Tag Archives: with

#439354 What’s Going on With Amazon’s ...

Amazon’s innovation blog recently published a post entitled “New technologies to improve Amazon employee safety,” which highlighted four different robotic systems that Amazon’s Robotics and Advanced Technology teams have been working on. Three of these robotic systems are mobile robots, which have been making huge contributions to the warehouse space over the past decade. Amazon in particular was one of the first (if not the first) e-commerce companies to really understand the fundamental power of robots in warehouses, with their $775 million acquisition of Kiva Systems’ pod-transporting robots back in 2012.

Since then, a bunch of other robotics companies have started commercially deploying robots in warehouses, and over the past five years or so, we’ve seen some of those robots develop enough autonomy and intelligence to be able to operate outside of restricted, highly structured environments and work directly with humans. Autonomous mobile robots for warehouses is now a highly competitive sector, with companies like Fetch Robotics, Locus Robotics, and OTTO Motors all offering systems that can zip payloads around busy warehouse floors safely and efficiently.

But if we’re to take the capabilities of the robots that Amazon showcased over the weekend at face value, the company appears to be substantially behind the curve on warehouse robots.

Let’s take a look at the three mobile robots that Amazon describes in their blog post:

“Bert” is one of Amazon’s first Autonomous Mobile Robots, or AMRs. Historically, it’s been difficult to incorporate robotics into areas of our facilities where people and robots are working in the same physical space. AMRs like Bert, which is being tested to autonomously navigate through our facilities with Amazon-developed advanced safety, perception, and navigation technology, could change that. With Bert, robots no longer need to be confined to restricted areas. This means that in the future, an employee could summon Bert to carry items across a facility. In addition, Bert might at some point be able to move larger, heavier items or carts that are used to transport multiple packages through our facilities. By taking those movements on, Bert could help lessen strain on employees.

This all sounds fairly impressive, but only if you’ve been checked out of the AMR space for the last few years. Amazon is presenting Bert as part of the “new technologies” they’re developing, and while that may be the case, as far as we can make out these are very much technologies that seem to be new mostly just to Amazon and not really to anyone else. There are any number of other companies who are selling mobile robot tech that looks to be significantly beyond what we’re seeing here—tech that (unless we’re missing something) has already largely solved many of the same technical problems that Amazon is working on.

We spoke with mobile robot experts from three different robotics companies, none of whom were comfortable going on record (for obvious reasons), but they all agreed that what Amazon is demonstrating in these videos appears to be 2+ years behind the state of the art in commercial mobile robots.

We’re obviously seeing a work in progress with Bert, but I’d be less confused if we were looking at a deployed system, because at least then you could make the argument that Amazon has managed to get something operational at (some) scale, which is much more difficult than a demo or pilot project. But the slow speed, the careful turns, the human chaperones—other AMR companies are way past this stage.

Kermit is an AGC (Autonomously Guided Cart) that is focused on moving empty totes from one location to another within our facilities so we can get empty totes back to the starting line. Kermit follows strategically placed magnetic tape to guide its navigation and uses tags placed along the way to determine if it should speed up, slow down, or modify its course in some way. Kermit is further along in development, currently being tested in several sites across the U.S., and will be introduced in at least a dozen more sites across North America this year.

Most folks in the mobile robots industry would hesitate to call Kermit an autonomous robot at all, which is likely why Amazon doesn’t refer to it as such, instead calling it a “guided cart.” As far as I know, pretty much every other mobile robotics company has done away with stuff like magnetic tape in favor of map-based natural-feature localization (a technology that has been commercially available for years), because then your robots can go anywhere in a mapped warehouse, not just on these predefined paths. Even if you have a space and workflow that never ever changes, busy warehouses have paths that get blocked for one reason or another all the time, and modern AMRs are flexible enough to plan around those paths to complete their tasks. With these autonomous carts that are locked to their tapes, they can’t even move over a couple of feet to get around an obstacle.

I have no idea why this monstrous system called Scooter is the best solution for moving carts around a warehouse. It just seems needlessly huge and complicated, especially since we know Amazon already understands that a great way of moving carts around is by using much smaller robots that can zip underneath a cart, lift it up, and carry it around with them. Obviously, the Kiva drive units only operate in highly structured environments, but other AMR companies are making this concept work on the warehouse floor just fine.

Why is Amazon at “possibilities” when other companies are at commercial deployments?

I honestly just don’t understand what’s happening here. Amazon has (I assume) a huge R&D budget at its disposal. It was investing in robotic technology for e-commerce warehouses super early, and at an unmatched scale. Even beyond Kiva, Amazon obviously understood the importance of AMRs several years ago, with its $100+ million acquisition of Canvas Technology in 2019. But looking back at Canvas’ old videos, it seems like Canvas was doing in 2017 more or less what we’re seeing Amazon’s Bert robot doing now, nearly half a decade later.

We reached out to Amazon Robotics for comment and sent them a series of questions about the robots in these videos. They sent us this response:

The health and safety of our employees is our number one priority—and has been since day one. We’re excited about the possibilities robotics and other technology can play in helping to improve employee safety.

Hmm.

I mean, sure, I’m excited about the same thing, but I’m still stuck on why Amazon is at possibilities, while other companies are at commercial deployments. It’s certainly possible that the sheer Amazon-ness of Amazon is a significant factor here, in the sense that a commercial deployment for Amazon is orders of magnitude larger and more complex than any of the AMR companies that we’re comparing them to are dealing with. And if Amazon can figure out how to make (say) an AMR without using lidar, it would make a much more significant difference for an in-house large-scale deployment relative to companies offering AMRs as a service.

For another take on what might be going on with this announcement from Amazon, we spoke with Matt Beane, who got his PhD at MIT and studies robotics at UCSB’s Technology Management Program. At the ACM/IEEE International Conference on Human-Robot Interaction (HRI) last year, Beane published a paper on the value of robots as social signals—that is, organizations get valuable outcomes from just announcing they have robots, because this encourages key audiences to see the organization in favorable ways. “My research strongly suggests that Amazon is reaping signaling value from this announcement,” Beane told us. There’s nothing inherently wrong with signaling, because robots can create instrumental value, and that value needs to be communicated to the people who will, ideally, benefit from it. But you have to be careful: “My paper also suggests this can be a risky move,” explains Beane. “Blowback can be pretty nasty if the systems aren’t in full-tilt, high-value use. In other words, it works only if the signal pretty closely matches the internal reality.”

There’s no way for us to know what the internal reality at Amazon is. All we have to go on is this blog post, which isn’t much, and we should reiterate that there may be a significant gap between what the post is showing us about Amazon’s mobile robots and what’s actually going on at Amazon Robotics. My hope is what we’re seeing here is primarily a sign that Amazon Robotics is starting to scale things up, and that we’re about to see them get a lot more serious about developing robots that will help make their warehouses less tedious, safer, and more productive. Continue reading

Posted in Human Robots

#439315 Your Future May Lie With an Artificial ...

Image by Mudassar Iqbal from Pixabay There are a lot of ways to start exploring the future, and considering what you want to do with your career could be a good start. If you’re not sure, it may be wise to look into options that involve technology. With the growing and expanding nature of technological …

The post Your Future May Lie With an Artificial Intelligence Certificate appeared first on TFOT. Continue reading

Posted in Human Robots

#439252 The Cheetah’s Fluffy Tail Points ...

Almost but not quite a decade ago, researchers from UC Berkeley equipped a little robotic car with an actuated metal rod with a weight on the end and used it to show how lizards use their tails to stabilize themselves while jumping through the air. That research inspired a whole bunch of other tailed mobile robots, including a couple of nifty ones from Amir Patel at the University of Cape Town.

The robotic tails that we’ve seen are generally actuated inertial tails: a moving mass that goes one way causes the robot that it’s attached to to go the other way. This is how lizard tails work, and it’s a totally fine way to do things. In fact, people generally figured that many if not most other animals that use their tails to improve their agility leverage this inertial principle, including (most famously) the cheetah. But at least as far as the cheetah was concerned, nobody had actually bothered to check, until Patel took the tails from a collection of ex-cheetahs and showed that in fact cheetah tails are almost entirely fluff. So if it’s not the mass of its tail that helps a cheetah chase down prey, then it must be the aerodynamics.

The internet is full of wisdom on cheetah tails, and most of it describes “heavy” tails that “act as a counterbalance” to the rest of the cheetah’s body. This makes intuitive sense, but it’s also quite wrong, as Amir Patel figured out:

The aerodynamics of cheetah tails are super important, and actually something I discovered by accident! Towards the end of my PhD I was invited to a cheetah autopsy at the National Zoological Gardens here in South Africa. The idea was to weigh and measure the inertia of the cheetah tail because no such data existed. Based on what I’d seen in wildlife documentaries (and speaking to any game ranger in South Africa), the cheetah tail is often considered to be heavy, and used as a counterweight.

However, once we removed the fur and skin from the tail during the autopsy, it was surprisingly skinny! We measured it (and the tails of another 6 cheetahs) as being only about 2 percent of the body mass—much lower than my own robotic tails. But the fur made up a significant volume of the tail. So, I figured that there must be something to it: maybe the fur was making the tail appear like a larger object aerodynamically, without the weight penalty of an inertial tail.

A few years ago, Patel started to characterize tail aerodynamics in partnership with Aaron Johnson’s lab at CMU, and that work has lead to a recent paper published in IEEE Transactions on Robotics, exploring how aerodynamic drag on a lightweight tail can help robots perform dynamic behaviors more successfully.

The specific tail design that Minitaur is sporting in the video above doesn’t look particularly cheetah-like, being made out of carbon fiber and polyethylene film rather than floof, and only sporting an aerodynamic component at the end of the tail rather than tip to butt. This is explained by cheetahs in the wild not having easy access to either carbon fiber or polyethylene, and by a design that the researchers optimized to maximize drag while minimizing mass rather than for biomimicry. “We experimented with a whole array of furry tails to mimic cheetah fur, but found that the half cylinder shape had by far the most drag,” first author Joseph Norby told us in an email. “And the reduction of the drag component to just the end of the tail was a balance of effectiveness and rigidity—we could have made the drag component cover the entire length, but really the section near the tip produces most of the drag, and reducing the length of the drag component helps maintain the shape of the tail.”

Aerodynamic tails are potentially appealing because unlike inertial tails, the amount of torque that they can produce doesn't depend on how much they weigh, but rather with the velocity at which the robot is moving: the faster the robot goes, the more torque an aerodynamic tail can produce. We see this in animals, too, with fluffy tails commonly found on fast movers and jumpers like jerboas and flying squirrels. This offers some suggestion about what kind of robots could benefit most from tails like these, although as Norby points out, the greatest limitation of these tails is the large workspace required for the tail to move around safely.

Image: Norby et al

A variety of animals (and one robot) with aerodynamic drag tails, including a jerboa and giant Indian squirrel.

While this paper is focused on quantifying the effects of aerodynamic drag on robotic tails, it seems like there’s a lot of potential for some really creative designs—we were wondering about tails with adjustable floofitude, for example, and we asked Norby about some ways in which this research might be extended.

I think a foldable or retractable tail would greatly improve practicality by reducing the workspace when the tail is not needed. Essentially all of the animals we studied had some sort of flexibility to their tails, which I believe is a crucial property for improving both practicality and durability. In a similar vein, we've also thought about employing active or passive designs that could quickly modify the drag coefficient, whether by furling and unfurling, or simply rotating an asymmetric tail like our half cylinder. This could perhaps allow new forms of control similar to paddling and feathering a canoe: increasing drag when moving in one direction and reducing drag in the other could allow for more net control authority. This would be completely impossible with an inertial tail, which cannot do work on the environment.

Photo: Evan Ackerman/IEEE Spectrum

Gratuitous cheetah picture.

Even though animals had the idea for lightweight aerodynamic drag tails first, there’s no reason why we need to restrict ourselves to animal-like form factors when leveraging the advantages that tails like these offer, or indeed with the designs of the tails themselves. Without a mass penalty to worry about, why not put tails on any robot that has trouble keeping its balance, like pretty much every bipedal robot, right? Of course there are plenty of reasons not to do this, but still, it’s exciting to see this whole design space of aerodynamic drag tails potentially open up for any robot platform that needs a little bit of help with dynamic motion.

Enabling Dynamic Behaviors With Aerodynamic Drag in Lightweight Tails, by Joseph Norby, Jun Yang Li, Cameron Selby, Amir Patel, and Aaron M. Johnson from CMU and the University of Cape Town is published in IEEE Transactions on Robotics. Continue reading

Posted in Human Robots

#439211 A highly dexterous robot hand with a ...

A team of researchers at Yale University's Department of Mechanical Engineering and Materials Science, has developed a robot hand that employs a caging mechanism. In their paper published in the journal Science Robotics, the group describes their research into applying a caging mechanism to robot hands and how well their demonstration models worked. Continue reading

Posted in Human Robots

#439204 Researchers create AiFoam for robots to ...

Robots and machines are getting smarter with the advancement of artificial intelligence, but they still lack the ability to touch and feel their subtle and complex surroundings like human beings. Now, researchers from the National University of Singapore (NUS) have invented a smart foam that can give machines more than a human touch. Continue reading

Posted in Human Robots