Tag Archives: to

#439879 Teaching robots to think like us: Brain ...

Can intelligence be taught to robots? Advances in physical reservoir computing, a technology that makes sense of brain signals, could contribute to creating artificial intelligence machines that think like us. Continue reading

Posted in Human Robots

#439875 Not So Mysterious After All: Researchers ...

The deep learning neural networks at the heart of modern artificial intelligence are often described as “black boxes” whose inner workings are inscrutable. But new research calls that idea into question, with significant implications for privacy.

Unlike traditional software whose functions are predetermined by a developer, neural networks learn how to process or analyze data by training on examples. They do this by continually adjusting the strength of the links between their many neurons.

By the end of this process, the way they make decisions is tied up in a tangled network of connections that can be impossible to follow. As a result, it’s often assumed that even if you have access to the model itself, it’s more or less impossible to work out the data that the system was trained on.

But a pair of recent papers have brought this assumption into question, according to MIT Technology Review, by showing that two very different techniques can be used to identify the data a model was trained on. This could have serious implications for AI systems trained on sensitive information like health records or financial data.

The first approach takes aim at generative adversarial networks (GANs), the AI systems behind deepfake images. These systems are increasingly being used to create synthetic faces that are supposedly completely unrelated to real people.

But researchers from the University of Caen Normandy in France showed that they could easily link generated faces from a popular model to real people whose data had been used to train the GAN. They did this by getting a second facial recognition model to compare the generated faces against training samples to spot if they shared the same identity.

The images aren’t an exact match, as the GAN has modified them, but the researchers found multiple examples where generated faces were clearly linked to images in the training data. In a paper describing the research, they point out that in many cases the generated face is simply the original face in a different pose.

While the approach is specific to face-generation GANs, the researchers point out that similar ideas could be applied to things like biometric data or medical images. Another, more general approach to reverse engineering neural nets could do that straight off the bat, though.

A group from Nvidia has shown that they can infer the data the model was trained on without even seeing any examples of the trained data. They used an approach called model inversion, which effectively runs the neural net in reverse. This technique is often used to analyze neural networks, but using it to recover the input data had only been achieved on simple networks under very specific sets of assumptions.

In a recent paper, the researchers described how they were able to scale the approach to large networks by splitting the problem up and carrying out inversions on each of the networks’ layers separately. With this approach, they were able to recreate training data images using nothing but the models themselves.

While carrying out either attack is a complex process that requires intimate access to the model in question, both highlight the fact that AIs may not be the black boxes we thought they were, and determined attackers could extract potentially sensitive information from them.

Given that it’s becoming increasingly easy to reverse engineer someone else’s model using your own AI, the requirement to have access to the neural network isn’t even that big of a barrier.

The problem isn’t restricted to image-based algorithms. Last year, researchers from a consortium of tech companies and universities showed that they could extract news headlines, JavaScript code, and personally identifiable information from the large language model GPT-2.

These issues are only going to become more pressing as AI systems push their way into sensitive areas like health, finance, and defense. There are some solutions on the horizon, such as differential privacy, where models are trained on the statistical features of aggregated data rather than individual data points, or homomorphic encryption, an emerging paradigm that makes it possible to compute directly on encrypted data.

But these approaches are still a long way from being standard practice, so for the time being, entrusting your data to the black box of AI may not be as safe as you think.

Image Credit: Connect world / Shutterstock.com Continue reading

Posted in Human Robots

#439820 How Musicologists and Scientists Used AI ...

When Ludwig van Beethoven died in 1827, he was three years removed from the completion of his Ninth Symphony, a work heralded by many as his magnum opus. He had started work on his 10th Symphony but, due to deteriorating health, wasn’t able to make much headway: All he left behind were some musical sketches.

Ever since then, Beethoven fans and musicologists have puzzled and lamented over what could have been. His notes teased at some magnificent reward, albeit one that seemed forever out of reach.

Now, thanks to the work of a team of music historians, musicologists, composers and computer scientists, Beethoven’s vision will come to life.

I presided over the artificial intelligence side of the project, leading a group of scientists at the creative AI startup Playform AI that taught a machine both Beethoven’s entire body of work and his creative process.

A full recording of Beethoven’s 10th Symphony is set to be released on Oct. 9, 2021, the same day as the world premiere performance scheduled to take place in Bonn, Germany—the culmination of a two-year-plus effort.

Past Attempts Hit a Wall
Around 1817, the Royal Philharmonic Society in London commissioned Beethoven to write his ninth and 10th symphonies. Written for an orchestra, symphonies often contain four movements: the first is performed at a fast tempo, the second at a slower one, the third at a medium or fast tempo, and the last at a fast tempo.

Beethoven completed his Ninth Symphony in 1824, which concludes with the timeless “Ode to Joy.”

But when it came to the 10th Symphony, Beethoven didn’t leave much behind, other than some musical notes and a handful of ideas he had jotted down.

A page of Beethoven’s notes for his planned 10th Symphony. Image Credit: Beethoven House Museum, CC BY-SA

There have been some past attempts to reconstruct parts of Beethoven’s 10th Symphony. Most famously, in 1988, musicologist Barry Cooper ventured to complete the first and second movements. He wove together 250 bars of music from the sketches to create what was, in his view, a production of the first movement that was faithful to Beethoven’s vision.

Yet the sparseness of Beethoven’s sketches made it impossible for symphony experts to go beyond that first movement.

Assembling the Team
In early 2019, Dr. Matthias Röder, the director of the Karajan Institute, an organization in Salzburg, Austria, that promotes music technology, contacted me. He explained that he was putting together a team to complete Beethoven’s 10th Symphony in celebration of the composer’s 250th birthday. Aware of my work on AI-generated art, he wanted to know if AI would be able to help fill in the blanks left by Beethoven.

The challenge seemed daunting. To pull it off, AI would need to do something it had never done before. But I said I would give it a shot.

Röder then compiled a team that included Austrian composer Walter Werzowa. Famous for writing Intel’s signature bong jingle, Werzowa was tasked with putting together a new kind of composition that would integrate what Beethoven left behind with what the AI would generate. Mark Gotham, a computational music expert, led the effort to transcribe Beethoven’s sketches and process his entire body of work so the AI could be properly trained.

The team also included Robert Levin, a musicologist at Harvard University who also happens to be an incredible pianist. Levin had previously finished a number of incomplete 18th-century works by Mozart and Johann Sebastian Bach.

The Project Takes Shape
In June 2019, the group gathered for a two-day workshop at Harvard’s music library. In a large room with a piano, a blackboard and a stack of Beethoven’s sketchbooks spanning most of his known works, we talked about how fragments could be turned into a complete piece of music and how AI could help solve this puzzle, while still remaining faithful to Beethoven’s process and vision.

The music experts in the room were eager to learn more about the sort of music AI had created in the past. I told them how AI had successfully generated music in the style of Bach. However, this was only a harmonization of an inputted melody that sounded like Bach. It didn’t come close to what we needed to do: construct an entire symphony from a handful of phrases.

Meanwhile, the scientists in the room—myself included—wanted to learn about what sort of materials were available, and how the experts envisioned using them to complete the symphony.

The task at hand eventually crystallized. We would need to use notes and completed compositions from Beethoven’s entire body of work—along with the available sketches from the 10th Symphony—to create something that Beethoven himself might have written.

This was a tremendous challenge. We didn’t have a machine that we could feed sketches to, push a button and have it spit out a symphony. Most AI available at the time couldn’t continue an uncompleted piece of music beyond a few additional seconds.

We would need to push the boundaries of what creative AI could do by teaching the machine Beethoven’s creative process—how he would take a few bars of music and painstakingly develop them into stirring symphonies, quartets, and sonatas.

Piecing Together Beethoven’s Creative Process
As the project progressed, the human side and the machine side of the collaboration evolved. Werzowa, Gotham, Levin, and Röder deciphered and transcribed the sketches from the 10th Symphony, trying to understand Beethoven’s intentions. Using his completed symphonies as a template, they attempted to piece together the puzzle of where the fragments of sketches should go—which movement, which part of the movement.

They had to make decisions, like determining whether a sketch indicated the starting point of a scherzo, which is a very lively part of the symphony, typically in the third movement. Or they might determine that a line of music was likely the basis of a fugue, which is a melody created by interweaving parts that all echo a central theme.

The AI side of the project—my side—found itself grappling with a range of challenging tasks.

First, and most fundamentally, we needed to figure out how to take a short phrase, or even just a motif, and use it to develop a longer, more complicated musical structure, just as Beethoven would have done. For example, the machine had to learn how Beethoven constructed the Fifth Symphony out of a basic four-note motif.

Next, because the continuation of a phrase also needs to follow a certain musical form, whether it’s a scherzo, trio, or fugue, the AI needed to learn Beethoven’s process for developing these forms.

The to-do list grew: We had to teach the AI how to take a melodic line and harmonize it. The AI needed to learn how to bridge two sections of music together. And we realized the AI had to be able to compose a coda, which is a segment that brings a section of a piece of music to its conclusion.

Finally, once we had a full composition, the AI was going to have to figure out how to orchestrate it, which involves assigning different instruments for different parts.
And it had to pull off these tasks in the way Beethoven might do so.

Passing the First Big Test
In November 2019, the team met in person again—this time, in Bonn, at the Beethoven House Museum, where the composer was born and raised.

This meeting was the litmus test for determining whether AI could complete this project. We printed musical scores that had been developed by AI and built off the sketches from Beethoven’s 10th. A pianist performed in a small concert hall in the museum before a group of journalists, music scholars, and Beethoven experts.

Journalists and musicians gather to hear a pianist perform parts of Beethoven’s 10th Symphony. Image Credit: Ahmed Elgammal, CC BY-SA

We challenged the audience to determine where Beethoven’s phrases ended and where the AI extrapolation began. They couldn’t.

A few days later, one of these AI-generated scores was played by a string quartet in a news conference. Only those who intimately knew Beethoven’s sketches for the 10th Symphony could determine when the AI-generated parts came in.

The success of these tests told us we were on the right track. But these were just a couple of minutes of music. There was still much more work to do.

Ready for the World
At every point, Beethoven’s genius loomed, challenging us to do better. As the project evolved, the AI did as well. Over the ensuing 18 months, we constructed and orchestrated two entire movements of more than 20 minutes apiece.

We anticipate some pushback to this work—those who will say that the arts should be off-limits from AI, and that AI has no business trying to replicate the human creative process. Yet when it comes to the arts, I see AI not as a replacement, but as a tool—one that opens doors for artists to express themselves in new ways.

This project would not have been possible without the expertise of human historians and musicians. It took an immense amount of work—and, yes, creative thinking—to accomplish this goal.

At one point, one of the music experts on the team said that the AI reminded him of an eager music student who practices every day, learns, and becomes better and better.

Now that student, having taken the baton from Beethoven, is ready to present the 10th Symphony to the world.

The piece above is a selection from Beethoven’s 10th Symphony. YouTube/Modern Recordings, CC BY-SA 3.38 MB (download)

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Circe Denyer Continue reading

Posted in Human Robots

#439815 How to Prepare Your Workforce for AI ...

Image by John Conde from Pixabay Despite a myriad of articles, research papers, and conversations regarding artificial intelligence and machine learning development, the predictions about its impact range significantly. The absolute majority agrees that AI is one of the keys to digital transformation and that it will change the business and job market forever. However, it’s …

The post How to Prepare Your Workforce for AI Disruption? appeared first on TFOT. Continue reading

Posted in Human Robots

#439804 How Quantum Computers Can Be Used to ...

Using computer simulations to design new chips played a crucial role in the rapid improvements in processor performance we’ve experienced in recent decades. Now Chinese researchers have extended the approach to the quantum world.

Electronic design automation tools started to become commonplace in the early 1980s as the complexity of processors rose exponentially, and today they are an indispensable tool for chip designers.

More recently, Google has been turbocharging the approach by using artificial intelligence to design the next generation of its AI chips. This holds the promise of setting off a process of recursive self-improvement that could lead to rapid performance gains for AI.

Now, New Scientist has reported on a team from the University of Science and Technology of China in Shanghai that has applied the same ideas to another emerging field of computing: quantum processors. In a paper posted to the arXiv pre-print server, the researchers describe how they used a quantum computer to design a new type of qubit that significantly outperformed their previous design.

“Simulations of high-complexity quantum systems, which are intractable for classical computers, can be efficiently done with quantum computers,” the authors wrote. “Our work opens the way to designing advanced quantum processors using existing quantum computing resources.”

At the heart of the idea is the fact that the complexity of quantum systems grows exponentially as they increase in size. As a result, even the most powerful supercomputers struggle to simulate fairly small quantum systems.

This was the basis for Google’s groundbreaking display of “quantum supremacy” in 2019. The company’s researchers used a 53-qubit processor to run a random quantum circuit a million times and showed that it would take roughly 10,000 years to simulate the experiment on the world’s fastest supercomputer.

This means that using classical computers to help in the design of new quantum computers is likely to hit fundamental limits pretty quickly. Using a quantum computer, however, sidesteps the problem because it can exploit the same oddities of the quantum world that make the problem complex in the first place.

This is exactly what the Chinese researchers did. They used an algorithm called a variational quantum eigensolver to simulate the kind of superconducting electronic circuit found at the heart of a quantum computer. This was used to explore what happens when certain energy levels in the circuit are altered.

Normally this kind of experiment would require them to build large numbers of physical prototypes and test them, but instead the team was able to rapidly model the impact of the changes. The upshot was that the researchers discovered a new type of qubit that was more powerful than the one they were already using.

Any two-level quantum system can act as a qubit, but most superconducting quantum computers use transmons, which encode quantum states into the oscillations of electrons. By tweaking the energy levels of their simulated quantum circuit, the researchers were able to discover a new qubit design they dubbed a plasonium.

It is less than half the size of a transmon, and when the researchers fabricated it they found that it holds its quantum state for longer and is less prone to errors. It still works on similar principles to the transmon, so it’s possible to manipulate it using the same control technologies.

The researchers point out that this is only a first prototype, so with further optimization and the integration of recent progress in new superconducting materials and surface treatment methods they expect performance to increase even more.

But the new qubit the researchers have designed is probably not their most significant contribution. By demonstrating that even today’s rudimentary quantum computers can help design future devices, they’ve opened the door to a virtuous cycle that could significantly speed innovation in this field.

Image Credit: Pete Linforth from Pixabay Continue reading

Posted in Human Robots