors in the world. So we're prepared to learn a lot this year.

When we see Spot open a door, or when it does those other manipulation behaviors in the launch video, how much of that is autonomous, how much is scripted, and to what extent is there a human in the loop?

All of the scenes where the robot does a pick, like the snow scene or the laundry scene, that is actually an almost fully integrated autonomous behavior that has a bit of a script wrapped around it. We trained a detector for an object, and the robot is identifying that object in the environment, picking it, and putting it in the bin all autonomously. The scripted part of that is telling the robot to perform a series of picks.

One of the things that we’re excited about, and that roboticists have been excited about going back probably all the way to the DRC, is semi-autonomous manipulation. And so we have modes built into the interface where if you see an object that you want the robot to grab, all you have to do is tap that object on the screen, and the robot will walk up to it, use the depth camera in its gripper to capture a depth map, and plan a grasp on its own in real time. That’s all built-in, too.

The jump rope—robots don’t just go and jump rope on their own. We scripted an arm motion to move the rope, and wrote a script using our API to coordinate all three robots. Drawing “Boston Dynamics” in chalk in our parking lot was scripted also. One of our engineers wrote a really cool G-code interpreter that vectorizes graphics so that Spot can draw them.

So for an end user, if you wanted Spot to autonomously flip some switches for you, you’d just have to train Spot on your switches, and then Spot could autonomously perform the task?

There are a couple of ways that task could break down depending on how you’re interfacing with the robot. If you’re a tablet user, you’d probably just identify the switch yourself on the tablet’s screen, and the robot will figure out the grasp, and grasp it. Then you’ll enter a constrained manipulation mode on the tablet, and the robot will be able to actuate the switch. But the robot will take care of the complicated controls aspects, like figuring out how hard it has to pull, the center of rotation of the switch, and so on.

The video of Spot digging was pretty cool—how did that work?

That’s mostly a scripted behavior. There are some really interesting control systems topics in there, like how you’d actually do the right kinds of force control while you insert the trowel into the dirt, and how to maintain robot stability while you do it. The higher level task of how to make a good hole in the dirt—that’s scripted. But the part of the problem that’s actually digging, you need the right control system to actually do that, or you’ll dig your trowel into the ground and flip your robot over.

The last time we saw Boston Dynamics robots flipping switches and turning valves I think might have been during the DRC in 2015, when they had expert robot operators with control over every degree of freedom. How are things different now with Spot, and will non-experts in the commercial space really be able to get the robot to do useful tasks?

A lot of the things, like “pick the stuff up in the room,” or ‘turn that switch,” can all be done by a lightly trained operator using just the tablet interface. If you want to actually command all of Spot’s arm degrees of freedom, you can do that— not through the tablet, but the API does expose all of it. That’s actually a notable difference from the base robot; we’ve never opened up the part of the API that lets you command individual leg degrees of freedom, because we don’t think it’s productive for someone to do that. The arm is a little bit different. There are a lot of smart people working on arm motion planning algorithms, and maybe you want to plan your arm trajectory in a super precise way and then do a DRC-style interface where you click to approve it. You can do all that through the API if you want, but fundamentally, it’s also user friendly. It follows our general API design philosophy of giving you the highest level pieces of the toolbox that will enable you to solve a complex problem that we haven't thought of.

Looking back on it now, it’s really cool to see, after so many years, robots do the stuff that Gill Pratt was excited about kicking off with the DRC. And now it’s just a thing you can buy.

Is Spot’s arm safe?

You should follow the same safety rules that you’d follow when working with Spot normally, and that’s that you shouldn’t get within two meters of the robot when it’s powered on. Spot is not a cobot. You shouldn’t hug it. Fundamentally, the places where the robot is the most valuable are places where people don’t want to be, or shouldn’t be.

We’ve seen how people reacted to earlier videos of Spot using its arm—can you help us set some reasonable expectations for what this means for Spot?

You know, it gets right back to the normal assumptions about our robots that people make that aren’t quite reality. All of this manipulation work we’re doing— the robot’s really acting as a tool. Even if it’s an autonomous behavior, it’s a tool. The robot is digging a hole because it’s got a set of instructions that say “apply this much force over this much distance here, here, and here.”

It’s not digging a hole and planting a tree because it loves trees, as much as I’d love to build a robot that works like that.

Photo: Boston Dynamics

There isn’t too much to say about the dock, except that it’s a requirement for making Spot long-term autonomous. The uncomfortable looking charging contacts that Spot impales itself on also include hardwired network connectivity, which is important because Spot often comes back home with a huge amount of data that all needs to be offloaded and processed. Docking and undocking are autonomous— as soon as the robot sees the fiducial markers on the dock, auto docking is enabled and it takes one click to settle the robot down.

During a brief remote demo, we also learned some other interesting things about Spot’s updated remote interface. It’s very latency tolerant, since you don’t have to drive the robot directly (although you can if you want to). Click a point on the camera view and Spot will move there autonomously while avoiding obstacles, meaning that even if you’re dealing with seconds of lag, the robot will continue making safe progress. This will be especially important if (when?) Spot starts exploring the Moon.

The remote interface also has an option to adjust how close Spot can get to obstacles, or to turn the obstacle avoidance off altogether. The latter functionality is useful if Spot sees something as an obstacle that really isn’t, like a curtain, while the former is useful if the robot is operating in an environment where it needs to give an especially wide berth to objects that could be dangerous to run into. “The robot’s not perfect—robots will never be perfect,” Jackowski reminds us, which is something we really (seriously) appreciate hearing from folks working on powerful, dynamic robots. “No matter how good the robot is, you should always de-risk as much as possible.”

Another part of that de-risking is having the user let Spot know when it’s about to go up or down some stairs by putting into “Stair Mode” with a toggle switch in the remote interface. Stairs are still a challenge for Spot, and Stair Mode slows the robot down and encourages it to pitch its body more aggressively to get a better view of the stairs. You’re encouraged to use stair mode, and also encouraged to send Spot up and down stairs with its “head” pointing up the stairs both ways, but these are not requirements for stair navigation— if you want to, you can send Spot down stairs head first without putting it in stair mode. Jackowski says that eventually, Spot will detect stairways by itself even when not in stair mode and adjust itself accordingly, but for now, that de-risking is solidly in the hands of the user.

Spot’s sensor payload, which is what we were trying out for the demo, provided a great opportunity for us to hear Spot STOMP STOMP STOMPING all over the place, which was also an opportunity for us to ask Jackowski why they can’t make Spot a little quieter. “It’s advantageous for Spot to step a little bit hard for the same reason it’s advantageous for you to step a little bit hard if you’re walking around blindfolded—that reason is that it really lets you know where the ground is, particularly when you’re not sure what to expect.” He adds, “It’s all in the name of robustness— the robot might be a little louder, but it’s a little more sure of its footing.”

Boston Dynamics isn’t yet ready to disclose the price of an arm-equipped Spot, but if you’re a potential customer, now is the time to contact the Boston Dynamics sales team to ask them about it. As a reminder, the base model of Spot costs US $74,500, with extra sensing or compute adding a substantial premium on top of that.

There will be a livestream launch event taking place at 11am ET today, during which Boston Dynamics’ CEO Robert Playter, VP of Marketing Michael Perry, and other folks from Boston Dynamics will make presentations on this new stuff. It’ll be live at this link, or you can watch it below. Continue reading

Posted in Human Robots