Tag Archives: training

#437491 3.2 Billion Images and 720,000 Hours of ...

Twitter over the weekend “tagged” as manipulated a video showing US Democratic presidential candidate Joe Biden supposedly forgetting which state he’s in while addressing a crowd.

Biden’s “hello Minnesota” greeting contrasted with prominent signage reading “Tampa, Florida” and “Text FL to 30330.”

The Associated Press’s fact check confirmed the signs were added digitally and the original footage was indeed from a Minnesota rally. But by the time the misleading video was removed it already had more than one million views, The Guardian reports.

A FALSE video claiming Biden forgot what state he was in was viewed more than 1 million times on Twitter in the past 24 hours

In the video, Biden says “Hello, Minnesota.”

The event did indeed happen in MN — signs on stage read MN

But false video edited signs to read Florida pic.twitter.com/LdHQVaky8v

— Donie O'Sullivan (@donie) November 1, 2020

If you use social media, the chances are you see (and forward) some of the more than 3.2 billion images and 720,000 hours of video shared daily. When faced with such a glut of content, how can we know what’s real and what’s not?

While one part of the solution is an increased use of content verification tools, it’s equally important we all boost our digital media literacy. Ultimately, one of the best lines of defense—and the only one you can control—is you.

Seeing Shouldn’t Always Be Believing
Misinformation (when you accidentally share false content) and disinformation (when you intentionally share it) in any medium can erode trust in civil institutions such as news organizations, coalitions and social movements. However, fake photos and videos are often the most potent.

For those with a vested political interest, creating, sharing and/or editing false images can distract, confuse and manipulate viewers to sow discord and uncertainty (especially in already polarized environments). Posters and platforms can also make money from the sharing of fake, sensationalist content.

Only 11-25 percent of journalists globally use social media content verification tools, according to the International Centre for Journalists.

Could You Spot a Doctored Image?
Consider this photo of Martin Luther King Jr.

Dr. Martin Luther King Jr. Giving the middle finger #DopeHistoricPics pic.twitter.com/5W38DRaLHr

— Dope Historic Pics (@dopehistoricpic) December 20, 2013

This altered image clones part of the background over King Jr’s finger, so it looks like he’s flipping off the camera. It has been shared as genuine on Twitter, Reddit, and white supremacist websites.

In the original 1964 photo, King flashed the “V for victory” sign after learning the US Senate had passed the civil rights bill.

“Those who love peace must learn to organize as effectively as those who love war.”
Dr. Martin Luther King Jr.

This photo was taken on June 19th, 1964, showing Dr King giving a peace sign after hearing that the civil rights bill had passed the senate. @snopes pic.twitter.com/LXHmwMYZS5

— Willie's Reserve (@WilliesReserve) January 21, 2019

Beyond adding or removing elements, there’s a whole category of photo manipulation in which images are fused together.

Earlier this year, a photo of an armed man was photoshopped by Fox News, which overlaid the man onto other scenes without disclosing the edits, the Seattle Times reported.

You mean this guy who’s been photoshopped into three separate photos released by Fox News? pic.twitter.com/fAXpIKu77a

— Zander Yates ザンダーイェーツ (@ZanderYates) June 13, 2020

Similarly, the image below was shared thousands of times on social media in January, during Australia’s Black Summer bushfires. The AFP’s fact check confirmed it is not authentic and is actually a combination of several separate photos.

Image is more powerful than screams of Greta. A silent girl is holding a koala. She looks straight at you from the waters of the ocean where they found a refuge. She is wearing a breathing mask. A wall of fire is behind them. I do not know the name of the photographer #Australia pic.twitter.com/CrTX3lltdh

— EVC Music (@EVCMusicUK) January 6, 2020

Fully and Partially Synthetic Content
Online, you’ll also find sophisticated “deepfake” videos showing (usually famous) people saying or doing things they never did. Less advanced versions can be created using apps such as Zao and Reface.

Or, if you don’t want to use your photo for a profile picture, you can default to one of several websites offering hundreds of thousands of AI-generated, photorealistic images of people.

These people don’t exist, they’re just images generated by artificial intelligence. Generated Photos, CC BY

Editing Pixel Values and the (not so) Simple Crop
Cropping can greatly alter the context of a photo, too.

We saw this in 2017, when a US government employee edited official pictures of Donald Trump’s inauguration to make the crowd appear bigger, according to The Guardian. The staffer cropped out the empty space “where the crowd ended” for a set of pictures for Trump.

Views of the crowds at the inaugurations of former US President Barack Obama in 2009 (left) and President Donald Trump in 2017 (right). AP

But what about edits that only alter pixel values such as color, saturation, or contrast?

One historical example illustrates the consequences of this. In 1994, Time magazine’s cover of OJ Simpson considerably “darkened” Simpson in his police mugshot. This added fuel to a case already plagued by racial tension, to which the magazine responded, “No racial implication was intended, by Time or by the artist.”

Tools for Debunking Digital Fakery
For those of us who don’t want to be duped by visual mis/disinformation, there are tools available—although each comes with its own limitations (something we discuss in our recent paper).

Invisible digital watermarking has been proposed as a solution. However, it isn’t widespread and requires buy-in from both content publishers and distributors.

Reverse image search (such as Google’s) is often free and can be helpful for identifying earlier, potentially more authentic copies of images online. That said, it’s not foolproof because it:

Relies on unedited copies of the media already being online.
Doesn’t search the entire web.
Doesn’t always allow filtering by publication time. Some reverse image search services such as TinEye support this function, but Google’s doesn’t.
Returns only exact matches or near-matches, so it’s not thorough. For instance, editing an image and then flipping its orientation can fool Google into thinking it’s an entirely different one.

Most Reliable Tools Are Sophisticated
Meanwhile, manual forensic detection methods for visual mis/disinformation focus mostly on edits visible to the naked eye, or rely on examining features that aren’t included in every image (such as shadows). They’re also time-consuming, expensive, and need specialized expertise.

Still, you can access work in this field by visiting sites such as Snopes.com—which has a growing repository of “fauxtography.”

Computer vision and machine learning also offer relatively advanced detection capabilities for images and videos. But they too require technical expertise to operate and understand.

Moreover, improving them involves using large volumes of “training data,” but the image repositories used for this usually don’t contain the real-world images seen in the news.

If you use an image verification tool such as the REVEAL project’s image verification assistant, you might need an expert to help interpret the results.

The good news, however, is that before turning to any of the above tools, there are some simple questions you can ask yourself to potentially figure out whether a photo or video on social media is fake. Think:

Was it originally made for social media?
How widely and for how long was it circulated?
What responses did it receive?
Who were the intended audiences?

Quite often, the logical conclusions drawn from the answers will be enough to weed out inauthentic visuals. You can access the full list of questions, put together by Manchester Metropolitan University experts, here.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Simon Steinberger from Pixabay Continue reading

Posted in Human Robots

#437477 If a Robot Is Conscious, Is It OK to ...

In the Star Trek: The Next Generation episode “The Measure of a Man,” Data, an android crew member of the Enterprise, is to be dismantled for research purposes unless Captain Picard can argue that Data deserves the same rights as a human being. Naturally the question arises: What is the basis upon which something has rights? What gives an entity moral standing?

The philosopher Peter Singer argues that creatures that can feel pain or suffer have a claim to moral standing. He argues that nonhuman animals have moral standing, since they can feel pain and suffer. Limiting it to people would be a form of speciesism, something akin to racism and sexism.

Without endorsing Singer’s line of reasoning, we might wonder if it can be extended further to an android robot like Data. It would require that Data can either feel pain or suffer. And how you answer that depends on how you understand consciousness and intelligence.

As real artificial intelligence technology advances toward Hollywood’s imagined versions, the question of moral standing grows more important. If AIs have moral standing, philosophers like me reason, it could follow that they have a right to life. That means you cannot simply dismantle them, and might also mean that people shouldn’t interfere with their pursuing their goals.

Two Flavors of Intelligence and a Test
IBM’s Deep Blue chess machine was successfully trained to beat grandmaster Gary Kasparov. But it could not do anything else. This computer had what’s called domain-specific intelligence.

On the other hand, there’s the kind of intelligence that allows for the ability to do a variety of things well. It is called domain-general intelligence. It’s what lets people cook, ski, and raise children—tasks that are related, but also very different.

Artificial general intelligence, AGI, is the term for machines that have domain-general intelligence. Arguably no machine has yet demonstrated that kind of intelligence. This summer, a startup called OpenAI released a new version of its Generative Pre-Training language model. GPT-3 is a natural language processing system, trained to read and write so that it can be easily understood by people.

It drew immediate notice, not just because of its impressive ability to mimic stylistic flourishes and put together plausible content, but also because of how far it had come from a previous version. Despite this impressive performance, GPT-3 doesn’t actually know anything beyond how to string words together in various ways. AGI remains quite far off.

Named after pioneering AI researcher Alan Turing, the Turing test helps determine when an AI is intelligent. Can a person conversing with a hidden AI tell whether it’s an AI or a human being? If he can’t, then for all practical purposes, the AI is intelligent. But this test says nothing about whether the AI might be conscious.

Two Kinds of Consciousness
There are two parts to consciousness. First, there’s the what-it’s-like-for-me aspect of an experience, the sensory part of consciousness. Philosophers call this phenomenal consciousness. It’s about how you experience a phenomenon, like smelling a rose or feeling pain.

In contrast, there’s also access consciousness. That’s the ability to report, reason, behave, and act in a coordinated and responsive manner to stimuli based on goals. For example, when I pass the soccer ball to my friend making a play on the goal, I am responding to visual stimuli, acting from prior training, and pursuing a goal determined by the rules of the game. I make the pass automatically, without conscious deliberation, in the flow of the game.

Blindsight nicely illustrates the difference between the two types of consciousness. Someone with this neurological condition might report, for example, that they cannot see anything in the left side of their visual field. But if asked to pick up a pen from an array of objects in the left side of their visual field, they can reliably do so. They cannot see the pen, yet they can pick it up when prompted—an example of access consciousness without phenomenal consciousness.

Data is an android. How do these distinctions play out with respect to him?

The Data Dilemma
The android Data demonstrates that he is self-aware in that he can monitor whether or not, for example, he is optimally charged or there is internal damage to his robotic arm.

Data is also intelligent in the general sense. He does a lot of distinct things at a high level of mastery. He can fly the Enterprise, take orders from Captain Picard and reason with him about the best path to take.

He can also play poker with his shipmates, cook, discuss topical issues with close friends, fight with enemies on alien planets, and engage in various forms of physical labor. Data has access consciousness. He would clearly pass the Turing test.

However, Data most likely lacks phenomenal consciousness—he does not, for example, delight in the scent of roses or experience pain. He embodies a supersized version of blindsight. He’s self-aware and has access consciousness—can grab the pen—but across all his senses he lacks phenomenal consciousness.

Now, if Data doesn’t feel pain, at least one of the reasons Singer offers for giving a creature moral standing is not fulfilled. But Data might fulfill the other condition of being able to suffer, even without feeling pain. Suffering might not require phenomenal consciousness the way pain essentially does.

For example, what if suffering were also defined as the idea of being thwarted from pursuing a just cause without causing harm to others? Suppose Data’s goal is to save his crewmate, but he can’t reach her because of damage to one of his limbs. Data’s reduction in functioning that keeps him from saving his crewmate is a kind of nonphenomenal suffering. He would have preferred to save the crewmate, and would be better off if he did.

In the episode, the question ends up resting not on whether Data is self-aware—that is not in doubt. Nor is it in question whether he is intelligent—he easily demonstrates that he is in the general sense. What is unclear is whether he is phenomenally conscious. Data is not dismantled because, in the end, his human judges cannot agree on the significance of consciousness for moral standing.

Should an AI Get Moral Standing?
Data is kind; he acts to support the well-being of his crewmates and those he encounters on alien planets. He obeys orders from people and appears unlikely to harm them, and he seems to protect his own existence. For these reasons he appears peaceful and easier to accept into the realm of things that have moral standing.

But what about Skynet in the Terminator movies? Or the worries recently expressed by Elon Musk about AI being more dangerous than nukes, and by Stephen Hawking on AI ending humankind?

Human beings don’t lose their claim to moral standing just because they act against the interests of another person. In the same way, you can’t automatically say that just because an AI acts against the interests of humanity or another AI it doesn’t have moral standing. You might be justified in fighting back against an AI like Skynet, but that does not take away its moral standing. If moral standing is given in virtue of the capacity to nonphenomenally suffer, then Skynet and Data both get it even if only Data wants to help human beings.

There are no artificial general intelligence machines yet. But now is the time to consider what it would take to grant them moral standing. How humanity chooses to answer the question of moral standing for nonbiological creatures will have big implications for how we deal with future AIs—whether kind and helpful like Data, or set on destruction, like Skynet.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Ico Maker / Shutterstock.com Continue reading

Posted in Human Robots

#437466 How Future AI Could Recognize a Kangaroo ...

AI is continuously taking on new challenges, from detecting deepfakes (which, incidentally, are also made using AI) to winning at poker to giving synthetic biology experiments a boost. These impressive feats result partly from the huge datasets the systems are trained on. That training is costly and time-consuming, and it yields AIs that can really only do one thing well.

For example, to train an AI to differentiate between a picture of a dog and one of a cat, it’s fed thousands—if not millions—of labeled images of dogs and cats. A child, on the other hand, can see a dog or cat just once or twice and remember which is which. How can we make AIs learn more like children do?

A team at the University of Waterloo in Ontario has an answer: change the way AIs are trained.

Here’s the thing about the datasets normally used to train AI—besides being huge, they’re highly specific. A picture of a dog can only be a picture of a dog, right? But what about a really small dog with a long-ish tail? That sort of dog, while still being a dog, looks more like a cat than, say, a fully-grown Golden Retriever.

It’s this concept that the Waterloo team’s methodology is based on. They described their work in a paper published on the pre-print (or non-peer-reviewed) server arXiv last month. Teaching an AI system to identify a new class of objects using just one example is what they call “one-shot learning.” But they take it a step further, focusing on “less than one shot learning,” or LO-shot learning for short.

LO-shot learning consists of a system learning to classify various categories based on a number of examples that’s smaller than the number of categories. That’s not the most straightforward concept to wrap your head around, so let’s go back to the dogs and cats example. Say you want to teach an AI to identify dogs, cats, and kangaroos. How could that possibly be done without several clear examples of each animal?

The key, the Waterloo team says, is in what they call soft labels. Unlike hard labels, which label a data point as belonging to one specific class, soft labels tease out the relationship or degree of similarity between that data point and multiple classes. In the case of an AI trained on only dogs and cats, a third class of objects, say, kangaroos, might be described as 60 percent like a dog and 40 percent like a cat (I know—kangaroos probably aren’t the best animal to have thrown in as a third category).

“Soft labels can be used to represent training sets using fewer prototypes than there are classes, achieving large increases in sample efficiency over regular (hard-label) prototypes,” the paper says. Translation? Tell an AI a kangaroo is some fraction cat and some fraction dog—both of which it’s seen and knows well—and it’ll be able to identify a kangaroo without ever having seen one.

If the soft labels are nuanced enough, you could theoretically teach an AI to identify a large number of categories based on a much smaller number of training examples.

The paper’s authors use a simple machine learning algorithm called k-nearest neighbors (kNN) to explore this idea more in depth. The algorithm operates under the assumption that similar things are most likely to exist near each other; if you go to a dog park, there will be lots of dogs but no cats or kangaroos. Go to the Australian grasslands and there’ll be kangaroos but no cats or dogs. And so on.

To train a kNN algorithm to differentiate between categories, you choose specific features to represent each category (i.e. for animals you could use weight or size as a feature). With one feature on the x-axis and the other on the y-axis, the algorithm creates a graph where data points that are similar to each other are clustered near each other. A line down the center divides the categories, and it’s pretty straightforward for the algorithm to discern which side of the line new data points should fall on.

The Waterloo team kept it simple and used plots of color on a 2D graph. Using the colors and their locations on the graphs, the team created synthetic data sets and accompanying soft labels. One of the more simplistic graphs is pictured below, along with soft labels in the form of pie charts.

Image Credit: Ilia Sucholutsky & Matthias Schonlau
When the team had the algorithm plot the boundary lines of the different colors based on these soft labels, it was able to split the plot up into more colors than the number of data points it was given in the soft labels.

While the results are encouraging, the team acknowledges that they’re just the first step, and there’s much more exploration of this concept yet to be done. The kNN algorithm is one of the least complex models out there; what might happen when LO-shot learning is applied to a far more complex algorithm? Also, to apply it, you still need to distill a larger dataset down into soft labels.

One idea the team is already working on is having other algorithms generate the soft labels for the algorithm that’s going to be trained using LO-shot; manually designing soft labels won’t always be as easy as splitting up some pie charts into different colors.

LO-shot’s potential for reducing the amount of training data needed to yield working AI systems is promising. Besides reducing the cost and the time required to train new models, the method could also make AI more accessible to industries, companies, or individuals who don’t have access to large datasets—an important step for democratization of AI.

Image Credit: pen_ash from Pixabay Continue reading

Posted in Human Robots

#437269 DeepMind’s Newest AI Programs Itself ...

When Deep Blue defeated world chess champion Garry Kasparov in 1997, it may have seemed artificial intelligence had finally arrived. A computer had just taken down one of the top chess players of all time. But it wasn’t to be.

Though Deep Blue was meticulously programmed top-to-bottom to play chess, the approach was too labor-intensive, too dependent on clear rules and bounded possibilities to succeed at more complex games, let alone in the real world. The next revolution would take a decade and a half, when vastly more computing power and data revived machine learning, an old idea in artificial intelligence just waiting for the world to catch up.

Today, machine learning dominates, mostly by way of a family of algorithms called deep learning, while symbolic AI, the dominant approach in Deep Blue’s day, has faded into the background.

Key to deep learning’s success is the fact the algorithms basically write themselves. Given some high-level programming and a dataset, they learn from experience. No engineer anticipates every possibility in code. The algorithms just figure it.

Now, Alphabet’s DeepMind is taking this automation further by developing deep learning algorithms that can handle programming tasks which have been, to date, the sole domain of the world’s top computer scientists (and take them years to write).

In a paper recently published on the pre-print server arXiv, a database for research papers that haven’t been peer reviewed yet, the DeepMind team described a new deep reinforcement learning algorithm that was able to discover its own value function—a critical programming rule in deep reinforcement learning—from scratch.

Surprisingly, the algorithm was also effective beyond the simple environments it trained in, going on to play Atari games—a different, more complicated task—at a level that was, at times, competitive with human-designed algorithms and achieving superhuman levels of play in 14 games.

DeepMind says the approach could accelerate the development of reinforcement learning algorithms and even lead to a shift in focus, where instead of spending years writing the algorithms themselves, researchers work to perfect the environments in which they train.

Pavlov’s Digital Dog
First, a little background.

Three main deep learning approaches are supervised, unsupervised, and reinforcement learning.

The first two consume huge amounts of data (like images or articles), look for patterns in the data, and use those patterns to inform actions (like identifying an image of a cat). To us, this is a pretty alien way to learn about the world. Not only would it be mind-numbingly dull to review millions of cat images, it’d take us years or more to do what these programs do in hours or days. And of course, we can learn what a cat looks like from just a few examples. So why bother?

While supervised and unsupervised deep learning emphasize the machine in machine learning, reinforcement learning is a bit more biological. It actually is the way we learn. Confronted with several possible actions, we predict which will be most rewarding based on experience—weighing the pleasure of eating a chocolate chip cookie against avoiding a cavity and trip to the dentist.

In deep reinforcement learning, algorithms go through a similar process as they take action. In the Atari game Breakout, for instance, a player guides a paddle to bounce a ball at a ceiling of bricks, trying to break as many as possible. When playing Breakout, should an algorithm move the paddle left or right? To decide, it runs a projection—this is the value function—of which direction will maximize the total points, or rewards, it can earn.

Move by move, game by game, an algorithm combines experience and value function to learn which actions bring greater rewards and improves its play, until eventually, it becomes an uncanny Breakout player.

Learning to Learn (Very Meta)
So, a key to deep reinforcement learning is developing a good value function. And that’s difficult. According to the DeepMind team, it takes years of manual research to write the rules guiding algorithmic actions—which is why automating the process is so alluring. Their new Learned Policy Gradient (LPG) algorithm makes solid progress in that direction.

LPG trained in a number of toy environments. Most of these were “gridworlds”—literally two-dimensional grids with objects in some squares. The AI moves square to square and earns points or punishments as it encounters objects. The grids vary in size, and the distribution of objects is either set or random. The training environments offer opportunities to learn fundamental lessons for reinforcement learning algorithms.

Only in LPG’s case, it had no value function to guide that learning.

Instead, LPG has what DeepMind calls a “meta-learner.” You might think of this as an algorithm within an algorithm that, by interacting with its environment, discovers both “what to predict,” thereby forming its version of a value function, and “how to learn from it,” applying its newly discovered value function to each decision it makes in the future.

Prior work in the area has had some success, but according to DeepMind, LPG is the first algorithm to discover reinforcement learning rules from scratch and to generalize beyond training. The latter was particularly surprising because Atari games are so different from the simple worlds LPG trained in—that is, it had never seen anything like an Atari game.

Time to Hand Over the Reins? Not Just Yet
LPG is still behind advanced human-designed algorithms, the researchers said. But it outperformed a human-designed benchmark in training and even some Atari games, which suggests it isn’t strictly worse, just that it specializes in some environments.

This is where there’s room for improvement and more research.

The more environments LPG saw, the more it could successfully generalize. Intriguingly, the researchers speculate that with enough well-designed training environments, the approach might yield a general-purpose reinforcement learning algorithm.

At the least, though, they say further automation of algorithm discovery—that is, algorithms learning to learn—will accelerate the field. In the near term, it can help researchers more quickly develop hand-designed algorithms. Further out, as self-discovered algorithms like LPG improve, engineers may shift from manually developing the algorithms themselves to building the environments where they learn.

Deep learning long ago left Deep Blue in the dust at games. Perhaps algorithms learning to learn will be a winning strategy in the real world too.

Image credit: Mike Szczepanski / Unsplash Continue reading

Posted in Human Robots

#437265 This Russian Firm’s Star Designer Is ...

Imagine discovering a new artist or designer—whether visual art, fashion, music, or even writing—and becoming a big fan of her work. You follow her on social media, eagerly anticipate new releases, and chat about her talent with your friends. It’s not long before you want to know more about this creative, inspiring person, so you start doing some research. It’s strange, but there doesn’t seem to be any information about the artist’s past online; you can’t find out where she went to school or who her mentors were.

After some more digging, you find out something totally unexpected: your beloved artist is actually not a person at all—she’s an AI.

Would you be amused? Annoyed? Baffled? Impressed? Probably some combination of all these. If you wanted to ask someone who’s had this experience, you could talk to clients of the biggest multidisciplinary design company in Russia, Art.Lebedev Studio (I know, the period confused me at first too). The studio passed off an AI designer as human for more than a year, and no one caught on.

They gave the AI a human-sounding name—Nikolay Ironov—and it participated in more than 20 different projects that included designing brand logos and building brand identities. According to the studio’s website, several of the logos the AI made attracted “considerable public interest, media attention, and discussion in online communities” due to their unique style.

So how did an AI learn to create such buzz-worthy designs? It was trained using hand-drawn vector images each associated with one or more themes. To start a new design, someone enters a few words describing the client, such as what kind of goods or services they offer. The AI uses those words to find associated images and generate various starter designs, which then go through another series of algorithms that “touch them up.” A human designer then selects the best options to present to the client.

“These systems combined together provide users with the experience of instantly converting a client’s text brief into a corporate identity design pack archive. Within seconds,” said Sergey Kulinkovich, the studio’s art director. He added that clients liked Nikolay Ironov’s work before finding out he was an AI (and liked the media attention their brands got after Ironov’s identity was revealed even more).

Ironov joins a growing group of AI “artists” that are starting to raise questions about the nature of art and creativity. Where do creative ideas come from? What makes a work of art truly great? And when more than one person is involved in making art, who should own the copyright?

Art.Lebedev is far from the first design studio to employ artificial intelligence; Mailchimp is using AI to let businesses design multi-channel marketing campaigns without human designers, and Adobe is marketing its new Sensei product as an AI design assistant.

While art made by algorithms can be unique and impressive, though, there’s one caveat that’s important to keep in mind when we worry about human creativity being rendered obsolete. Here’s the thing: AIs still depend on people to not only program them, but feed them a set of training data on which their intelligence and output are based. Depending on the size and nature of an AI’s input data, its output will look pretty different from that of a similar system, and a big part of the difference will be due to the people that created and trained the AIs.

Admittedly, Nikolay Ironov does outshine his human counterparts in a handful of ways; as the studio’s website points out, he can handle real commercial tasks effectively, he doesn’t sleep, get sick, or have “crippling creative blocks,” and he can complete tasks in a matter of seconds.

Given these superhuman capabilities, then, why even keep human designers on staff? As detailed above, it will be a while before creative firms really need to consider this question on a large scale; for now, it still takes a hard-working creative human to make a fast-producing creative AI.

Image Credit: Art.Lebedev Continue reading

Posted in Human Robots