Tag Archives: under

#437741 CaseCrawler Adds Tiny Robotic Legs to ...

Most of us have a fairly rational expectation that if we put our cellphone down somewhere, it will stay in that place until we pick it up again. Normally, this is exactly what you’d want, but there are exceptions, like when you put your phone down in not quite the right spot on a wireless charging pad without noticing, or when you’re lying on the couch and your phone is juuust out of reach no matter how much you stretch.

Roboticists from the Biorobotics Laboratory at Seoul National University in South Korea have solved both of these problems, and many more besides, by developing a cellphone case with little robotic legs, endowing your phone with the ability to skitter around autonomously. And unlike most of the phone-robot hybrids we’ve seen in the past, this one actually does look like a legit case for your phone.

CaseCrawler is much chunkier than a form-fitting case, but it’s not offensively bigger than one of those chunky battery cases. It’s only 24 millimeters thick (excluding the motor housing), and the total weight is just under 82 grams. Keep in mind that this case is in fact an entire robot, and also not at all optimized for being an actual phone case, so it’s easy to imagine how it could get a lot more svelte—for example, it currently includes a small battery that would be unnecessary if it instead tapped into the phone for power.

The technology inside is pretty amazing, since it involves legs that can retract all the way flat while also supporting a significant amount of weight. The legs work sort of like your legs do, in that there’s a knee joint that can only bend one way. To move the robot forward, a linkage (attached to a motor through a gearbox) pushes the leg back against the ground, as the knee joint keeps the leg straight. On the return stroke, the joint allows the leg to fold, making it compliant so that it doesn’t exert force on the ground. The transmission that sends power from the gearbox to the legs is just 1.5-millimeter thick, but this incredibly thin and lightweight mechanical structure is quite powerful. A non-phone case version of the robot, weighing about 23 g, is able to crawl at 21 centimeters per second while carrying a payload of just over 300 g. That’s more than 13 times its body weight.

The researchers plan on exploring how robots like these could make other objects movable that would otherwise not be. They’d also like to add some autonomy, which (at least for the phone case version) could be as straightforward as leveraging the existing sensors on the phone. And as to when you might be able to buy one of these—we’ll keep you updated, but the good news is that it seems to be fundamentally inexpensive enough that it may actually crawl out of the lab one day.

“CaseCrawler: A Lightweight and Low-Profile Crawling Phone Case Robot,” by Jongeun Lee, Gwang-Pil Jung, Sang-Min Baek, Soo-Hwan Chae, Sojung Yim, Woongbae Kim, and Kyu-Jin Cho from Seoul National University, appears in the October issue of IEEE Robotics and Automation Letters.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#437735 Robotic Chameleon Tongue Snatches Nearby ...

Chameleons may be slow-moving lizards, but their tongues can accelerate at astounding speeds, snatching insects before they have any chance of fleeing. Inspired by this remarkable skill, researchers in South Korea have developed a robotic tongue that springs forth quickly to snatch up nearby items.

They envision the tool, called Snatcher, being used by drones and robots that need to collect items without getting too close to them. “For example, a quadrotor with this manipulator will be able to snatch distant targets, instead of hovering and picking up,” explains Gwang-Pil Jung, a researcher at Seoul National University of Science and Technology (SeoulTech) who co-designed the new device.

There has been other research into robotic chameleon tongues, but what’s unique about Snatcher is that it packs chameleon-tongue fast snatching performance into a form factor that’s portable—the total size is 12 x 8.5 x 8.5 centimeters and it weighs under 120 grams. Still, it’s able to fast snatch up to 30 grams from 80 centimeters away in under 600 milliseconds.

Image: SeoulTech

The fast snatching deployable arm is powered by a wind-up spring attached to a motor (a series elastic actuator) combined with an active clutch. The clutch is what allows the single spring to drive both the shooting and the retracting.

To create Snatcher, Jung and a colleague at SeoulTech, Dong-Jun Lee, set about developing a spring-like device that’s controlled by an active clutch combined with a single series elastic actuator. Powered by a wind-up spring, a steel tapeline—analogous to a chameleon’s tongue—passes through two geared feeders. The clutch is what allows the single spring unwinding in one direction to drive both the shooting and the retracting, by switching a geared wheel between driving the forward feeder or the backward feeder.

The end result is a lightweight snatching device that can retrieve an object 0.8 meters away within 600 milliseconds. Jung notes that some other, existing devices designed for retrieval are capable of accomplishing the task quicker, at about 300 milliseconds, but these designs tend to be bulky. A more detailed description of Snatcher was published July 21 in IEEE Robotics and Automation Letters.

Photo: Dong-Jun Lee and Gwang-Pil Jung/SeoulTech

Snatcher’s relative small size means that it can be installed on a DJI Phantom drone. The researchers want to find out if their system can help make package delivery or retrieval faster and safer.

“Our final goal is to install the Snatcher to a commercial drone and achieve meaningful work, such as grasping packages,” says Jung. One of the challenges they still need to address is how to power the actuation system more efficiently. “To solve this issue, we are finding materials having high energy density.” Another improvement is designing a chameleon tongue-like gripper, replacing the simple hook that’s currently used to pick up objects. “We are planning to make a bi-stable gripper to passively grasp a target object as soon as the gripper contacts the object,” says Jung.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#437728 A Battery That’s Tough Enough To ...

Batteries can add considerable mass to any design, and they have to be supported using a sufficiently strong structure, which can add significant mass of its own. Now researchers at the University of Michigan have designed a structural zinc-air battery, one that integrates directly into the machine that it powers and serves as a load-bearing part.

That feature saves weight and thus increases effective storage capacity, adding to the already hefty energy density of the zinc-air chemistry. And the very elements that make the battery physically strong help contain the chemistry’s longstanding tendency to degrade over many hundreds of charge-discharge cycles.

The research is being published today in Science Robotics.

Nicholas Kotov, a professor of chemical engineer, is the leader of the project. He would not say how many watt-hours his prototype stores per gram, but he did note that zinc air—because it draw on ambient air for its electricity-producing reactions—is inherently about three times as energy-dense as lithium-ion cells. And, because using the battery as a structural part means dispensing with an interior battery pack, you could free up perhaps 20 percent of a machine’s interior. Along with other factors the new battery could in principle provide as much as 72 times the energy per unit of volume (not of mass) as today’s lithium-ion workhorses.

Illustration: Alice Kitterman/Science Robotics

“It’s not as if we invented something that was there before us,” Kotov says. ”I look in the mirror and I see my layer of fat—that’s for the storage of energy, but it also serves other purposes,” like keeping you warm in the wintertime. (A similar advance occurred in rocketry when designers learned how to make some liquid propellant tanks load bearing, eliminating the mass penalty of having separate external hull and internal tank walls.)

Others have spoken of putting batteries, including the lithium-ion kind, into load-bearing parts in vehicles. Ford, BMW, and Airbus, for instance, have expressed interest in the idea. The main problem to overcome is the tradeoff in load-bearing batteries between electrochemical performance and mechanical strength.

Image: Kotov Lab/University of Michigan

Key to the battery's physical toughness and to its long life cycle is the nanofiber membrane, made of Kevlar.

The Michigan group get both qualities by using a solid electrolyte (which can’t leak under stress) and by covering the electrodes with a membrane whose nanostructure of fibers is derived from Kevlar. That makes the membrane tough enough to suppress the growth of dendrites—branching fibers of metal that tend to form on an electrode with every charge-discharge cycle and which degrade the battery.

The Kevlar need not be purchased new but can be salvaged from discarded body armor. Other manufacturing steps should be easy, too, Kotov says. He has only just begun to talk to potential commercial partners, but he says there’s no reason why his battery couldn’t hit the market in the next three or four years.

Drones and other autonomous robots might be the most logical first application because their range is so severely chained to their battery capacity. Also, because such robots don’t carry people about, they face less of a hurdle from safety regulators leery of a fundamentally new battery type.

“And it’s not just about the big Amazon robots but also very small ones,” Kotov says. “Energy storage is a very significant issue for small and flexible soft robots.”

Here’s a video showing how Kotov’s lab has used batteries to form the “exoskeleton” of robots that scuttle like worms or scorpions. Continue reading

Posted in Human Robots

#437721 Video Friday: Child Robot Learning to ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

We first met Ibuki, Hiroshi Ishiguro’s latest humanoid robot, a couple of years ago. A recent video shows how Ishiguro and his team are teaching the robot to express its emotional state through gait and body posture while moving.

This paper presents a subjective evaluation of the emotions of a wheeled mobile humanoid robot expressing emotions during movement by replicating human gait-induced upper body motion. For this purpose, we proposed the robot equipped with a vertical oscillation mechanism that generates such motion by focusing on human center-of-mass trajectory. In the experiment, participants watched videos of the robot’s different emotional gait-induced upper body motions, and assess the type of emotion shown, and their confidence level in their answer.

[ Hiroshi Ishiguro Lab ] via [ RobotStart ]

ICYMI: This is a zinc-air battery made partly of Kevlar that can be used to support weight, not just add to it.

Like biological fat reserves store energy in animals, a new rechargeable zinc battery integrates into the structure of a robot to provide much more energy, a team led by the University of Michigan has shown.

The new battery works by passing hydroxide ions between a zinc electrode and the air side through an electrolyte membrane. That membrane is partly a network of aramid nanofibers—the carbon-based fibers found in Kevlar vests—and a new water-based polymer gel. The gel helps shuttle the hydroxide ions between the electrodes. Made with cheap, abundant and largely nontoxic materials, the battery is more environmentally friendly than those currently in use. The gel and aramid nanofibers will not catch fire if the battery is damaged, unlike the flammable electrolyte in lithium ion batteries. The aramid nanofibers could be upcycled from retired body armor.

[ University of Michigan ]

In what they say is the first large-scale study of the interactions between sound and robotic action, researchers at CMU’s Robotics Institute found that sounds could help a robot differentiate between objects, such as a metal screwdriver and a metal wrench. Hearing also could help robots determine what type of action caused a sound and help them use sounds to predict the physical properties of new objects.

[ CMU ]

Captured on Aug. 11 during the second rehearsal of the OSIRIS-REx mission’s sample collection event, this series of images shows the SamCam imager’s field of view as the NASA spacecraft approaches asteroid Bennu’s surface. The rehearsal brought the spacecraft through the first three maneuvers of the sampling sequence to a point approximately 131 feet (40 meters) above the surface, after which the spacecraft performed a back-away burn.

These images were captured over a 13.5-minute period. The imaging sequence begins at approximately 420 feet (128 meters) above the surface – before the spacecraft executes the “Checkpoint” maneuver – and runs through to the “Matchpoint” maneuver, with the last image taken approximately 144 feet (44 meters) above the surface of Bennu.

[ NASA ]

The DARPA AlphaDogfight Trials Final Event took place yesterday; the livestream is like 5 hours long, but you can skip ahead to 4:39 ish to see the AI winner take on a human F-16 pilot in simulation.

Some things to keep in mind about the result: The AI had perfect situational knowledge while the human pilot had to use eyeballs, and in particular, the AI did very well at lining up its (virtual) gun with the human during fast passing maneuvers, which is the sort of thing that autonomous systems excel at but is not necessarily reflective of better strategy.

[ DARPA ]

Coming soon from Clearpath Robotics!

[ Clearpath ]

This video introduces Preferred Networks’ Hand type A, a tendon-driven robot gripper with passively switchable underactuated surface.

[ Preferred Networks ]

CYBATHLON 2020 will take place on 13 – 14 November 2020 – at the teams’ home bases. They will set up their infrastructure for the competition and film their races. Instead of starting directly next to each other, the pilots will start individually and under the supervision of CYBATHLON officials. From Zurich, the competitions will be broadcast through a new platform in a unique live programme.

[ Cybathlon ]

In this project, we consider the task of autonomous car racing in the top-selling car racing game Gran Turismo Sport. Gran Turismo Sport is known for its detailed physics simulation of various cars and tracks. Our approach makes use of maximum-entropy deep reinforcement learning and a new reward design to train a sensorimotor policy to complete a given race track as fast as possible. We evaluate our approach in three different time trial settings with different cars and tracks. Our results show that the obtained controllers not only beat the built-in non-player character of Gran Turismo Sport, but also outperform the fastest known times in a dataset of personal best lap times of over 50,000 human drivers.

[ UZH ]

With the help of the software pitasc from Fraunhofer IPA, an assembly task is no longer programmed point by point, but workpiece-related. Thus, pitasc adapts the assembly process itself for new product variants with the help of updated parameters.

[ Fraunhofer ]

In this video, a multi-material robot simulator is used to design a shape-changing robot, which is then transferred to physical hardware. The simulated and real robots can use shape change to switch between rolling gaits and inchworm gaits, to locomote in multiple environments.

[ Yale ]

This work presents a novel loco-manipulation control framework for the execution of complex tasks with kinodynamic constraints using mobile manipulators. As a representative example, we consider the handling and re-positioning of pallet jacks in unstructured environments. While these results reveal with a proof-of- concept the effectiveness of the proposed framework, they also demonstrate the high potential of mobile manipulators for relieving human workers from such repetitive and labor intensive tasks. We believe that this extended functionality can contribute to increasing the usability of mobile manipulators in different application scenarios.

[ Paper ] via [ IIT ]

I don’t know why this dinosaur ice cream serving robot needs to blow smoke out of its nose, but I like it.

[ Connected Robotics ] via [ RobotStart ]

Guardian S remote visual inspection and surveillance robots make laying cable runs in confined or hard to reach spaces easy. With advanced maneuverability and the ability to climb vertical, ferrous surfaces, the robot reaches areas that are not always easily accessible.

[ Sarcos ]

Looks like the company that bought Anki is working on an add-on to let cars charge while they drive.

[ Digital Dream Labs ]

Chris Atkeson gives a brief talk for the CMU Robotics Institute orientation.

[ CMU RI ]

A UofT Robotics Seminar, featuring Russ Tedrake from MIT and TRI on “Feedback Control for Manipulation.”

Control theory has an answer for just about everything, but seems to fall short when it comes to closing a feedback loop using a camera, dealing with the dynamics of contact, and reasoning about robustness over the distribution of tasks one might find in the kitchen. Recent examples from RL and imitation learning demonstrate great promise, but don’t leverage the rigorous tools from systems theory. I’d like to discuss why, and describe some recent results of closing feedback loops from pixels for “category-level” robot manipulation.

[ UofT ] Continue reading

Posted in Human Robots

#437697 These Underwater Drones Use Water ...

Yi Chao likes to describe himself as an “armchair oceanographer” because he got incredibly seasick the one time he spent a week aboard a ship. So it’s maybe not surprising that the former NASA scientist has a vision for promoting remote study of the ocean on a grand scale by enabling underwater drones to recharge on the go using his company’s energy-harvesting technology.

Many of the robotic gliders and floating sensor stations currently monitoring the world’s oceans are effectively treated as disposable devices because the research community has a limited number of both ships and funding to retrieve drones after they’ve accomplished their mission of beaming data back home. That’s not only a waste of money, but may also contribute to a growing assortment of abandoned lithium-ion batteries polluting the ocean with their leaking toxic materials—a decidedly unsustainable approach to studying the secrets of the underwater world.

“Our goal is to deploy our energy harvesting system to use renewable energy to power those robots,” says Chao, president and CEO of the startup Seatrec. “We're going to save one battery at a time, so hopefully we're going to not to dispose more toxic batteries in the ocean.”

Chao’s California-based startup claims that its SL1 Thermal Energy Harvesting System can already help save researchers money equivalent to an order of magnitude reduction in the cost of using robotic probes for oceanographic data collection. The startup is working on adapting its system to work with autonomous underwater gliders. And it has partnered with defense giant Northrop Grumman to develop an underwater recharging station for oceangoing drones that incorporates Northrop Grumman’s self-insulating electrical connector capable of operating while the powered electrical contacts are submerged.

Seatrec’s energy-harvesting system works by taking advantage of how certain substances transition from solid-to-liquid phase and liquid-to-gas phase when they heat up. The company’s technology harnesses the pressure changes that result from such phase changes in order to generate electricity.

Image: Seatrec

To make the phase changes happen, Seatrec’s solution taps the temperature differences between warmer water at the ocean surface and colder water at the ocean depths. Even a relatively simple robotic probe can generate additional electricity by changing its buoyancy to either float at the surface or sink down into the colder depths.

By attaching an external energy-harvesting module, Seatrec has already begun transforming robotic probes into assets that can be recharged and reused more affordably than sending out a ship each time to retrieve the probes. This renewable energy approach could keep such drones going almost indefinitely barring electrical or mechanical failures. “We just attach the backpack to the robots, we give them a cable providing power, and they go into the ocean,” Chao explains.

The early buyers of Seatrec’s products are primarily academic researchers who use underwater drones to collect oceanographic data. But the startup has also attracted military and government interest. It has already received small business innovation research contracts from both the U.S. Office of Naval Research and National Oceanic and Atmospheric Administration (NOAA).

Seatrec has also won two $10,000 prizes under the Powering the Blue Economy: Ocean Observing Prize administered by the U.S. Department of Energy and NOAA. The prizes awarded during the DISCOVER Competition phase back in March 2020 included one prize split with Northrop Grumman for the joint Mission Unlimited UUV Station concept. The startup and defense giant are currently looking for a robotics company to partner with for the DEVELOP Competition phase of the Ocean Observing Prize that will offer a total of $3 million in prizes.

In the long run, Seatrec hopes its energy-harvesting technology can support commercial ventures such as the aquaculture industry that operates vast underwater farms. The technology could also support underwater drones carrying out seabed surveys that pave the way for deep sea mining ventures, although those are not without controversy because of their projected environmental impacts.

Among all the possible applications Chao seems especially enthusiastic about the prospect of Seatrec’s renewable power technology enabling underwater drones and floaters to collect oceanographic data for much longer periods of time. He spent the better part of two decades working at the NASA Jet Propulsion Laboratory in Pasadena, Calif., where he helped develop a satellite designed for monitoring the Earth’s oceans. But he and the JPL engineering team that developed Seatrec’s core technology believe that swarms of underwater drones can provide a continuous monitoring network to truly begin understanding the oceans in depth.

The COVID-19 pandemic has slowed production and delivery of Seatrec’s products somewhat given local shutdowns and supply chain disruptions. Still, the startup has been able to continue operating in part because it’s considered to be a defense contractor that is operating an essential manufacturing facility. Seatrec’s engineers and other staff members are working in shifts to practice social distancing.

“Rather than building one or two for the government, we want to scale up to build thousands, hundreds of thousands, hopefully millions, so we can improve our understanding and provide that data to the community,” Chao says. Continue reading

Posted in Human Robots