Tag Archives: web

#434755 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind and Google: The Battle to Control Artificial Intelligence
Hal Hodson | 1843
“Hassabis thought DeepMind would be a hybrid: it would have the drive of a startup, the brains of the greatest universities, and the deep pockets of one of the world’s most valuable companies. Every element was in place to hasten the arrival of AGI and solve the causes of human misery.”

ROBOTICS
Robot Valets Are Now Parking Cars in One of France’s Busiest Airports
James Vincent | The Verge
“Stanley Robotics say its system uses space much more efficiently than humans, fitting 50 percent more cars into the same area. This is thanks in part to the robots’ precision driving, but also because the system keeps track of when customers will return. This means the robots can park cars three or four deep, but then dig out the right vehicle ready for its owner’s return.”

COMPUTING
Quantum Computing Should Supercharge This Machine-Learning Technique
Will Knight | MIT Technology Review
“Quantum computing and artificial intelligence are both hyped ridiculously. But it seems a combination of the two may indeed combine to open up new possibilities.”

BIOTECH
Scientists Reawaken Cells From a 28,000-Year-Old Mammoth
Becky Ferreira | Motherboard
“Yuka the woolly mammoth died a long time ago, but scientists gave her cells a short second life in mouse egg cells.”

ETHICS
CRISPR Experts Are Calling for a Global Moratorium on Heritable Gene Editing
Niall Firth | MIT Technology Review
“We still don’t know what the majority of our genes do, so the risks of unintended consequences or so-called off-target effects—good or bad—are huge. …Changes in a genome might have unforeseen outcomes in future generations as well. ‘Attempting to reshape the species on the basis of our current state of knowledge would be hubris,’ the letter reads.”

GENETICS
Unleash the Full Potential of the Human Genome Project
Paul Glimcher | The Hill
“So how do the risks embedded in our genes become the diseases, the so-called phenotypes, we seek to cure or prevent? …It is not just nature, but also nurture, which leads to disease. This is something that we have known for centuries, but which we seem to have conveniently forgotten in our rush to embrace the technology of genetics. In 1990 the only thing we could measure comprehensively was genetics, so we did it. But why did we stop there?”

Image Credit: Fernanda Marin / Unsplash Continue reading

Posted in Human Robots

#434685 How Tech Will Let You Learn Anything, ...

Today, over 77 percent of Americans own a smartphone with access to the world’s information and near-limitless learning resources.

Yet nearly 36 million adults in the US are constrained by low literacy skills, excluding them from professional opportunities, prospects of upward mobility, and full engagement with their children’s education.

And beyond its direct impact, low literacy rates affect us all. Improving literacy among adults is predicted to save $230 billion in national healthcare costs and could result in US labor productivity increases of up to 2.5 percent.

Across the board, exponential technologies are making demonetized learning tools, digital training platforms, and literacy solutions more accessible than ever before.

With rising automation and major paradigm shifts underway in the job market, these tools not only promise to make today’s workforce more versatile, but could play an invaluable role in breaking the poverty cycles often associated with low literacy.

Just three years ago, the Barbara Bush Foundation for Family Literacy and the Dollar General Literacy Foundation joined forces to tackle this intractable problem, launching a $7 million Adult Literacy XPRIZE.

Challenging teams to develop smartphone apps that significantly increase literacy skills among adult learners in just 12 months, the competition brought five prize teams to the fore, each targeting multiple demographics across the nation.

Now, after four years of research, prototyping, testing, and evaluation, XPRIZE has just this week announced two grand prize winners: Learning Upgrade and People ForWords.

In this blog, I’ll be exploring the nuts and bolts of our two winning teams and how exponential technologies are beginning to address rapidly shifting workforce demands.

We’ll discuss:

Meeting 100 percent adult literacy rates
Retooling today’s workforce for tomorrow’s job market
Granting the gift of lifelong learning

Let’s dive in.

Adult Literacy XPRIZE
Emphasizing the importance of accessible mediums and scalability, the Adult Literacy XPRIZE called for teams to create mobile solutions that lower the barrier to entry, encourage persistence, develop relevant learning content, and can scale nationally.

Outperforming the competition in two key demographic groups in aggregate—native English speakers and English language learners—teams Learning Upgrade and People ForWords together claimed the prize.

To win, both organizations successfully generated the greatest gains between a pre- and post-test, administered one year apart to learners in a 12-month field test across Los Angeles, Dallas, and Philadelphia.

Prize money in hand, Learning Upgrade and People ForWords are now scaling up their solutions, each targeting a key demographic in America’s pursuit of adult literacy.

Based in San Diego, Learning Upgrade has developed an Android and iOS app that helps students learn English and math through video, songs, and gamification. Offering a total of 21 courses from kindergarten through adult education, Learning Upgrade touts a growing platform of over 900 lessons spanning English, reading, math, and even GED prep.

To further personalize each student’s learning, Learning Upgrade measures time-on-task and builds out formative performance assessments, granting teachers a quantified, real-time view of each student’s progress across both lessons and criteria.

Specialized in English reading skills, Dallas-based People ForWords offers a similarly delocalized model with its mobile game “Codex: Lost Words of Atlantis.” Based on an archaeological adventure storyline, the app features an immersive virtual environment.

Set in the Atlantis Library (now with a 3D rendering underway), Codex takes its students through narrative-peppered lessons covering everything from letter-sound practice to vocabulary reinforcement in a hidden object game.

But while both mobile apps have recruited initial piloting populations, the key to success is scale.

Using a similar incentive prize competition structure to drive recruitment, the second phase of the XPRIZE is a $1 million Barbara Bush Foundation Adult Literacy XPRIZE Communities Competition. For 15 months, the competition will challenge organizations, communities, and individuals alike to onboard adult learners onto both prize-winning platforms and fellow finalist team apps, AmritaCREATE and Cell-Ed.

Each awarded $125,000 for participation in the Communities Competition, AmritaCREATE and Cell-Ed bring yet other nuanced advantages to the table.

While AmritaCREATE curates culturally appropriate e-content relevant to given life skills, Cell-Ed takes a learn-on-the-go approach, offering micro-lessons, on-demand essential skills training, and individualized coaching on any mobile device, no internet required.

Although all these cases target slightly different demographics and problem niches, they converge upon common phenomena: mobility, efficiency, life skill relevance, personalized learning, and practicability.

And what better to scale these benefits than AI and immersive virtual environments?

In the case of education’s growing mobility, 5G and the explosion of connectivity speeds will continue to drive a learn-anytime-anywhere education model, whereby adult users learn on the fly, untethered to web access or rigid time strictures.

As I’ve explored in a previous blog on AI-crowd collaboration, we might also see the rise of AI learning consultants responsible for processing data on how you learn.

Quantifying and analyzing your interaction with course modules, where you get stuck, where you thrive, and what tools cause you ease or frustration, each user’s AI trainer might then issue personalized recommendations based on crowd feedback.

Adding a human touch, each app’s hired teaching consultants would thereby be freed to track many more students’ progress at once, vetting AI-generated tips and adjustments, and offering life coaching along the way.

Lastly, virtual learning environments—and, one day, immersive VR—will facilitate both speed and retention, two of the most critical constraints as learners age.

As I often reference, people generally remember only 10 percent of what we see, 20 percent of what we hear, and 30 percent of what we read…. But over a staggering 90 percent of what we do or experience.

By introducing gamification, immersive testing activities, and visually rich sensory environments, adult literacy platforms have a winning chance at scalability, retention, and user persistence.

Exponential Tools: Training and Retooling a Dynamic Workforce
Beyond literacy, however, virtual and augmented reality have already begun disrupting the professional training market.

As projected by ABI Research, the enterprise VR training market is on track to exceed $6.3 billion in value by 2022.

Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.

Then in September of last year, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training.

In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical six-year aircraft design process into the course of six months, turning physical mockups into CAD-designed virtual replicas.

But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real time.

And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.

Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.

When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.
Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.

But perhaps most urgently, virtual reality will offer an immediate solution to today’s constant industry turnover and large-scale re-education demands.

VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.

Want to become an electric, autonomous vehicle mechanic at age 44? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.

Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.

As tomorrow’s career model shifts from a “one-and-done graduate degree” to continuous lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to try their hand at a new industry.

Learn Anything, Anytime, at Any Age
As VR and artificial intelligence converge with demonetized mobile connectivity, we are finally witnessing an era in which no one will be left behind.

Whether in pursuit of fundamental life skills, professional training, linguistic competence, or specialized retooling, users of all ages, career paths, income brackets, and goals are now encouraged to be students, no longer condemned to stagnancy.

Traditional constraints need no longer prevent non-native speakers from gaining an equal foothold, or specialists from pivoting into new professions, or low-income parents from staking new career paths.

As exponential technologies drive democratized access, bolstering initiatives such as the Barbara Bush Foundation Adult Literacy XPRIZE are blazing the trail to make education a scalable priority for all.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Iulia Ghimisli / Shutterstock.com Continue reading

Posted in Human Robots

#434623 The Great Myth of the AI Skills Gap

One of the most contentious debates in technology is around the question of automation and jobs. At issue is whether advances in automation, specifically with regards to artificial intelligence and robotics, will spell trouble for today’s workers. This debate is played out in the media daily, and passions run deep on both sides of the issue. In the past, however, automation has created jobs and increased real wages.

A widespread concern with the current scenario is that the workers most likely to be displaced by technology lack the skills needed to do the new jobs that same technology will create.

Let’s look at this concern in detail. Those who fear automation will hurt workers start by pointing out that there is a wide range of jobs, from low-pay, low-skill to high-pay, high-skill ones. This can be represented as follows:

They then point out that technology primarily creates high-paying jobs, like geneticists, as shown in the diagram below.

Meanwhile, technology destroys low-wage, low-skill jobs like those in fast food restaurants, as shown below:

Then, those who are worried about this dynamic often pose the question, “Do you really think a fast-food worker is going to become a geneticist?”

They worry that we are about to face a huge amount of systemic permanent unemployment, as the unskilled displaced workers are ill-equipped to do the jobs of tomorrow.

It is important to note that both sides of the debate are in agreement at this point. Unquestionably, technology destroys low-skilled, low-paying jobs while creating high-skilled, high-paying ones.

So, is that the end of the story? As a society are we destined to bifurcate into two groups, those who have training and earn high salaries in the new jobs, and those with less training who see their jobs vanishing to machines? Is this latter group forever locked out of economic plenty because they lack training?

No.

The question, “Can a fast food worker become a geneticist?” is where the error comes in. Fast food workers don’t become geneticists. What happens is that a college biology professor becomes a geneticist. Then a high-school biology teacher gets the college job. Then the substitute teacher gets hired on full-time to fill the high school teaching job. All the way down.

The question is not whether those in the lowest-skilled jobs can do the high-skilled work. Instead the question is, “Can everyone do a job just a little harder than the job they have today?” If so, and I believe very deeply that this is the case, then every time technology creates a new job “at the top,” everyone gets a promotion.

This isn’t just an academic theory—it’s 200 years of economic history in the west. For 200 years, with the exception of the Great Depression, unemployment in the US has been between 2 percent and 13 percent. Always. Europe’s range is a bit wider, but not much.

If I took 200 years of unemployment rates and graphed them, and asked you to find where the assembly line took over manufacturing, or where steam power rapidly replaced animal power, or the lightning-fast adoption of electricity by industry, you wouldn’t be able to find those spots. They aren’t even blips in the unemployment record.

You don’t even have to look back as far as the assembly line to see this happening. It has happened non-stop for 200 years. Every fifty years, we lose about half of all jobs, and this has been pretty steady since 1800.

How is it that for 200 years we have lost half of all jobs every half century, but never has this process caused unemployment? Not only has it not caused unemployment, but during that time, we have had full employment against the backdrop of rising wages.

How can wages rise while half of all jobs are constantly being destroyed? Simple. Because new technology always increases worker productivity. It creates new jobs, like web designer and programmer, while destroying low-wage backbreaking work. When this happens, everyone along the way gets a better job.

Our current situation isn’t any different than the past. The nature of technology has always been to create high-skilled jobs and increase worker productivity. This is good news for everyone.

People often ask me what their children should study to make sure they have a job in the future. I usually say it doesn’t really matter. If I knew everything I know now and went back to the mid 1980s, what could I have taken in high school to make me better prepared for today? There is only one class, and it wasn’t computer science. It was typing. Who would have guessed?

The great skill is to be able to learn new things, and luckily, we all have that. In fact, that is our singular ability as a species. What I do in my day-to-day job consists largely of skills I have learned as the years have passed. In my experience, if you ask people at all job levels,“Would you like a little more challenging job to make a little more money?” almost everyone says yes.

That’s all it has taken for us to collectively get here today, and that’s all we need going forward.

Image Credit: Lightspring / Shutterstock.com Continue reading

Posted in Human Robots

#434611 This Week’s Awesome Stories From ...

AUTOMATION
The Rise of the Robot Reporter
Jaclyn Paiser | The New York Times
“In addition to covering company earnings for Bloomberg, robot reporters have been prolific producers of articles on minor league baseball for The Associated Press, high school football for The Washington Post and earthquakes for The Los Angeles Times.”

ROBOTICS
Penny-Sized Ionocraft Flies With No Moving Parts
Evan Ackerman | IEEE Spectrum
“Electrohydrodynamic (EHD) thrusters, sometimes called ion thrusters, use a high strength electric field to generate a plasma of ionized air. …Magical, right? No moving parts, completely silent, and it flies!”

ARTIFICIAL INTELLIGENCE
Making New Drugs With a Dose of Artificial Intelligence
Cade Metz | The New York Times
“…DeepMind won the [protein folding] competition by a sizable margin—it improved the prediction accuracy nearly twice as much as experts expected from the contest winner. DeepMind’s victory showed how the future of biochemical research will increasingly be driven by machines and the people who oversee those machines.”

COMPUTING
Nano-Switches Made Out of Graphene Could Make Our Devices Even Smaller
Emerging Technology From the arXiv | MIT Technology Review
“For the first time, physicists have built reliable, efficient graphene nanomachines that can be fabricated on silicon chips. They could lead to even greater miniaturization.”

BIOTECH
The Problem With Big DNA
Sarah Zhang | The Atlantic
“It took researchers days to search through thousands of genome sequences. Now it takes just a few seconds. …As sequencing becomes more common, the number of publicly available bacterial and viral genomes has doubled. At the rate this work is going, within a few years multiple millions of searchable pathogen genomes will be available—a library of DNA and disease, spread the world over.”

CRYPTOCURRENCY
Fire (and Lots of It): Berkeley Researcher on the Only Way to Fix Cryptocurrency
Dan Goodin | Ars Technica
“Weaver said, there’s no basis for the promises that cryptocurrencies’ decentralized structure and blockchain basis will fundamentally transform commerce or economics. That means the sky-high valuations spawned by those false promises are completely unjustified. …To support that conclusion, Weaver recited an oft-repeated list of supposed benefits of cryptocurrencies and explained why, after closer scrutiny, he believed them to be myths.”

Image Credit: Katya Havok / Shutterstock.com Continue reading

Posted in Human Robots

#434585 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
The World’s Fastest Supercomputer Breaks an AI Record
Tom Simonite | Wired
“Summit, which occupies an area equivalent to two tennis courts, used more than 27,000 powerful graphics processors in the project. It tapped their power to train deep-learning algorithms, the technology driving AI’s frontier, chewing through the exercise at a rate of a billion billion operations per second, a pace known in supercomputing circles as an exaflop.”

ROBOTICS
iRobot Finally Announces Awesome New Terra Robotic Lawnmower
Evan Ackerman | IEEE Spectrum
“Since the first Roomba came out in 2002, it has seemed inevitable that one day iRobot would develop a robotic lawn mower. After all, a robot mower is basically just a Roomba that works outside, right? Of course, it’s not nearly that simple, as iRobot has spent the last decade or so discovering, but they’ve finally managed to pull it off.”

3D Printing
Watch This Super Speedy 3D Printer Make Objects Suddenly Appear
Erin Winick | MIT Technology Review
“The new machine—which the team nicknamed the ‘replicator’ after the machine from Star Trek—instead forms the entire item all in one go. It does this by shining light onto specific spots in a rotating resin that solidifies when exposed to a certain light level.”

GENETICS
The DIY Designer Baby Project Funded With Bitcoin
Antonio Regalado | MIT Technology Review
“i‘Is DIY bio anywhere close to making a CRISPR baby? No, not remotely,’ David Ishee says. ‘But if some rich guy pays a scientist to do the work, it’s going to happen.’ He adds: ‘What you are reporting on isn’t Bryan—it’s the unseen middle space, a layer of gray-market biotech and freelance science where people with resources can get things done.’i”

SCIENCE
The Complete Cancer Cure Story Is Both Bogus and Tragic
Megan Molteni | Wired
“You’d think creators and consumers of news would have learned their lesson by now. But the latest version of the fake cancer cure story is even more flagrantly flawed than usual. The public’s cancer cure–shaped amnesia, and media outlets’ willingness to exploit it for clicks, are as bottomless as ever. Hope, it would seem, trumps history.”

BOOKS
An AI Reading List—From Practical Primers to Sci-Fi Short Stories
James Vincent | The Verge
“The Verge has assembled a reading list: a brief but diverse compendium of books, short stories, and blogs, all chosen by leading figures in the AI world to help you better understand artificial intelligence.”

Image Credit: Katya Havok / Shutterstock.com Continue reading

Posted in Human Robots