Category Archives: Human Robots
#430913 Artificial Intelligence | Future of ...
In the latest installment of Singularity University’s web series, Future of Everything With Jason Silva, Silva takes a look at artificial intelligence. “AI is perhaps the granddaddy of all exponential technologies. Surely to transform the world and the human race in ways that we can barely wrap our heads around,” Silva says. Forms of creativity will be unleashed that we can not even imagine, and we’re going to transcend what it means to be human.
Image Credit: Stock Media provided by agsandrew / Pond5 Continue reading
#430876 Risk Takers Are Back in the Space ...
“In a fight between Elon Musk and Jeff Bezos, who would win?” Peter Diamandis asked Blue Origin’s Erika Wagner to kick off a conversation with a panel of space entrepreneurs at Singularity University’s Global Summit this week in San Francisco.
“So, Peter, let me tell you about what we’re doing at Blue Origin,” Wagner answered rather diplomatically, eliciting chuckles from the audience. “We’re really looking towards a future of millions of people living and working in space. The thing I think is really fantastic…is that the universe is infinitely large, and so, we don’t need any fisticuffs.”
“We’re all going to go out there and create this future together.”
Diamandis is no stranger to the private space race. He’s long been a passionate investor in and driver of the new space industry. The first private suborbital flight in 2004—incented by his $10 million Ansari XPRIZE competition—hinted at how much could be built outside of government space agencies. But really, only the last few years have begun to deliver on the promise.
Elon Musk’s SpaceX is the best-known new space firm. But 15 years ago, SpaceX didn’t exist. Seven years ago, they’d never launched a vehicle. Five years ago, they’d yet to resupply the International Space Station. And two years ago, there was no such thing as a reusable rocket.
Now, the company is routinely delivering satellites to orbit, resupplying the ISS, and recovering the first stages of their rockets. But they aren’t alone. In fact, Jeff Bezos’s Blue Origin recovered a suborbital New Shepard rocket before SpaceX successfully landed their orbital Falcon 9. And Blue Origin aims to go beyond suborbital flight with the upcoming New Glenn rocket.
So, no zero-g fisticuffs yet, but plenty of competition. Which is a good thing. Making space a more affordable place to visit will open other opportunities when we get there.
Planetary Resources, a company Diamandis cofounded, has plans to expand the global economy into space by prospecting and mining asteroids. And another space mining startup and Google Lunar XPRIZE finalist, Moon Express, aims to mine the moon for the same reasons.
Chris Lewicki, CEO of Planetary Resources, and Bob Richards, cofounder and CEO of Moon Express, joined Diamandis and Wagner on stage to talk over the trends making this possible.
Left to right: Peter Diamandis, Chris Lewicki, Erika Wagner, and Bob Richards at Singularity University’s Global Summit in San Francisco.
The panel said exponential technologies—such as 3D printing, computing, and robotics—are a big reason feats that were once the sole domain of a few governments are becoming possible for startups with a team of 50 or 100 talented workers.
“We always talk about space being a place where spin-offs happen, where we would go spend a lot of money on Apollo and, in exchange, we get Teflon and cordless drills,” Wagner said. “And it turns out, now we’re back in a part of the cycle where space is where spin-ins are happening.”
Perhaps this is most obvious in the size of satellites. Not too long ago, most satellites had to be the size of a house to include whatever instruments they carried. These days, in some cases, similar capabilities can be shipped to space in a box 10 centimeters to the side.
“Very similar to what happened in the computation world from the mainframe era of computers, things that were government-centric and filled a room were transformed into personals PCs…That’s what’s happening in space,” according to Richards.
Perhaps less obvious but no less important is the actual computation working under the hood.
SpaceX’s reusable rockets aren’t manually steered into a soft landing by remote pilots back at mission control. No human is capable of that task. Instead, computers take in a flood of information from onboard sensors and make rapid and continuous adjustments to land.
They’re basically self-driving rockets. The same technologies making autonomous cars possible are involved here too. And there might even be feedback between the two—much of the work done in space, after all, will continue to be done by robot. And in space, where communications can be sketchy and delayed, the more autonomous the better.
“I look at every autonomous car startup out there and think about where they will be in 5 to 10 years,” Lewicki said. “[I think about] all the sensors and all the technology that they will have commoditized that will make asteroid mining quite easy.”
Additive manufacturing has likewise found a niche in aerospace. 3D printers speed up the design-and-test process and also yield finished parts you can’t make any other way.
“[Blue Origin’s] New Shepard rocket has literally hundreds of 3D printed parts,” Wagner said. “It started off as the brackets and the guides and little pieces, and now, they’re increasingly moving into the hot end of the engine and really are part and parcel to how our rockets work.”
All this, according to the panel, is reducing the time and cost of space projects.
“Our first quotes from an unnamed large aerospace company for our propulsion system in 2010 was $24 million in 24 months. We’re now printing our engines for $2,000 in two weeks,” Richards said.
The economics matter. Although significant seed money is being put up by billionaires like Musk and Bezos, they won’t be able to foot the whole bill forever. Such investments need to show practical value too if the area is going to take off.
This, perhaps, is the most interesting bit of it all.
According to Richards, you don’t “get giggled at anymore” when proposing a space startup. Beyond individuals, strategic corporate partnerships and even sovereign wealth funds are emerging sources of funding. And venture capital firms are interested too.
The opportunity is enormous, according to Diamandis.
“Everything we hold of value on Earth: metals, minerals, energy, real estate, are in near infinite quantities in space,” he said. “And so I’ve said this many times, I believe the first trillionaires will be made in space and the resources that we’re talking about are multitrillion dollar assets.”
While space startups aren’t giggled at anymore, however, neither are they fully mainstream. SpaceX is leading the way, but there hasn’t been what the panel called “a Netscape moment” yet, referring to the first big web browser that opened the internet for business. The new space industry isn’t yet irresistible in the same way.
SpaceX is making its reusable rockets look routine, and has lost a few along the way too. Virgin Galactic, the company Richard Branson founded with the ship developed for the original XPRIZE, lost a pilot in a tragic crash over the Mojave Desert a few years ago. There are still many risks and challenges, big visions and ambitions and unforeseen delays.
But if risk is necessary to move forward, the commercial environment is a better place to experiment, take risks, and try new things, according to Lewicki. There’s a reason, he said, that NASA’s next Mars rover will use processors built in 1993. They work. They’ll get the job done. The rover will roll across Mars. But it is nowhere near as capable as it could be.
“It’s a failure-is-not-an-option mentality,” Lewicki said. “And when failure’s not an option, success gets really expensive, and you worry about risk everywhere.”
For a startup, on the other hand, the risk-averse approach is not an option. They have to draw up a grand vision of something that’s isn’t yet here and push the envelope to make it happen. Whatever the outcome, they all agreed, this is a special moment.
“Thousands of years from now whatever we evolve into, whatever we become, we’re going to look back at these next couple of decades as the moment in time that the human race moved off the planet irreversibly,” Diamandis said. “It’s on our watch. It’s right here, right now that we’re becoming a multiplanetary species, which is an extraordinary thought.”
Image Credit: Blue Origin Continue reading
#430874 12 Companies That Are Making the World a ...
The Singularity University Global Summit in San Francisco this week brought brilliant minds together from all over the world to share a passion for using science and technology to solve the world’s most pressing challenges.
Solving these challenges means ensuring basic needs are met for all people. It means improving quality of life and mitigating future risks both to people and the planet.
To recognize organizations doing outstanding work in these fields, SU holds the Global Grand Challenge Awards. Three participating organizations are selected in each of 12 different tracks and featured at the summit’s EXPO. The ones found to have the most potential to positively impact one billion people are selected as the track winners.
Here’s a list of the companies recognized this year, along with some details about the great work they’re doing.
Global Grand Challenge Awards winners at Singularity University’s Global Summit in San Francisco.
Disaster Resilience
LuminAID makes portable lanterns that can provide 24 hours of light on 10 hours of solar charging. The lanterns came from a project to assist post-earthquake relief efforts in Haiti, when the product’s creators considered the dangerous conditions at night in the tent cities and realized light was a critical need. The lights have been used in more than 100 countries and after disasters, including Hurricane Sandy, Typhoon Haiyan, and the earthquakes in Nepal.
Environment
BreezoMeter uses big data and machine learning to deliver accurate air quality information in real time. Users can see pollution details as localized as a single city block, and data is impacted by real-time traffic. Forecasting is also available, with air pollution information available up to four days ahead of time, or several years in the past.
Food
Aspire Food Group believes insects are the protein of the future, and that technology has the power to bring the tradition of eating insects that exists in many countries and cultures to the rest of the world. The company uses technologies like robotics and automated data collection to farm insects that have the protein quality of meat and the environmental footprint of plants.
Energy
Rafiki Power acts as a rural utility company, building decentralized energy solutions in regions that lack basic services like running water and electricity. The company’s renewable hybrid systems are packed and standardized in recycled 20-foot shipping containers, and they’re currently powering over 700 household and business clients in rural Tanzania.
Governance
MakeSense is an international community that brings together people in 128 cities across the world to help social entrepreneurs solve challenges in areas like education, health, food, and environment. Social entrepreneurs post their projects and submit challenges to the community, then participants organize workshops to mobilize and generate innovative solutions to help the projects grow.
Health
Unima developed a fast and low-cost diagnostic and disease surveillance tool for infectious diseases. The tool allows health professionals to diagnose diseases at the point of care, in less than 15 minutes, without the use of any lab equipment. A drop of the patient’s blood is put on a diagnostic paper, where the antibody generates a visual reaction when in contact with the biomarkers in the sample. The result is evaluated by taking a photo with an app in a smartphone, which uses image processing, artificial intelligence and machine learning.
Prosperity
Egalite helps people with disabilities enter the labor market, and helps companies develop best practices for inclusion of the disabled. Egalite’s founders are passionate about the potential of people with disabilities and the return companies get when they invest in that potential.
Learning
Iris.AI is an artificial intelligence system that reads scientific paper abstracts and extracts key concepts for users, presenting concepts visually and allowing users to navigate a topic across disciplines. Since its launch, Iris.AI has read 30 million research paper abstracts and more than 2,000 TED talks. The AI uses a neural net and deep learning technology to continuously improve its output.
Security
Hala Systems, Inc. is a social enterprise focused on developing technology-driven solutions to the world’s toughest humanitarian challenges. Hala is currently focused on civilian protection, accountability, and the prevention of violent extremism before, during, and after conflict. Ultimately, Hala aims to transform the nature of civilian defense during warfare, as well as to reduce casualties and trauma during post-conflict recovery, natural disasters, and other major crises.
Shelter
Billion Bricks designs and provides shelter and infrastructure solutions for the homeless. The company’s housing solutions are scalable, sustainable, and able to create opportunities for communities to emerge from poverty. Their approach empowers communities to replicate the solutions on their own, reducing dependency on support and creating ownership and pride.
Space
Tellus Labs uses satellite data to tackle challenges like food security, water scarcity, and sustainable urban and industrial systems, and drive meaningful change. The company built a planetary-scale model of all 170 million acres of US corn and soy crops to more accurately forecast yields and help stabilize the market fluctuations that accompany the USDA’s monthly forecasts.
Water
Loowatt designed a toilet that uses a patented sealing technology to contain human waste within biodegradable film. The toilet is designed for linking to anaerobic digestion technology to provide a source of biogas for cooking, electricity, and other applications, creating the opportunity to offset capital costs with energy production.
Image Credit: LuminAID via YouTube Continue reading
#430873 New study challenges long-accepted views ...
A team of Army scientists and engineers have challenged long-held views in the area of human-autonomy interaction to change the way science involves people, especially in developing advanced technical systems that involve artificial intelligence and autonomy. Continue reading
#430868 These 7 Forces Are Changing the World at ...
It was the Greek philosopher Heraclitus who first said, “The only thing that is constant is change.”
He was onto something. But even he would likely be left speechless at the scale and pace of change the world has experienced in the past 100 years—not to mention the past 10.
Since 1917, the global population has gone from 1.9 billion people to 7.5 billion. Life expectancy has more than doubled in many developing countries and risen significantly in developed countries. In 1917 only eight percent of homes had phones—in the form of landline telephones—while today more than seven in 10 Americans own a smartphone—aka, a supercomputer that fits in their pockets.
And things aren’t going to slow down anytime soon. In a talk at Singularity University’s Global Summit this week in San Francisco, SU cofounder and chairman Peter Diamandis told the audience, “Tomorrow’s speed of change will make today look like we’re crawling.” He then shared his point of view about some of the most important factors driving this accelerating change.
Peter Diamandis at Singularity University’s Global Summit in San Francisco.
Computation
In 1965, Gordon Moore (cofounder of Intel) predicted computer chips would double in power and halve in cost every 18 to 24 months. What became known as Moore’s Law turned out to be accurate, and today affordable computer chips contain a billion or more transistors spaced just nanometers apart.
That means computers can do exponentially more calculations per second than they could thirty, twenty, or ten years ago—and at a dramatically lower cost. This in turn means we can generate a lot more information, and use computers for all kinds of applications they wouldn’t have been able to handle in the past (like diagnosing rare forms of cancer, for example).
Convergence
Increased computing power is the basis for a myriad of technological advances, which themselves are converging in ways we couldn’t have imagined a couple decades ago. As new technologies advance, the interactions between various subsets of those technologies create new opportunities that accelerate the pace of change much more than any single technology can on its own.
A breakthrough in biotechnology, for example, might spring from a crucial development in artificial intelligence. An advance in solar energy could come about by applying concepts from nanotechnology.
Interface Moments
Technology is becoming more accessible even to the most non-techy among us. The internet was once the domain of scientists and coders, but these days anyone can make their own web page, and browsers make those pages easily searchable. Now, interfaces are opening up areas like robotics or 3D printing.
As Diamandis put it, “You don’t need to know how to code to 3D print an attachment for your phone. We’re going from mind to materialization, from intentionality to implication.”
Artificial intelligence is what Diamandis calls “the ultimate interface moment,” enabling everyone who can speak their mind to connect and leverage exponential technologies.
Connectivity
Today there are about three billion people around the world connected to the internet—that’s up from 1.8 billion in 2010. But projections show that by 2025 there will be eight billion people connected. This is thanks to a race between tech billionaires to wrap the Earth in internet; Elon Musk’s SpaceX has plans to launch a network of 4,425 satellites to get the job done, while Google’s Project Loon is using giant polyethylene balloons for the task.
These projects will enable five billion new minds to come online, and those minds will have access to exponential technologies via interface moments.
Sensors
Diamandis predicts that after we establish a 5G network with speeds of 10–100 Gbps, a proliferation of sensors will follow, to the point that there’ll be around 100,000 sensors per city block. These sensors will be equipped with the most advanced AI, and the combination of these two will yield an incredible amount of knowledge.
“By 2030 we’re heading towards 100 trillion sensors,” Diamandis said. “We’re heading towards a world in which we’re going to be able to know anything we want, anywhere we want, anytime we want.” He added that tens of thousands of drones will hover over every major city.
Intelligence
“If you think there’s an arms race going on for AI, there’s also one for HI—human intelligence,” Diamandis said. He explained that if a genius was born in a remote village 100 years ago, he or she would likely not have been able to gain access to the resources needed to put his or her gifts to widely productive use. But that’s about to change.
Private companies as well as military programs are working on brain-machine interfaces, with the ultimate aim of uploading the human mind. The focus in the future will be on increasing intelligence of individuals as well as companies and even countries.
Wealth Concentration
A final crucial factor driving mass acceleration is the increase in wealth concentration. “We’re living in a time when there’s more wealth in the hands of private individuals, and they’re willing to take bigger risks than ever before,” Diamandis said. Billionaires like Mark Zuckerberg, Jeff Bezos, Elon Musk, and Bill Gates are putting millions of dollars towards philanthropic causes that will benefit not only themselves, but humanity at large.
What It All Means
One of the biggest implications of the rate at which the world is changing, Diamandis said, is that the cost of everything is trending towards zero. We are heading towards abundance, and the evidence lies in the reduction of extreme poverty we’ve already seen and will continue to see at an even more rapid rate.
Listening to Diamandis’ optimism, it’s hard not to find it contagious.
“The world is becoming better at an extraordinary rate,” he said, pointing out the rises in literacy, democracy, vaccinations, and life expectancy, and the concurrent decreases in child mortality, birth rate, and poverty.
“We’re alive during a pivotal time in human history,” he concluded. “There is nothing we don’t have access to.”
Stock Media provided by seanpavonephoto / Pond5 Continue reading