Tag Archives: 2015
#431603 What We Can Learn From the Second Life ...
For every new piece of technology that gets developed, you can usually find people saying it will never be useful. The president of the Michigan Savings Bank in 1903, for example, said, “The horse is here to stay but the automobile is only a novelty—a fad.” It’s equally easy to find people raving about whichever new technology is at the peak of the Gartner Hype Cycle, which tracks the buzz around these newest developments and attempts to temper predictions. When technologies emerge, there are all kinds of uncertainties, from the actual capacity of the technology to its use cases in real life to the price tag.
Eventually the dust settles, and some technologies get widely adopted, to the extent that they can become “invisible”; people take them for granted. Others fall by the wayside as gimmicky fads or impractical ideas. Picking which horses to back is the difference between Silicon Valley millions and Betamax pub-quiz-question obscurity. For a while, it seemed that Google had—for once—backed the wrong horse.
Google Glass emerged from Google X, the ubiquitous tech giant’s much-hyped moonshot factory, where highly secretive researchers work on the sci-fi technologies of the future. Self-driving cars and artificial intelligence are the more mundane end for an organization that apparently once looked into jetpacks and teleportation.
The original smart glasses, Google began selling Google Glass in 2013 for $1,500 as prototypes for their acolytes, around 8,000 early adopters. Users could control the glasses with a touchpad, or, activated by tilting the head back, with voice commands. Audio relay—as with several wearable products—is via bone conduction, which transmits sound by vibrating the skull bones of the user. This was going to usher in the age of augmented reality, the next best thing to having a chip implanted directly into your brain.
On the surface, it seemed to be a reasonable proposition. People had dreamed about augmented reality for a long time—an onboard, JARVIS-style computer giving you extra information and instant access to communications without even having to touch a button. After smartphone ubiquity, it looked like a natural step forward.
Instead, there was a backlash. People may be willing to give their data up to corporations, but they’re less pleased with the idea that someone might be filming them in public. The worst aspect of smartphones is trying to talk to people who are distractedly scrolling through their phones. There’s a famous analogy in Revolutionary Road about an old couple’s loveless marriage: the husband tunes out his wife’s conversation by turning his hearing aid down to zero. To many, Google Glass seemed to provide us with a whole new way to ignore each other in favor of our Twitter feeds.
Then there’s the fact that, regardless of whether it’s because we’re not used to them, or if it’s a more permanent feature, people wearing AR tech often look very silly. Put all this together with a lack of early functionality, the high price (do you really feel comfortable wearing a $1,500 computer?), and a killer pun for the users—Glassholes—and the final recipe wasn’t great for Google.
Google Glass was quietly dropped from sale in 2015 with the ominous slogan posted on Google’s website “Thanks for exploring with us.” Reminding the Glass users that they had always been referred to as “explorers”—beta-testing a product, in many ways—it perhaps signaled less enthusiasm for wearables than the original, Google Glass skydive might have suggested.
In reality, Google went back to the drawing board. Not with the technology per se, although it has improved in the intervening years, but with the uses behind the technology.
Under what circumstances would you actually need a Google Glass? When would it genuinely be preferable to a smartphone that can do many of the same things and more? Beyond simply being a fashion item, which Google Glass decidedly was not, even the most tech-evangelical of us need a convincing reason to splash $1,500 on a wearable computer that’s less socially acceptable and less easy to use than the machine you’re probably reading this on right now.
Enter the Google Glass Enterprise Edition.
Piloted in factories during the years that Google Glass was dormant, and now roaring back to life and commercially available, the Google Glass relaunch got under way in earnest in July of 2017. The difference here was the specific audience: workers in factories who need hands-free computing because they need to use their hands at the same time.
In this niche application, wearable computers can become invaluable. A new employee can be trained with pre-programmed material that explains how to perform actions in real time, while instructions can be relayed straight into a worker’s eyeline without them needing to check a phone or switch to email.
Medical devices have long been a dream application for Google Glass. You can imagine a situation where people receive real-time information during surgery, or are augmented by artificial intelligence that provides additional diagnostic information or questions in response to a patient’s symptoms. The quest to develop a healthcare AI, which can provide recommendations in response to natural language queries, is on. The famously untidy doctor’s handwriting—and the associated death toll—could be avoided if the glasses could take dictation straight into a patient’s medical records. All of this is far more useful than allowing people to check Facebook hands-free while they’re riding the subway.
Google’s “Lens” application indicates another use for Google Glass that hadn’t quite matured when the original was launched: the Lens processes images and provides information about them. You can look at text and have it translated in real time, or look at a building or sign and receive additional information. Image processing, either through neural networks hooked up to a cloud database or some other means, is the frontier that enables driverless cars and similar technology to exist. Hook this up to a voice-activated assistant relaying information to the user, and you have your killer application: real-time annotation of the world around you. It’s this functionality that just wasn’t ready yet when Google launched Glass.
Amazon’s recent announcement that they want to integrate Alexa into a range of smart glasses indicates that the tech giants aren’t ready to give up on wearables yet. Perhaps, in time, people will become used to voice activation and interaction with their machines, at which point smart glasses with bone conduction will genuinely be more convenient than a smartphone.
But in many ways, the real lesson from the initial failure—and promising second life—of Google Glass is a simple question that developers of any smart technology, from the Internet of Things through to wearable computers, must answer. “What can this do that my smartphone can’t?” Find your answer, as the Enterprise Edition did, as Lens might, and you find your product.
Image Credit: Hattanas / Shutterstock.com Continue reading
#431385 Here’s How to Get to Conscious ...
“We cannot be conscious of what we are not conscious of.” – Julian Jaynes, The Origin of Consciousness in the Breakdown of the Bicameral Mind
Unlike the director leads you to believe, the protagonist of Ex Machina, Andrew Garland’s 2015 masterpiece, isn’t Caleb, a young programmer tasked with evaluating machine consciousness. Rather, it’s his target Ava, a breathtaking humanoid AI with a seemingly child-like naïveté and an enigmatic mind.
Like most cerebral movies, Ex Machina leaves the conclusion up to the viewer: was Ava actually conscious? In doing so, it also cleverly avoids a thorny question that has challenged most AI-centric movies to date: what is consciousness, and can machines have it?
Hollywood producers aren’t the only people stumped. As machine intelligence barrels forward at breakneck speed—not only exceeding human performance on games such as DOTA and Go, but doing so without the need for human expertise—the question has once more entered the scientific mainstream.
Are machines on the verge of consciousness?
This week, in a review published in the prestigious journal Science, cognitive scientists Drs. Stanislas Dehaene, Hakwan Lau and Sid Kouider of the Collège de France, University of California, Los Angeles and PSL Research University, respectively, argue: not yet, but there is a clear path forward.
The reason? Consciousness is “resolutely computational,” the authors say, in that it results from specific types of information processing, made possible by the hardware of the brain.
There is no magic juice, no extra spark—in fact, an experiential component (“what is it like to be conscious?”) isn’t even necessary to implement consciousness.
If consciousness results purely from the computations within our three-pound organ, then endowing machines with a similar quality is just a matter of translating biology to code.
Much like the way current powerful machine learning techniques heavily borrow from neurobiology, the authors write, we may be able to achieve artificial consciousness by studying the structures in our own brains that generate consciousness and implementing those insights as computer algorithms.
From Brain to Bot
Without doubt, the field of AI has greatly benefited from insights into our own minds, both in form and function.
For example, deep neural networks, the architecture of algorithms that underlie AlphaGo’s breathtaking sweep against its human competitors, are loosely based on the multi-layered biological neural networks that our brain cells self-organize into.
Reinforcement learning, a type of “training” that teaches AIs to learn from millions of examples, has roots in a centuries-old technique familiar to anyone with a dog: if it moves toward the right response (or result), give a reward; otherwise ask it to try again.
In this sense, translating the architecture of human consciousness to machines seems like a no-brainer towards artificial consciousness. There’s just one big problem.
“Nobody in AI is working on building conscious machines because we just have nothing to go on. We just don’t have a clue about what to do,” said Dr. Stuart Russell, the author of Artificial Intelligence: A Modern Approach in a 2015 interview with Science.
Multilayered consciousness
The hard part, long before we can consider coding machine consciousness, is figuring out what consciousness actually is.
To Dehaene and colleagues, consciousness is a multilayered construct with two “dimensions:” C1, the information readily in mind, and C2, the ability to obtain and monitor information about oneself. Both are essential to consciousness, but one can exist without the other.
Say you’re driving a car and the low fuel light comes on. Here, the perception of the fuel-tank light is C1—a mental representation that we can play with: we notice it, act upon it (refill the gas tank) and recall and speak about it at a later date (“I ran out of gas in the boonies!”).
“The first meaning we want to separate (from consciousness) is the notion of global availability,” explains Dehaene in an interview with Science. When you’re conscious of a word, your whole brain is aware of it, in a sense that you can use the information across modalities, he adds.
But C1 is not just a “mental sketchpad.” It represents an entire architecture that allows the brain to draw multiple modalities of information from our senses or from memories of related events, for example.
Unlike subconscious processing, which often relies on specific “modules” competent at a defined set of tasks, C1 is a global workspace that allows the brain to integrate information, decide on an action, and follow through until the end.
Like The Hunger Games, what we call “conscious” is whatever representation, at one point in time, wins the competition to access this mental workspace. The winners are shared among different brain computation circuits and are kept in the spotlight for the duration of decision-making to guide behavior.
Because of these features, C1 consciousness is highly stable and global—all related brain circuits are triggered, the authors explain.
For a complex machine such as an intelligent car, C1 is a first step towards addressing an impending problem, such as a low fuel light. In this example, the light itself is a type of subconscious signal: when it flashes, all of the other processes in the machine remain uninformed, and the car—even if equipped with state-of-the-art visual processing networks—passes by gas stations without hesitation.
With C1 in place, the fuel tank would alert the car computer (allowing the light to enter the car’s “conscious mind”), which in turn checks the built-in GPS to search for the next gas station.
“We think in a machine this would translate into a system that takes information out of whatever processing module it’s encapsulated in, and make it available to any of the other processing modules so they can use the information,” says Dehaene. “It’s a first sense of consciousness.”
Meta-cognition
In a way, C1 reflects the mind’s capacity to access outside information. C2 goes introspective.
The authors define the second facet of consciousness, C2, as “meta-cognition:” reflecting on whether you know or perceive something, or whether you just made an error (“I think I may have filled my tank at the last gas station, but I forgot to keep a receipt to make sure”). This dimension reflects the link between consciousness and sense of self.
C2 is the level of consciousness that allows you to feel more or less confident about a decision when making a choice. In computational terms, it’s an algorithm that spews out the probability that a decision (or computation) is correct, even if it’s often experienced as a “gut feeling.”
C2 also has its claws in memory and curiosity. These self-monitoring algorithms allow us to know what we know or don’t know—so-called “meta-memory,” responsible for that feeling of having something at the tip of your tongue. Monitoring what we know (or don’t know) is particularly important for children, says Dehaene.
“Young children absolutely need to monitor what they know in order to…inquire and become curious and learn more,” he explains.
The two aspects of consciousness synergize to our benefit: C1 pulls relevant information into our mental workspace (while discarding other “probable” ideas or solutions), while C2 helps with long-term reflection on whether the conscious thought led to a helpful response.
Going back to the low fuel light example, C1 allows the car to solve the problem in the moment—these algorithms globalize the information, so that the car becomes aware of the problem.
But to solve the problem, the car would need a “catalog of its cognitive abilities”—a self-awareness of what resources it has readily available, for example, a GPS map of gas stations.
“A car with this sort of self-knowledge is what we call having C2,” says Dehaene. Because the signal is globally available and because it’s being monitored in a way that the machine is looking at itself, the car would care about the low gas light and behave like humans do—lower fuel consumption and find a gas station.
“Most present-day machine learning systems are devoid of any self-monitoring,” the authors note.
But their theory seems to be on the right track. The few examples whereby a self-monitoring system was implemented—either within the structure of the algorithm or as a separate network—the AI has generated “internal models that are meta-cognitive in nature, making it possible for an agent to develop a (limited, implicit, practical) understanding of itself.”
Towards conscious machines
Would a machine endowed with C1 and C2 behave as if it were conscious? Very likely: a smartcar would “know” that it’s seeing something, express confidence in it, report it to others, and find the best solutions for problems. If its self-monitoring mechanisms break down, it may also suffer “hallucinations” or even experience visual illusions similar to humans.
Thanks to C1 it would be able to use the information it has and use it flexibly, and because of C2 it would know the limit of what it knows, says Dehaene. “I think (the machine) would be conscious,” and not just merely appearing so to humans.
If you’re left with a feeling that consciousness is far more than global information sharing and self-monitoring, you’re not alone.
“Such a purely functional definition of consciousness may leave some readers unsatisfied,” the authors acknowledge.
“But we’re trying to take a radical stance, maybe simplifying the problem. Consciousness is a functional property, and when we keep adding functions to machines, at some point these properties will characterize what we mean by consciousness,” Dehaene concludes.
Image Credit: agsandrew / Shutterstock.com Continue reading
#431158 This AI Assistant Helps Demystify ...
In an interview at Singularity University’s Global Summit in San Francisco, Anita Schjøll Brede talked about how artificial intelligence can help make scientific research accessible to anyone working on a complex problem.
Anita Schjøll Brede is the CEO and co-founder of Iris AI, a startup that’s building an artificially intelligent research assistant, which was recently named one of the most innovative AI startups of 2017 by Fast Company. Schjøll Brede is also faculty at Singularity University Denmark and a 2015 alumni of the Global Solutions Program.
“Ultimately, we’re building an AI that can read, understand, and connect the dots,” Schjøll Brede said. “But zooming that back into today, we’re building a tool for R&D, research institutions, and entrepreneurs who have big hairy problems to solve and need to apply research and science to solve them. We’re semi-automating the process of mapping out what you should read to solve the problem or to see what research you need to do to solve the problem.”
Watch the interview for more on Iris AI’s technology and to hear Schjøll Brede’s take on whether AI researchers share a moral responsibility for the systems they build.
Image Credit: foxaon1987 / Shutterstock.com Continue reading