Tag Archives: tests

#431920 If We Could Engineer Animals to Be as ...

Advances in neural implants and genetic engineering suggest that in the not–too–distant future we may be able to boost human intelligence. If that’s true, could we—and should we—bring our animal cousins along for the ride?
Human brain augmentation made headlines last year after several tech firms announced ambitious efforts to build neural implant technology. Duke University neuroscientist Mikhail Lebedev told me in July it could be decades before these devices have applications beyond the strictly medical.
But he said the technology, as well as other pharmacological and genetic engineering approaches, will almost certainly allow us to boost our mental capacities at some point in the next few decades.
Whether this kind of cognitive enhancement is a good idea or not, and how we should regulate it, are matters of heated debate among philosophers, futurists, and bioethicists, but for some it has raised the question of whether we could do the same for animals.
There’s already tantalizing evidence of the idea’s feasibility. As detailed in BBC Future, a group from MIT found that mice that were genetically engineered to express the human FOXP2 gene linked to learning and speech processing picked up maze routes faster. Another group at Wake Forest University studying Alzheimer’s found that neural implants could boost rhesus monkeys’ scores on intelligence tests.
The concept of “animal uplift” is most famously depicted in the Planet of the Apes movie series, whose planet–conquering protagonists are likely to put most people off the idea. But proponents are less pessimistic about the outcomes.
Science fiction author David Brin popularized the concept in his “Uplift” series of novels, in which humans share the world with various other intelligent animals that all bring their own unique skills, perspectives, and innovations to the table. “The benefits, after a few hundred years, could be amazing,” he told Scientific American.
Others, like George Dvorsky, the director of the Rights of Non-Human Persons program at the Institute for Ethics and Emerging Technologies, go further and claim there is a moral imperative. He told the Boston Globe that denying augmentation technology to animals would be just as unethical as excluding certain groups of humans.
Others are less convinced. Forbes’ Alex Knapp points out that developing the technology to uplift animals will likely require lots of very invasive animal research that will cause huge suffering to the animals it purports to help. This is problematic enough with normal animals, but could be even more morally dubious when applied to ones whose cognitive capacities have been enhanced.
The whole concept could also be based on a fundamental misunderstanding of the nature of intelligence. Humans are prone to seeing intelligence as a single, self-contained metric that progresses in a linear way with humans at the pinnacle.
In an opinion piece in Wired arguing against the likelihood of superhuman artificial intelligence, Kevin Kelly points out that science has no such single dimension with which to rank the intelligence of different species. Each one combines a bundle of cognitive capabilities, some of which are well below our own capabilities and others which are superhuman. He uses the example of the squirrel, which can remember the precise location of thousands of acorns for years.
Uplift efforts may end up being less about boosting intelligence and more about making animals more human-like. That represents “a kind of benevolent colonialism” that assumes being more human-like is a good thing, Paul Graham Raven, a futures researcher at the University of Sheffield in the United Kingdom, told the Boston Globe. There’s scant evidence that’s the case, and it’s easy to see how a chimpanzee with the mind of a human might struggle to adjust.
There are also fundamental barriers that may make it difficult to achieve human-level cognitive capabilities in animals, no matter how advanced brain augmentation technology gets. In 2013 Swedish researchers selectively bred small fish called guppies for bigger brains. This made them smarter, but growing the energy-intensive organ meant the guppies developed smaller guts and produced fewer offspring to compensate.
This highlights the fact that uplifting animals may require more than just changes to their brains, possibly a complete rewiring of their physiology that could prove far more technically challenging than human brain augmentation.
Our intelligence is intimately tied to our evolutionary history—our brains are bigger than other animals’; opposable thumbs allow us to use tools; our vocal chords make complex communication possible. No matter how much you augment a cow’s brain, it still couldn’t use a screwdriver or talk to you in English because it simply doesn’t have the machinery.
Finally, from a purely selfish point of view, even if it does become possible to create a level playing field between us and other animals, it may not be a smart move for humanity. There’s no reason to assume animals would be any more benevolent than we are, having evolved in the same ‘survival of the fittest’ crucible that we have. And given our already endless capacity to divide ourselves along national, religious, or ethnic lines, conflict between species seems inevitable.
We’re already likely to face considerable competition from smart machines in the coming decades if you believe the hype around AI. So maybe adding a few more intelligent species to the mix isn’t the best idea.
Image Credit: Ron Meijer / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431828 This Self-Driving AI Is Learning to ...

I don’t have to open the doors of AImotive’s white 2015 Prius to see that it’s not your average car. This particular Prius has been christened El Capitan, the name written below the rear doors, and two small cameras are mounted on top of the car. Bundles of wire snake out from them, as well as from the two additional cameras on the car’s hood and trunk.
Inside is where things really get interesting, though. The trunk holds a computer the size of a microwave, and a large monitor covers the passenger glove compartment and dashboard. The center console has three switches labeled “Allowed,” “Error,” and “Active.”
Budapest-based AImotive is working to provide scalable self-driving technology alongside big players like Waymo and Uber in the autonomous vehicle world. On a highway test ride with CEO Laszlo Kishonti near the company’s office in Mountain View, California, I got a glimpse of just how complex that world is.
Camera-Based Feedback System
AImotive’s approach to autonomous driving is a little different from that of some of the best-known systems. For starters, they’re using cameras, not lidar, as primary sensors. “The traffic system is visual and the cost of cameras is low,” Kishonti said. “A lidar can recognize when there are people near the car, but a camera can differentiate between, say, an elderly person and a child. Lidar’s resolution isn’t high enough to recognize the subtle differences of urban driving.”
Image Credit: AImotive
The company’s aiDrive software uses data from the camera sensors to feed information to its algorithms for hierarchical decision-making, grouped under four concurrent activities: recognition, location, motion, and control.
Kishonti pointed out that lidar has already gotten more cost-efficient, and will only continue to do so.
“Ten years ago, lidar was best because there wasn’t enough processing power to do all the calculations by AI. But the cost of running AI is decreasing,” he said. “In our approach, computer vision and AI processing are key, and for safety, we’ll have fallback sensors like radar or lidar.”
aiDrive currently runs on Nvidia chips, which Kishonti noted were originally designed for graphics, and are not terribly efficient given how power-hungry they are. “We’re planning to substitute lower-cost, lower-energy chips in the next six months,” he said.
Testing in Virtual Reality
Waymo recently announced its fleet has now driven four million miles autonomously. That’s a lot of miles, and hard to compete with. But AImotive isn’t trying to compete, at least not by logging more real-life test miles. Instead, the company is doing 90 percent of its testing in virtual reality. “This is what truly differentiates us from competitors,” Kishonti said.
He outlined the three main benefits of VR testing: it can simulate scenarios too dangerous for the real world (such as hitting something), too costly (not every company has Waymo’s funds to run hundreds of cars on real roads), or too time-consuming (like waiting for rain, snow, or other weather conditions to occur naturally and repeatedly).
“Real-world traffic testing is very skewed towards the boring miles,” he said. “What we want to do is test all the cases that are hard to solve.”
On a screen that looked not unlike multiple games of Mario Kart, he showed me the simulator. Cartoon cars cruised down winding streets, outfitted with all the real-world surroundings: people, trees, signs, other cars. As I watched, a furry kangaroo suddenly hopped across one screen. “Volvo had an issue in Australia,” Kishonti explained. “A kangaroo’s movement is different than other animals since it hops instead of running.” Talk about cases that are hard to solve.
AImotive is currently testing around 1,000 simulated scenarios every night, with a steadily-rising curve of successful tests. These scenarios are broken down into features, and the car’s behavior around those features fed into a neural network. As the algorithms learn more features, the level of complexity the vehicles can handle goes up.
On the Road
After Kishonti and his colleagues filled me in on the details of their product, it was time to test it out. A safety driver sat in the driver’s seat, a computer operator in the passenger seat, and Kishonti and I in back. The driver maintained full control of the car until we merged onto the highway. Then he flicked the “Allowed” switch, his copilot pressed the “Active” switch, and he took his hands off the wheel.
What happened next, you ask?
A few things. El Capitan was going exactly the speed limit—65 miles per hour—which meant all the other cars were passing us. When a car merged in front of us or cut us off, El Cap braked accordingly (if a little abruptly). The monitor displayed the feed from each of the car’s cameras, plus multiple data fields and a simulation where a blue line marked the center of the lane, measured by the cameras tracking the lane markings on either side.
I noticed El Cap wobbling out of our lane a bit, but it wasn’t until two things happened in a row that I felt a little nervous: first we went under a bridge, then a truck pulled up next to us, both bridge and truck casting a complete shadow over our car. At that point El Cap lost it, and we swerved haphazardly to the right, narrowly missing the truck’s rear wheels. The safety driver grabbed the steering wheel and took back control of the car.
What happened, Kishonti explained, was that the shadows made it hard for the car’s cameras to see the lane markings. This was a new scenario the algorithm hadn’t previously encountered. If we’d only gone under a bridge or only been next to the truck for a second, El Cap may not have had so much trouble, but the two events happening in a row really threw the car for a loop—almost literally.
“This is a new scenario we’ll add to our testing,” Kishonti said. He added that another way for the algorithm to handle this type of scenario, rather than basing its speed and positioning on the lane markings, is to mimic nearby cars. “The human eye would see that other cars are still moving at the same speed, even if it can’t see details of the road,” he said.
After another brief—and thankfully uneventful—hands-off cruise down the highway, the safety driver took over, exited the highway, and drove us back to the office.
Driving into the Future
I climbed out of the car feeling amazed not only that self-driving cars are possible, but that driving is possible at all. I squint when driving into a tunnel, swerve to avoid hitting a stray squirrel, and brake gradually at stop signs—all without consciously thinking to do so. On top of learning to steer, brake, and accelerate, self-driving software has to incorporate our brains’ and bodies’ unconscious (but crucial) reactions, like our pupils dilating to let in more light so we can see in a tunnel.
Despite all the progress of machine learning, artificial intelligence, and computing power, I have a wholly renewed appreciation for the thing that’s been in charge of driving up till now: the human brain.
Kishonti seemed to feel similarly. “I don’t think autonomous vehicles in the near future will be better than the best drivers,” he said. “But they’ll be better than the average driver. What we want to achieve is safe, good-quality driving for everyone, with scalability.”
AImotive is currently working with American tech firms and with car and truck manufacturers in Europe, China, and Japan.
Image Credit: Alex Oakenman / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431553 This Week’s Awesome Stories From ...

ROBOTS
Boston Dynamics’ Atlas Robot Does Backflips Now and It’s Full-Tilt InsaneMatt Simon | Wired “To be clear: Humanoids aren’t supposed to be able to do this. It’s extremely difficult to make a bipedal robot that can move effectively, much less kick off a tumbling routine.”

TRANSPORTATION
This Is the Tesla Semi TruckZac Estrada | The Verge“What Tesla has done today is shown that it wants to invigorate a segment, rather than just make something to comply with more stringent emissions regulations… And in the process, it’s trying to do for heavy-duty commercial vehicles what it did for luxury cars—plough forward in its own lane.”
PRIVACY AND SECURITY
Should Facebook Notify Readers When They’ve Been Fed Disinformation?Austin Carr | Fast Company “It would be, Reed suggested, the social network equivalent of a newspaper correction—only one that, with the tech companies’ expansive data, could actually reach its intended audience, like, say, the 250,000-plus Facebook users who shared the debunked YourNewsWire.com story.”
BRAIN HEALTH
Brain Implant Boosts Memory for First Time EverKristin Houser | NBC News “Once implanted in the volunteers, Song’s device could collect data on their brain activity during tests designed to stimulate either short-term memory or working memory. The researchers then determined the pattern associated with optimal memory performance and used the device’s electrodes to stimulate the brain following that pattern during later tests.”
COMPUTING
Yale Professors Race Google and IBM to the First Quantum ComputerCade Metz | New York Times “Though Quantum Circuits is using the same quantum method as its bigger competitors, Mr. Schoelkopf argued that his company has an edge because it is tackling the problem differently. Rather than building one large quantum machine, it is constructing a series of tiny machines that can be networked together. He said this will make it easier to correct errors in quantum calculations—one of the main difficulties in building one of these complex machines.”
Image Credit: Tesla Motors Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431315 Better Than Smart Speakers? Japan Is ...

While American internet giants are developing speakers, Japanese companies are working on robots and holograms. They all share a common goal: to create the future platform for the Internet of Things (IoT) and smart homes.
Names like Bocco, EMIEW3, Xperia Assistant, and Gatebox may not ring a bell to most outside of Japan, but Sony, Hitachi, Sharp, and Softbank most certainly do. The companies, along with Japanese start-ups, have developed robots, robot concepts, and even holograms like the ones hiding behind the short list of names.
While there are distinct differences between the various systems, they share the potential to act as a remote control for IoT devices and smart homes. It is a very different direction than that taken by companies like Google, Amazon, and Apple, who have so far focused on building IoT speaker systems.
Bocco robot. Image Credit: Yukai Engineering
“Technology companies are pursuing the platform—or smartphone if you will—for IoT. My impression is that Japanese companies—and Japanese consumers—prefer that such a platform should not just be an object, but a companion,” says Kosuke Tatsumi, designer at Yukai Engineering, a startup that has developed the Bocco robot system.
At Hitachi, a spokesperson said that the company’s human symbiotic service robot, EMIEW3, robot is currently in the field, doing proof-of-value tests at customer sites to investigate needs and potential solutions. This could include working as an interactive control system for the Internet of Things:
“EMIEW3 is able to communicate with humans, thus receive instructions, and as it is connected to a robotics IT platform, it is very much capable of interacting with IoT-based systems,” the spokesperson said.
The power of speech is getting feet
Gartner analysis predicts that there will be 8.4 billion internet-connected devices—collectively making up the Internet of Things—by the end of 2017. 5.2 billion of those devices are in the consumer category. By the end of 2020, the number of IoT devices will rise to 12.8 billion—and that is just in the consumer category.
As a child of the 80s, I can vividly remember how fun it was to have separate remote controls for TV, video, and stereo. I can imagine a situation where my internet-connected refrigerator and ditto thermostat, television, and toaster try to work out who I’m talking to and what I want them to do.
Consensus seems to be that speech will be the way to interact with many/most IoT devices. The same goes for a form of virtual assistant functioning as the IoT platform—or remote control. Almost everything else is still an open ballgame, despite an early surge for speaker-based systems, like those from Amazon, Google, and Apple.
Why robots could rule
Famous android creator and robot scientist Dr. Hiroshi Ishiguro sees the interaction between humans and the AI embedded in speakers or robots as central to both approaches. From there, the approaches differ greatly.
Image Credit: Hiroshi Ishiguro Laboratories
“It is about more than the difference of form. Speaking to an Amazon Echo is not a natural kind of interaction for humans. That is part of what we in Japan are creating in many human-like robot systems,” he says. “The human brain is constructed to recognize and interact with humans. This is part of why it makes sense to focus on developing the body for the AI mind as well as the AI mind itself. In a way, you can describe it as the difference between developing an assistant, which could be said to be what many American companies are currently doing, and a companion, which is more the focus here in Japan.”
Another advantage is that robots are more kawaii—a multifaceted Japanese word that can be translated as “cute”—than speakers are. This makes it easy for people to relate to them and forgive them.
“People are more willing to forgive children when they make mistakes, and the same is true with a robot like Bocco, which is designed to look kawaii and childlike,” Kosuke Tatsumi explains.
Japanese robots and holograms with IoT-control capabilities
So, what exactly do these robot and hologram companions look like, what can they do, and who’s making them? Here are seven examples of Japanese companies working to go a step beyond smart speakers with personable robots and holograms.
1. In 2016 Sony’s mobile division demonstrated the Xperia Agent concept robot that recognizes individual users, is voice controlled, and can do things like control your television and receive calls from services like Skype.

2. Sharp launched their Home Assistant at CES 2016. A robot-like, voice-controlled assistant that can to control, among other things, air conditioning units, and televisions. Sharp has also launched a robotic phone called RoBoHon.
3. Gatebox has created a holographic virtual assistant. Evil tongues will say that it is primarily the expression of an otaku (Japanese for nerd) dream of living with a manga heroine. Gatebox is, however, able to control things like lights, TVs, and other systems through API integration. It also provides its owner with weather-related advice like “remember your umbrella, it looks like it will rain later.” Gatebox can be controlled by voice, gesture, or via an app.
4. Hitachi’s EMIEW3 robot is designed to assist people in businesses and public spaces. It is connected to a robot IT-platform via the cloud that acts as a “remote brain.” Hitachi is currently investigating the business use cases for EMIEW3. This could include the role of controlling platform for IoT devices.

5. Softbank’s Pepper robot has been used as a platform to control use of medical IoT devices such as smart thermometers by Avatarion. The company has also developed various in-house systems that enable Pepper to control IoT-devices like a coffee machine. A user simply asks Pepper to brew a cup of coffee, and it starts the coffee machine for you.
6. Yukai Engineering’s Bocco registers when a person (e.g., young child) comes home and acts as a communication center between that person and other members of the household (e.g., parent still at work). The company is working on integrating voice recognition, voice control, and having Bocco control things like the lights and other connected IoT devices.
7. Last year Toyota launched the Kirobo Mini, a companion robot which aims to, among other things, help its owner by suggesting “places to visit, routes for travel, and music to listen to” during the drive.

Today, Japan. Tomorrow…?
One of the key questions is whether this emerging phenomenon is a purely Japanese thing. If the country’s love of robots makes it fundamentally different. Japan is, after all, a country where new units of Softbank’s Pepper robot routinely sell out in minutes and the RoBoHon robot-phone has its own cafe nights in Tokyo.
It is a country where TV introduces you to friendly, helpful robots like Doraemon and Astro Boy. I, on the other hand, first met robots in the shape of Arnold Schwarzenegger’s Terminator and struggled to work out why robots seemed intent on permanently borrowing things like clothes and motorcycles, not to mention why they hated people called Sarah.
However, research suggests that a big part of the reason why Japanese seem to like robots is a combination of exposure and positive experiences that leads to greater acceptance of them. As robots spread to more and more industries—and into our homes—our acceptance of them will grow.
The argument is also backed by a project by Avatarion, which used Softbank’s Nao-robot as a classroom representative for children who were in the hospital.
“What we found was that the other children quickly adapted to interacting with the robot and treating it as the physical representation of the child who was in hospital. They accepted it very quickly,” Thierry Perronnet, General Manager of Avatarion, explains.
His company has also developed solutions where Softbank’s Pepper robot is used as an in-home nurse and controls various medical IoT devices.
If robots end up becoming our preferred method for controlling IoT devices, it is by no means certain that said robots will be coming from Japan.
“I think that the goal for both Japanese and American companies—including the likes of Google, Amazon, Microsoft, and Apple—is to create human-like interaction. For this to happen, technology needs to evolve and adapt to us and how we are used to interacting with others, in other words, have a more human form. Humans’ speed of evolution cannot keep up with technology’s, so it must be the technology that changes,” Dr. Ishiguro says.
Image Credit: Sony Mobile Communications Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430855 Why Education Is the Hardest Sector of ...

We’ve all heard the warning cries: automation will disrupt entire industries and put millions of people out of jobs. In fact, up to 45 percent of existing jobs can be automated using current technology.
However, this may not necessarily apply to the education sector. After a detailed analysis of more than 2,000-plus work activities for more than 800 occupations, a report by McKinsey & Co states that of all the sectors examined, “…the technical feasibility of automation is lowest in education.”
There is no doubt that technological trends will have a powerful impact on global education, both by improving the overall learning experience and by increasing global access to education. Massive open online courses (MOOCs), chatbot tutors, and AI-powered lesson plans are just a few examples of the digital transformation in global education. But will robots and artificial intelligence ever fully replace teachers?
The Most Difficult Sector to Automate
While various tasks revolving around education—like administrative tasks or facilities maintenance—are open to automation, teaching itself is not.
Effective education involves more than just transfer of information from a teacher to a student. Good teaching requires complex social interactions and adaptation to the individual student’s learning needs. An effective teacher is not just responsive to each student’s strengths and weaknesses, but is also empathetic towards the student’s state of mind. It’s about maximizing human potential.
Furthermore, students don’t just rely on effective teachers to teach them the course material, but also as a source of life guidance and career mentorship. Deep and meaningful human interaction is crucial and is something that is very difficult, if not impossible, to automate.
Automating teaching is an example of a task that would require artificial general intelligence (as opposed to narrow or specific intelligence). In other words, this is the kind of task that would require an AI that understands natural human language, can be empathetic towards emotions, plan, strategize and make impactful decisions under unpredictable circumstances.
This would be the kind of machine that can do anything a human can do, and it doesn’t exist—at least, not yet.
We’re Getting There
Let’s not forget how quickly AI is evolving. Just because it’s difficult to fully automate teaching, it doesn’t mean the world’s leading AI experts aren’t trying.
Meet Jill Watson, the teaching assistant from Georgia Institute of Technology. Watson isn’t your average TA. She’s an IBM-powered artificial intelligence that is being implemented in universities around the world. Watson is able to answer students’ questions with 97 percent certainty.
Technologies like this also have applications in grading and providing feedback. Some AI algorithms are being trained and refined to perform automatic essay scoring. One project has achieved a 0.945 correlation with human graders.
All of this will have a remarkable impact on online education as we know it and dramatically increase online student retention rates.

Any student with a smartphone can access a wealth of information and free courses from universities around the world. MOOCs have allowed valuable courses to become available to millions of students. But at the moment, not all participants can receive customized feedback for their work. Currently, this is limited by manpower, but in the future that may not be the case.
What chatbots like Jill Watson allow is the opportunity for hundreds of thousands, if not millions, of students to have their work reviewed and all their questions answered at a minimal cost.
AI algorithms also have a significant role to play in personalization of education. Every student is unique and has a different set of strengths and weaknesses. Data analysis can be used to improve individual student results, assess each student’s strengths and weaknesses, and create mass-customized programs. Algorithms can analyze student data and consequently make flexible programs that adapt to the learner based on real-time feedback. According to the McKinsey Global Institute, all of this data in education could unlock between $900 billion and $1.2 trillion in global economic value.
Beyond Automated Teaching
It’s important to recognize that technological automation alone won’t fix the many issues in our global education system today. Dominated by outdated curricula, standardized tests, and an emphasis on short-term knowledge, many experts are calling for a transformation of how we teach.
It is not enough to simply automate the process. We can have a completely digital learning experience that continues to focus on outdated skills and fails to prepare students for the future. In other words, we must not only be innovative with our automation capabilities, but also with educational content, strategy, and policies.
Are we equipping students with the most important survival skills? Are we inspiring young minds to create a better future? Are we meeting the unique learning needs of each and every student? There’s no point automating and digitizing a system that is already flawed. We need to ensure the system that is being digitized is itself being transformed for the better.
Stock Media provided by davincidig / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment