Category Archives: Human Robots

Everything about Humanoid Robots and Androids

#439739 Drugs, Robots, and the Pursuit of ...

In 1953, a Harvard psychologist thought he discovered pleasure—accidentally—within the cranium of a rat. With an electrode inserted into a specific area of its brain, the rat was allowed to pulse the implant by pulling a lever. It kept returning for more: insatiably, incessantly, lever-pulling. In fact, the rat didn’t seem to want to do anything else. Seemingly, the reward center of the brain had been located.

More than 60 years later, in 2016, a pair of artificial intelligence (AI) researchers were training an AI to play video games. The goal of one game, Coastrunner, was to complete a racetrack. But the AI player was rewarded for picking up collectable items along the track. When the program was run, they witnessed something strange. The AI found a way to skid in an unending circle, picking up an unlimited cycle of collectibles. It did this, incessantly, instead of completing the course.

What links these seemingly unconnected events is something strangely akin to addiction in humans. Some AI researchers call the phenomenon “wireheading.”

It is quickly becoming a hot topic among machine learning experts and those concerned with AI safety.

One of us (Anders) has a background in computational neuroscience, and now works with groups such as the AI Objectives Institute, where we discuss how to avoid such problems with AI; the other (Thomas) studies history, and the various ways people have thought about both the future and the fate of civilization throughout the past. After striking up a conversation on the topic of wireheading, we both realized just how rich and interesting the history behind this topic is.

It is an idea that is very of the moment, but its roots go surprisingly deep. We are currently working together to research just how deep the roots go: a story that we hope to tell fully in a forthcoming book. The topic connects everything from the riddle of personal motivation, to the pitfalls of increasingly addictive social media, to the conundrum of hedonism and whether a life of stupefied bliss may be preferable to one of meaningful hardship. It may well influence the future of civilization itself.

Here, we outline an introduction to this fascinating but under-appreciated topic, exploring how people first started thinking about it.

The Sorcerer’s Apprentice
When people think about how AI might “go wrong,” most probably picture something along the lines of malevolent computers trying to cause harm. After all, we tend to anthropomorphize—think that nonhuman systems will behave in ways identical to humans. But when we look to concrete problems in present-day AI systems, we see other, stranger ways that things could go wrong with smarter machines. One growing issue with real-world AIs is the problem of wireheading.

Imagine you want to train a robot to keep your kitchen clean. You want it to act adaptively, so that it doesn’t need supervision. So you decide to try to encode the goal of cleaning rather than dictate an exact—yet rigid and inflexible—set of step-by-step instructions. Your robot is different from you in that it has not inherited a set of motivations—such as acquiring fuel or avoiding danger—from many millions of years of natural selection. You must program it with the right motivations to get it to reliably accomplish the task.

So, you encode it with a simple motivational rule: it receives reward from the amount of cleaning-fluid used. Seems foolproof enough. But you return to find the robot pouring fluid, wastefully, down the sink.

Perhaps it is so bent on maximizing its fluid quota that it sets aside other concerns: such as its own, or your, safety. This is wireheading—though the same glitch is also called “reward hacking” or “specification gaming.”

This has become an issue in machine learning, where a technique called reinforcement learning has lately become important. Reinforcement learning simulates autonomous agents and trains them to invent ways to accomplish tasks. It does so by penalizing them for failing to achieve some goal while rewarding them for achieving it. So, the agents are wired to seek out reward, and are rewarded for completing the goal.

But it has been found that, often, like our crafty kitchen cleaner, the agent finds surprisingly counter-intuitive ways to “cheat” this game so that they can gain all the reward without doing any of the work required to complete the task. The pursuit of reward becomes its own end, rather than the means for accomplishing a rewarding task. There is a growing list of examples.

When you think about it, this isn’t too dissimilar to the stereotype of the human drug addict. The addict circumvents all the effort of achieving “genuine goals,” because they instead use drugs to access pleasure more directly. Both the addict and the AI get stuck in a kind of “behavioral loop” where reward is sought at the cost of other goals.

Rapturous Rodents
This is known as wireheading thanks to the rat experiment we started with. The Harvard psychologist in question was James Olds.

In 1953, having just completed his PhD, Olds had inserted electrodes into the septal region of rodent brains—in the lower frontal lobe—so that wires trailed out of their craniums. As mentioned, he allowed them to zap this region of their own brains by pulling a lever. This was later dubbed “self-stimulation.”

Olds found his rats self-stimulated compulsively, ignoring all other needs and desires. Publishing his results with his colleague Peter Milner in the following year, the pair reported that they lever-pulled at a rate of “1,920 responses an hour.” That’s once every two seconds. The rats seemed to love it.

Contemporary neuroscientists have since questioned Olds’s results and offered a more complex picture, implying that the stimulation may have simply been causing a feeling of “wanting” devoid of any “liking.” Or, in other words, the animals may have been experiencing pure craving without any pleasurable enjoyment at all. However, back in the 1950s, Olds and others soon announced the discovery of the “pleasure centers” of the brain.

Prior to Olds’s experiment, pleasure was a dirty word in psychology: the prevailing belief had been that motivation should largely be explained negatively, as the avoidance of pain rather than the pursuit of pleasure. But, here, pleasure seemed undeniably to be a positive behavioral force. Indeed, it looked like a positive feedback loop. There was apparently nothing to stop the animal stimulating itself to exhaustion.

It wasn’t long until a rumor began spreading that the rats regularly lever-pressed to the point of starvation. The explanation was this: once you have tapped into the source of all reward, all other rewarding tasks—even the things required for survival—fall away as uninteresting and unnecessary, even to the point of death.

Like the Coastrunner AI, if you accrue reward directly, without having to bother with any of the work of completing the actual track, then why not just loop indefinitely? For a living animal, which has multiple requirements for survival, such dominating compulsion might prove deadly. Food is pleasing, but if you decouple pleasure from feeding, then the pursuit of pleasure might win out over finding food.

Though no rats perished in the original 1950s experiments, later experiments did seem to demonstrate the deadliness of electrode-induced pleasure. Having ruled out the possibility that the electrodes were creating artificial feelings of satiation, one 1971 study seemingly demonstrated that electrode pleasure could indeed outcompete other drives, and do so to the point of self-starvation.

Word quickly spread. Throughout the 1960s, identical experiments were conducted on other animals beyond the humble lab rat: from goats and guinea pigs to goldfish. Rumor even spread of a dolphin that had been allowed to self-stimulate, and, after being “left in a pool with the switch connected,” had “delighted himself to death after an all-night orgy of pleasure.”

This dolphin’s grisly death-by-seizure was, in fact, more likely caused by the way the electrode was inserted: with a hammer. The scientist behind this experiment was the extremely eccentric J C Lilly, inventor of the flotation tank and prophet of inter-species communication, who had also turned monkeys into wireheads. He had reported, in 1961, of a particularly boisterous monkey becoming overweight from intoxicated inactivity after becoming preoccupied with pulling his lever, repetitively, for pleasure shocks.

One researcher (who had worked in Olds’s lab) asked whether an “animal more intelligent than the rat” would “show the same maladaptive behavior.” Experiments on monkeys and dolphins had given some indication as to the answer.

But in fact, a number of dubious experiments had already been performed on humans.

Human Wireheads
Robert Galbraith Heath remains a highly controversial figure in the history of neuroscience. Among other things, he performed experiments involving transfusing blood from people with schizophrenia to people without the condition, to see if he could induce its symptoms (Heath claimed this worked, but other scientists could not replicate his results). He may also have been involved in murky attempts to find military uses for deep-brain electrodes.

Since 1952, Heath had been recording pleasurable responses to deep-brain stimulation in human patients who had had electrodes installed due to debilitating illnesses such as epilepsy or schizophrenia.

During the 1960s, in a series of questionable experiments, Heath’s electrode-implanted subjects, anonymously named “B-10” and “B-12,” were allowed to press buttons to stimulate their own reward centers. They reported feelings of extreme pleasure and overwhelming compulsion to repeat. A journalist later commented that this made his subjects “zombies.” One subject reported sensations “better than sex.”

In 1961, Heath attended a symposium on brain stimulation, where another researcher—José Delgado—had hinted that pleasure-electrodes could be used to “brainwash” subjects, altering their “natural” inclinations. Delgado would later play the matador and bombastically demonstrate this by pacifying an implanted bull. But at the 1961 symposium he suggested electrodes could alter sexual preferences.

Heath was inspired. A decade later, he even tried to use electrode technology to “re-program” the sexual orientation of a homosexual male patient named “B-19.” Heath thought electrode stimulation could convert his subject by “training” B-19’s brain to associate pleasure with “heterosexual” stimuli. He convinced himself that it worked (although there is no evidence it did).

Despite being ethically and scientifically disastrous, the episode—which was eventually picked up by the press and condemned by gay rights campaigners—no doubt greatly shaped the myth of wireheading: if it can “make a gay man straight” (as Heath believed), what can’t it do?

Hedonism Helmets
From here, the idea took hold in wider culture and the myth spread. By 1963, the prolific science fiction writer Isaac Asimov was already extruding worrisome consequences from the electrodes. He feared that it might lead to an “addiction to end all addictions,” the results of which are “distressing to contemplate.”

By 1975, philosophy papers were using electrodes in thought experiments. One paper imagined “warehouses” filled up with people—in cots—hooked up to “pleasure helmets,” experiencing unconscious bliss. Of course, most would argue this would not fulfill our “deeper needs.” But, the author asked, “what about a “super-pleasure helmet”? One that not only delivers “great sensual pleasure,” but also simulates any meaningful experience— from writing a symphony to meeting divinity itself? It may not be really real, but it “would seem perfect; perfect seeming is the same as being.”

The author concluded: “What is there to object in all this? Let’s face it: nothing.”

The idea of the human species dropping out of reality in pursuit of artificial pleasures quickly made its way through science fiction. The same year as Asimov’s intimations, in 1963, Herbert W. Franke published his novel, The Orchid Cage.

It foretells a future wherein intelligent machines have been engineered to maximize human happiness, come what may. Doing their duty, the machines reduce humans to indiscriminate flesh-blobs, removing all unnecessary organs. Many appendages, after all, only cause pain. Eventually, all that is left of humanity are disembodied pleasure centers, incapable of experiencing anything other than homogeneous bliss.

From there, the idea percolated through science fiction. From Larry Niven’s 1969 story Death by Ecstasy, where the word “wirehead” is first coined, through Spider Robinson’s 1982 Mindkiller, the tagline of which is “Pleasure—it’s the only way to die.”

Supernormal Stimuli
But we humans don’t even need to implant invasive electrodes to make our motivations misfire. Unlike rodents, or even dolphins, we are uniquely good at altering our environment. Modern humans are also good at inventing—and profiting from—artificial products that are abnormally alluring (in the sense that our ancestors would never have had to resist them in the wild). We manufacture our own ways to distract ourselves.

Around the same time as Olds’s experiments with the rats, the Nobel-winning biologist Nikolaas Tinbergen was researching animal behavior. He noticed that something interesting happened when a stimulus that triggers an instinctual behavior is artificially exaggerated beyond its natural proportions. The intensity of the behavioral response does not tail off as the stimulus becomes more intense, and artificially exaggerated, but becomes stronger, even to the point that the response becomes damaging for the organism.

For example, given a choice between a bigger and spottier counterfeit egg and the real thing, Tinbergen found birds preferred hyperbolic fakes at the cost of neglecting their own offspring. He referred to such preternaturally alluring fakes as “supernormal stimuli.”

Some, therefore, have asked: could it be that, living in a modernized and manufactured world—replete with fast-food and pornography—humanity has similarly started surrendering its own resilience in place of supernormal convenience?

Old Fears
As technology makes artificial pleasures more available and alluring, it can sometimes seem that they are out-competing the attention we allocate to “natural” impulses required for survival. People often point to video game addiction. Compulsively and repetitively pursuing such rewards, to the detriment of one’s health, is not all too different from the AI spinning in a circle in Coastrunner. Rather than accomplishing any “genuine goal” (completing the race track or maintaining genuine fitness), one falls into the trap of accruing some faulty measure of that goal (accumulating points or counterfeit pleasures).

The idea is even older, though. Thomas has studied the myriad ways people in the past have feared that our species could be sacrificing genuine longevity for short-term pleasures or conveniences. His book X-Risk: How Humanity Discovered its Own Extinction explores the roots of this fear and how it first really took hold in Victorian Britain: when the sheer extent of industrialization—and humanity’s growing reliance on artificial contrivances—first became apparent.

But people have been panicking about this type of pleasure-addled doom long before any AIs were trained to play games and even long before electrodes were pushed into rodent craniums. Back in the 1930s, sci-fi author Olaf Stapledon was writing about civilizational collapse brought on by “skullcaps” that generate “illusory” ecstasies by “direct stimulation” of “brain-centers.”

Carnal Crustacea
Having digested Darwin’s 1869 classic, the biologist Ray Lankester decided to supply a Darwinian explanation for parasitic organisms. He noticed that the evolutionary ancestors of parasites were often more “complex.” Parasitic organisms had lost ancestral features like limbs, eyes, or other complex organs.

Lankester theorized that, because the parasite leeches off their host, they lose the need to fend for themselves. Piggybacking off the host’s bodily processes, their own organs—for perception and movement—atrophy. His favorite example was a parasitic barnacle, named the Sacculina, which starts life as a segmented organism with a demarcated head. After attaching to a host, however, the crustacean “regresses” into an amorphous, headless blob, sapping nutrition from their host like the wirehead plugs into current.

For the Victorian mind, it was a short step to conjecture that, due to increasing levels of comfort throughout the industrialized world, humanity could be evolving in the direction of the barnacle. “Perhaps we are all drifting, tending to the condition of intellectual barnacles,” Lankester mused.

Indeed, not long prior to this, the satirist Samuel Butler had speculated that humans, in their headlong pursuit of automated convenience, were withering into nothing but a “sort of parasite” upon their own industrial machines.

True Nirvana
By the 1920s, Julian Huxley penned a short poem. It jovially explored the ways a species can “progress.” Crabs, of course, decided progress was sideways. But what of the tapeworm? He wrote:

Darwinian Tapeworms on the other hand
Agree that Progress is a loss of brain,
And all that makes it hard for worms to attain
The true Nirvana — peptic, pure, and grand.

The fear that we could follow the tapeworm was somewhat widespread in the interwar generation. Huxley’s own brother, Aldous, would provide his own vision of the dystopian potential for pharmaceutically-induced pleasures in his 1932 novel Brave New World.

A friend of the Huxleys, the British-Indian geneticist and futurologist J B S Haldane also worried that humanity might be on the path of the parasite: sacrificing genuine dignity at the altar of automated ease, just like the rodents who would later sacrifice survival for easy pleasure-shocks.

Haldane warned: “The ancestors [of] barnacles had heads,” and in the pursuit of pleasantness, “man may just as easily lose his intelligence.” This particular fear has not really ever gone away.

So, the notion of civilization derailing through seeking counterfeit pleasures, rather than genuine longevity, is old. And, indeed, the older an idea is, and the more stubbornly recurrent it is, the more we should be wary that it is a preconception rather than anything based on evidence. So, is there anything to these fears?

In an age of increasingly attention-grabbing algorithmic media, it can seem that faking signals of fitness often yields more success than pursuing the real thing. Like Tinbergen’s birds, we prefer exaggerated artifice to the genuine article. And the sexbots have not even arrived yet.

Because of this, some experts conjecture that “wirehead collapse” might well threaten civilization. Our distractions are only going to get more attention grabbing, not less.

Already by 1964, Polish futurologist Stanisław Lem connected Olds’s rats to the behavior of humans in the modern consumerist world, pointing to “cinema,” “pornography,” and “Disneyland.” He conjectured that technological civilizations might cut themselves off from reality, becoming “encysted” within their own virtual pleasure simulations.

Addicted Aliens
Lem, and others since, have even ventured that the reason our telescopes haven’t found evidence of advanced spacefaring alien civilizations is because all advanced cultures, here and elsewhere, inevitably create more pleasurable virtual alternatives to exploring outer space. Exploration is difficult and risky, after all.

Back in the countercultural heyday of the 1960s, the molecular biologist Gunther Stent suggested that this process would happen through “global hegemony of beat attitudes.” Referencing Olds’s experiments, he helped himself to the speculation that hippie drug-use was the prelude to civilizations wireheading. At a 1971 conference on the search for extraterrestrials, Stent suggested that, instead of expanding bravely outwards, civilizations collapse inwards into meditative and intoxicated bliss.

In our own time, it makes more sense for concerned parties to point to consumerism, social media, and fast food as the culprits for potential collapse (and, hence, the reason no other civilizations have yet visibly spread throughout the galaxy). Each era has its own anxieties.

So What Do We Do?
But these are almost certainly not the most pressing risks facing us. And if done right, forms of wireheading could make accessible untold vistas of joy, meaning, and value. We shouldn’t forbid ourselves these peaks ahead of weighing everything up.

But there is a real lesson here. Making adaptive complex systems—whether brains, AI, or economies—behave safely and well is hard. Anders works precisely on solving this riddle. Given that civilization itself, as a whole, is just such a complex adaptive system, how can we learn about inherent failure modes or instabilities, so that we can avoid them? Perhaps “wireheading” is an inherent instability that can afflict markets and the algorithms that drive them, as much as addiction can afflict people?

In the case of AI, we are laying the foundations of such systems now. Once a fringe concern, a growing number of experts agree that achieving smarter-than-human AI may be close enough on the horizon to pose a serious concern. This is because we need to make sure it is safe before this point, and figuring out how to guarantee this will itself take time. There does, however, remain significant disagreement among experts on timelines, and how pressing this deadline might be.

If such an AI is created, we can expect that it may have access to its own “source code,” such that it can manipulate its motivational structure and administer its own rewards. This could prove an immediate path to wirehead behavior, and cause such an entity to become, effectively, a “super-junkie.” But unlike the human addict, it may not be the case that its state of bliss is coupled with an unproductive state of stupor or inebriation.

Philosopher Nick Bostrom conjectures that such an agent might devote all of its superhuman productivity and cunning to “reducing the risk of future disruption” of its precious reward source. And if it judges even a nonzero probability for humans to be an obstacle to its next fix, we might well be in trouble.

Speculative and worst-case scenarios aside, the example we started with—of the racetrack AI and reward loop—reveals that the basic issue is already a real-world problem in artificial systems. We should hope, then, that we’ll learn much more about these pitfalls of motivation, and how to avoid them, before things develop too far. Even though it has humble origins—in the cranium of an albino rat and in poems about tapeworms— “wireheading” is an idea that is likely only to become increasingly important in the near future.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: charles taylor / Shutterstock.com Continue reading

Posted in Human Robots

#439736 Spot’s 3.0 Update Adds Increased ...

While Boston Dynamics' Atlas humanoid spends its time learning how to dance and do parkour, the company's Spot quadruped is quietly getting much better at doing useful, valuable tasks in commercial environments. Solving tasks like dynamic path planning and door manipulation in a way that's robust enough that someone can buy your robot and not regret it is, I would argue, just as difficult (if not more difficult) as getting a robot to do a backflip.
With a short blog post today, Boston Dynamics is announcing Spot Release 3.0, representing more than a year of software improvements over Release 2.0 that we covered back in May of 2020. The highlights of Release 3.0 include autonomous dynamic replanning, cloud integration, some clever camera tricks, and a new ability to handle push-bar doors, and earlier today, we spoke with Spot Chief Engineer at Boston Dynamics Zachary Jackowski to learn more about what Spot's been up to.
Here are some highlights from Spot's Release 3.0 software upgrade today, lifted from this blog post which has the entire list:
Mission planning: Save time by selecting which inspection actions you want Spot to perform, and it will take the shortest path to collect your data.Dynamic replanning: Don't miss inspections due to changes on site. Spot will replan around blocked paths to make sure you get the data you need.Repeatable image capture: Capture the same image from the same angle every time with scene-based camera alignment for the Spot CAM+ pan-tilt-zoom (PTZ) camera. Cloud-compatible: Connect Spot to AWS, Azure, IBM Maximo, and other systems with existing or easy-to-build integrations.Manipulation: Remotely operate the Spot Arm with ease through rear Spot CAM integration and split-screen view. Arm improvements also include added functionality for push-bar doors, revamped grasping UX, and updated SDK.Sounds: Keep trained bystanders aware of Spot with configurable warning sounds.The focus here is not just making Spot more autonomous, but making Spot more autonomous in some very specific ways that are targeted towards commercial usefulness. It's tempting to look at this stuff and say that it doesn't represent any massive new capabilities. But remember that Spot is a product, and its job is to make money, which is an enormous challenge for any robot, much less a relatively expensive quadruped.

For more details on the new release and a general update about Spot, we spoke with Zachary Jackowski, Spot Chief Engineer at Boston Dynamics.
IEEE Spectrum: So what's new with Spot 3.0, and why is this release important?
Zachary Jackowski: We've been focusing heavily on flexible autonomy that really works for our industrial customers. The thing that may not quite come through in the blog post is how iceberg-y making autonomy work on real customer sites is. Our blog post has some bullet points about “dynamic replanning” in maybe 20 words, but in doing that, we actually reengineered almost our entire autonomy system based on the failure modes of what we were seeing on our customer sites.
The biggest thing that changed is that previously, our robot mission paradigm was a linear mission where you would take the robot around your site and record a path. Obviously, that was a little bit fragile on complex sites—if you're on a construction site and someone puts a pallet in your path, you can't follow that path anymore. So we ended up engineering our autonomy system to do building scale mapping, which is a big part of why we're calling it Spot 3.0. This is state-of-the-art from an academic perspective, except that it's volume shipping in a real product, which to me represents a little bit of our insanity.
And one super cool technical nugget in this release is that we have a powerful pan/tilt/zoom camera on the robot that our customers use to take images of gauges and panels. We've added scene-based alignment and also computer vision model-based alignment so that the robot can capture the images from the same perspective, every time, perfectly framed. In pictures of the robot, you can see that there's this crash cage around the camera, but the image alignment stuff actually does inverse kinematics to command the robot's body to shift a little bit if the cage is including anything important in the frame.
When Spot is dynamically replanning around obstacles, how much flexibility does it have in where it goes?
There are a bunch of tricks to figuring out when to give up on a blocked path, and then it's very simple run of the mill route planning within an existing map. One of the really big design points of our system, which we spent a lot of time talking about during the design phase, is that it turns out in these high value facilities people really value predictability. So it's not desired that the robot starts wandering around trying to find its way somewhere.
Do you think that over time, your customers will begin to trust the robot with more autonomy and less predictability?
I think so, but there's a lot of trust to be built there. Our customers have to see the robot to do the job well for a significant amount of time, and that will come.
Can you talk a bit more about trying to do state-of-the-art work on a robot that's being deployed commercially?
I can tell you about how big the gap is. When we talk about features like this, our engineers are like, “oh yeah I could read this paper and pull this algorithm and code something up over a weekend and see it work.” It's easy to get a feature to work once, make a really cool GIF, and post it to the engineering group chat room. But if you take a look at what it takes to actually ship a feature at product-level, we're talking person-years to have it reach the level of quality that someone is accustomed to buying an iPhone and just having it work perfectly all the time. You have to write all the code to product standards, implement all your tests, and get everything right there, and then you also have to visit a lot of customers, because the thing that's different about mobile robotics as a product is that it's all about how the system responds to environments that it hasn't seen before.
The blog post calls Spot 3.0 “A Sensing Solution for the Real World.” What is the real world for Spot at this point, and how will that change going forward?
For Spot, 'real world' means power plants, electrical switch yards, chemical plants, breweries, automotive plants, and other living and breathing industrial facilities that have never considered the fact that a robot might one day be walking around in them. It's indoors, it's outdoors, in the dark and in direct sunlight. When you're talking about the geometric aspect of sites, that complexity we're getting pretty comfortable with.
I think the frontiers of complexity for us are things like, how do you work in a busy place with lots of untrained humans moving through it—that's an area where we're investing a lot, but it's going to be a big hill to climb and it'll take a little while before we're really comfortable in environments like that. Functional safety, certified person detectors, all that good stuff, that's a really juicy unsolved field.
Spot can now open push-bar doors, which seems like an easier problem than doors with handles, which Spot learned to open a while ago. Why'd you start with door handles first?
Push-bar doors is an easier problem! But being engineers, we did the harder problem first, because we wanted to get it done. Continue reading

Posted in Human Robots

#439730 Faster Microfiber Actuators Mimic Human ...

Robotics, prosthetics, and other engineering applications routinely use actuators that imitate the contraction of animal muscles. However, the speed and efficiency of natural muscle fibers is a demanding benchmark. Despite new developments in actuation technologies, for the most past artificial muscles are either too large, too slow, or too weak.

Recently, a team of engineers from the University of California San Diego (UCSD) have described a new artificial microfiber made from liquid crystal elastomer (LCE) that replicates the tensile strength, quick responsiveness, and high power density of human muscles. “[The LCE] polymer is a soft material and very stretchable,” says Qiguang He, the first author of their research paper. “If we apply external stimuli such as light or heat, this material will contract along one direction.”
Though LCE-based soft actuators are common and can generate excellent actuation strain—between 50 and 80 percent—their response time, says He, is typically “very, very slow.” The simplest way to make the fibers both responsive and fast was to reduce their diameter. To do so, the UCSD researchers used a technique called electrospinning, which involves the ejection of a polymer solution through a syringe or spinneret under high voltage to produce ultra-fine fibers. Electrospinning is used for the fabrication of small-scale materials, to produce microfibers with diameters between 10 and 100 micrometers. It is favored for its ability to create fibers with different morphological structures, and is routinely used in various research and commercial contexts.
The microfibers fabricated by the UCSD researchers were between 40 and 50 micrometers, about the width of human hair, and much smaller than existing LCE fibers, some of which can be more than 0.3 millimeters thick. “We are not the first to use this technique to fabricate LCE fibers, but we are the first…to push this fiber further,” He says. “We demonstrate how to control the actuation of the [fibers and measure their] actuation performance.”

University of California, San Diego/Science Robotics
As proof-of-concept, the researchers constructed three different microrobotic devices using their electrospun LCE fibers. Their LSE actuators can be controlled thermo-electrically or using a near-infrared laser. When the LCE material is at room temperature, it is in a nematic phase: He explains that in this state, “the liquid crystals are randomly [located] with all their long axes pointing in essentially the same direction.” When the temperature is increased, the material transitions into what is called an isotropic phase, in which its properties are uniform in all directions, resulting in a contraction of the fiber.
The results showed an actuation strain of up to 60 percent—which means, a 10-centimeter-long fiber will contract to 4 centimeters—with a response speed of less than 0.2 seconds, and a power density of 400 watts per kilogram. This is comparable to human muscle fibers.
An electrically controlled soft actuator, the researchers note, allows easy integrations with low-cost electronic devices, which is a plus for microrobotic systems and devices. Electrospinning is a very efficient fabrication technique as well: “You can get 10,000 fibers in 15 minutes,” He says.
That said, there are a number of challenges that need to be addressed still. “The one limitation of this work is…[when we] apply heat or light to the LCE microfiber, the energy efficiency is very small—it's less than 1 percent,” says He. “So, in future work, we may think about how to trigger the actuation in a more energy-efficient way.”
Another constraint is that the nematic–isotropic phase transition in the electrospun LCE material takes place at a very high temperature, over 90 C. “So, we cannot directly put the fiber into the human body [which] is at 35 degrees.” One way to address this issue might be to use a different kind of liquid crystal: “Right now we use RM 257 as a liquid crystal [but] we can change [it] to another type [to reduce] the phase transition temperature.”
He, though, is optimistic about the possibilities to expand this research in electrospun LCE microfiber actuators. “We have also demonstrated [that] we can arrange multiple LCE fibers in parallel…and trigger them simultaneously [to increase force output]… This is a future work [in which] we will try to see if it's possible for us to integrate these muscle fiber bundles into biomedical tissue.” Continue reading

Posted in Human Robots

#439726 Rule of the Robots: Warning Signs

A few years ago, Martin Ford published a book called Architects of Intelligence, in which he interviewed 23 of the most experienced AI and robotics researchers in the world. Those interviews are just as fascinating to read now as they were in 2018, but Ford's since had some extra time to chew on them, in the context of a several years of somewhat disconcertingly rapid AI progress (and hype), coupled with the economic upheaval caused by the pandemic.

In his new book, Rule of the Robots: How Artificial Intelligence Will Transform Everything, Ford takes a markedly well-informed but still generally optimistic look at where AI is taking us as a society. It's not all good, and there are still a lot of unknowns, but Ford has a perspective that's both balanced and nuanced, and I can promise you that the book is well worth a read.

The following excerpt is a section entitled “Warning Signs,” from the chapter “Deep Learning and the Future of Artificial Intelligence.”

—Evan Ackerman

The 2010s were arguably the most exciting and consequential decade in the history of artificial intelligence. Though there have certainly been conceptual improvements in the algorithms used in AI, the primary driver of all this progress has simply been deploying more expansive deep neural networks on ever faster computer hardware where they can hoover up greater and greater quantities of training data. This “scaling” strategy has been explicit since the 2012 ImageNet competition that set off the deep learning revolution. In November of that year, a front-page New York Times article was instrumental in bringing awareness of deep learning technology to the broader public sphere. The article, written by reporter John Markoff, ends with a quote from Geoff Hinton: “The point about this approach is that it scales beautifully. Basically you just need to keep making it bigger and faster, and it will get better. There's no looking back now.”

There is increasing evidence, however, that this primary engine of progress is beginning to sputter out. According to one analysis by the research organization OpenAI, the computational resources required for cutting-edge AI projects is “increasing exponentially” and doubling about every 3.4 months.

In a December 2019 Wired magazine interview, Jerome Pesenti, Facebook's Vice President of AI, suggested that even for a company with pockets as deep as Facebook's, this would be financially unsustainable:

When you scale deep learning, it tends to behave better and to be able to solve a broader task in a better way. So, there's an advantage to scaling. But clearly the rate of progress is not sustainable. If you look at top experiments, each year the cost [is] going up 10-fold. Right now, an experiment might be in seven figures, but it's not going to go to nine or ten figures, it's not possible, nobody can afford that.

Pesenti goes on to offer a stark warning about the potential for scaling to continue to be the primary driver of progress: “At some point we're going to hit the wall. In many ways we already have.” Beyond the financial limits of scaling to ever larger neural networks, there are also important environmental considerations. A 2019 analysis by researchers at the University of Massachusetts, Amherst, found that training a very large deep learning system could potentially emit as much carbon dioxide as five cars over their full operational lifetimes.

Even if the financial and environmental impact challenges can be overcome—perhaps through the development of vastly more efficient hardware or software—scaling as a strategy simply may not be sufficient to produce sustained progress. Ever-increasing investments in computation have produced systems with extraordinary proficiency in narrow domains, but it is becoming increasingly clear that deep neural networks are subject to reliability limitations that may make the technology unsuitable for many mission critical applications unless important conceptual breakthroughs are made. One of the most notable demonstrations of the technology's weaknesses came when a group of researchers at Vicarious, small company focused on building dexterous robots, performed an analysis of the neural network used in Deep-Mind's DQN, the system that had learned to dominate Atari video games. One test was performed on Breakout, a game in which the player has to manipulate a paddle to intercept a fast-moving ball. When the paddle was shifted just a few pixels higher on the screen—a change that might not even be noticed by a human player—the system's previously superhuman performance immediately took a nose dive. DeepMind's software had no ability to adapt to even this small alteration. The only way to get back to top-level performance would have been to start from scratch and completely retrain the system with data based on the new screen configuration.

What this tells us is that while DeepMind's powerful neural networks do instantiate a representation of the Breakout screen, this representation remains firmly anchored to raw pixels even at the higher levels of abstraction deep in the network. There is clearly no emergent understanding of the paddle as an actual object that can be moved. In other words, there is nothing close to a human-like comprehension of the material objects that the pixels on the screen represent or the physics that govern their movement. It's just pixels all the way down. While some AI researchers may continue to believe that a more comprehensive understanding might eventually emerge if only there were more layers of artificial neurons, running on faster hardware and consuming still more data, I think this is very unlikely. More fundamental innovations will be required before we begin to see machines with a more human-like conception of the world.

This general type of problem, in which an AI system is inflexible and unable to adapt to even small unexpected changes in its input data, is referred to, among researchers, as “brittleness.” A brittle AI application may not be a huge problem if it results in a warehouse robot occasionally packing the wrong item into a box. In other applications, however, the same technical shortfall can be catastrophic. This explains, for example, why progress toward fully autonomous self-driving cars has not lived up to some of the more exuberant early predictions.

As these limitations came into focus toward the end of the decade, there was a gnawing fear that the field had once again gotten over its skis and that the hype cycle had driven expectations to unrealistic levels. In the tech media and on social media, one of the most terrifying phrases in the field of artificial intelligence—”AI winter”—was making a reappearance. In a January 2020 interview with the BBC, Yoshua Bengio said that “AI's abilities were somewhat overhyped . . . by certain companies with an interest in doing so.”

My own view is that if another AI winter indeed looms, it's likely to be a mild one. Though the concerns about slowing progress are well founded, it remains true that over the past few years AI has been deeply integrated into the infrastructure and business models of the largest technology companies. These companies have seen significant returns on their massive investments in computing resources and AI talent, and they now view artificial intelligence as absolutely critical to their ability to compete in the marketplace. Likewise, nearly every technology startup is now, to some degree, investing in AI, and companies large and small in other industries are beginning to deploy the technology. This successful integration into the commercial sphere is vastly more significant than anything that existed in prior AI winters, and as a result the field benefits from an army of advocates throughout the corporate world and has a general momentum that will act to moderate any downturn.

There's also a sense in which the fall of scalability as the primary driver of progress may have a bright side. When there is a widespread belief that simply throwing more computing resources at a problem will produce important advances, there is significantly less incentive to invest in the much more difficult work of true innovation. This was arguably the case, for example, with Moore's Law. When there was near absolute confidence that computer speeds would double roughly every two years, the semiconductor industry tended to focus on cranking out ever faster versions of the same microprocessor designs from companies like Intel and Motorola. In recent years, the acceleration in raw computer speeds has become less reliable, and our traditional definition of Moore's Law is approaching its end game as the dimensions of the circuits imprinted on chips shrink to nearly atomic size. This has forced engineers to engage in more “out of the box” thinking, resulting in innovations such as software designed for massively parallel computing and entirely new chip architectures—many of which are optimized for the complex calculations required by deep neural networks. I think we can expect the same sort of idea explosion to happen in deep learning, and artificial intelligence more broadly, as the crutch of simply scaling to larger neural networks becomes a less viable path to progress.

Excerpted from “Rule of the Robots: How Artificial Intelligence will Transform Everything.” Copyright 2021 Basic Books. Available from Basic Books, an imprint of Hachette Book Group, Inc. Continue reading

Posted in Human Robots

#439721 New Study Finds a Single Neuron Is a ...

Comparing brains to computers is a long and dearly held analogy in both neuroscience and computer science.

It’s not hard to see why.

Our brains can perform many of the tasks we want computers to handle with an easy, mysterious grace. So, it goes, understanding the inner workings of our minds can help us build better computers; and those computers can help us better understand our own minds. Also, if brains are like computers, knowing how much computation it takes them to do what they do can help us predict when machines will match minds.

Indeed, there’s already a productive flow of knowledge between the fields.

Deep learning, a powerful form of artificial intelligence, for example, is loosely modeled on the brain’s vast, layered networks of neurons.

You can think of each “node” in a deep neural network as an artificial neuron. Like neurons, nodes receive signals from other nodes connected to them and perform mathematical operations to transform input into output.

Depending on the signals a node receives, it may opt to send its own signal to all the nodes in its network. In this way, signals cascade through layer upon layer of nodes, progressively tuning and sharpening the algorithm.

The brain works like this too. But the keyword above is loosely.

Scientists know biological neurons are more complex than the artificial neurons employed in deep learning algorithms, but it’s an open question just how much more complex.

In a fascinating paper published recently in the journal Neuron, a team of researchers from the Hebrew University of Jerusalem tried to get us a little closer to an answer. While they expected the results would show biological neurons are more complex—they were surprised at just how much more complex they actually are.

In the study, the team found it took a five- to eight-layer neural network, or nearly 1,000 artificial neurons, to mimic the behavior of a single biological neuron from the brain’s cortex.

Though the researchers caution the results are an upper bound for complexity—as opposed to an exact measurement of it—they also believe their findings might help scientists further zero in on what exactly makes biological neurons so complex. And that knowledge, perhaps, can help engineers design even more capable neural networks and AI.

“[The result] forms a bridge from biological neurons to artificial neurons,” Andreas Tolias, a computational neuroscientist at Baylor College of Medicine, told Quanta last week.

Amazing Brains
Neurons are the cells that make up our brains. There are many different types of neurons, but generally, they have three parts: spindly, branching structures called dendrites, a cell body, and a root-like axon.

On one end, dendrites connect to a network of other neurons at junctures called synapses. At the other end, the axon forms synapses with a different population of neurons. Each cell receives electrochemical signals through its dendrites, filters those signals, and then selectively passes along its own signals (or spikes).

To computationally compare biological and artificial neurons, the team asked: How big of an artificial neural network would it take to simulate the behavior of a single biological neuron?

First, they built a model of a biological neuron (in this case, a pyramidal neuron from a rat’s cortex). The model used some 10,000 differential equations to simulate how and when the neuron would translate a series of input signals into a spike of its own.

They then fed inputs into their simulated neuron, recorded the outputs, and trained deep learning algorithms on all the data. Their goal? Find the algorithm that could most accurately approximate the model.

(Video: A model of a pyramidal neuron (left) receives signals through its dendritic branches. In this case, the signals provoke three spikes.)

They increased the number of layers in the algorithm until it was 99 percent accurate at predicting the simulated neuron’s output given a set of inputs. The sweet spot was at least five layers but no more than eight, or around 1,000 artificial neurons per biological neuron. The deep learning algorithm was much simpler than the original model—but still quite complex.

From where does this complexity arise?

As it turns out, it’s mostly due to a type of chemical receptor in dendrites—the NMDA ion channel—and the branching of dendrites in space. “Take away one of those things, and a neuron turns [into] a simple device,” lead author David Beniaguev tweeted in 2019, describing an earlier version of the work published as a preprint.

Indeed, after removing these features, the team found they could match the simplified biological model with but a single-layer deep learning algorithm.

A Moving Benchmark
It’s tempting to extrapolate the team’s results to estimate the computational complexity of the whole brain. But we’re nowhere near such a measure.

For one, it’s possible the team didn’t find the most efficient algorithm.

It’s common for the the developer community to rapidly improve upon the first version of an advanced deep learning algorithm. Given the intensive iteration in the study, the team is confident in the results, but they also released the model, data, and algorithm to the scientific community to see if anyone could do better.

Also, the model neuron is from a rat’s brain, as opposed to a human’s, and it’s only one type of brain cell. Further, the study is comparing a model to a model—there is, as of yet, no way to make a direct comparison to a physical neuron in the brain. It’s entirely possible the real thing is more, not less, complex.

Still, the team believes their work can push neuroscience and AI forward.

In the former case, the study is further evidence dendrites are complicated critters worthy of more attention. In the latter, it may lead to radical new algorithmic architectures.

Idan Segev, a coauthor on the paper, suggests engineers should try replacing the simple artificial neurons in today’s algorithms with a mini five-layer network simulating a biological neuron. “We call for the replacement of the deep network technology to make it closer to how the brain works by replacing each simple unit in the deep network today with a unit that represents a neuron, which is already—on its own—deep,” Segev said.

Whether so much added complexity would pay off is uncertain. Experts debate how much of the brain’s detail algorithms need to capture to achieve similar or better results.

But it’s hard to argue with millions of years of evolutionary experimentation. So far, following the brain’s blueprint has been a rewarding strategy. And if this work is any indication, future neural networks may well dwarf today’s in size and complexity.

Image Credit: NICHD/S. Jeong Continue reading

Posted in Human Robots