Tag Archives: sense

#438886 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
This Chip for AI Works Using Light, Not Electrons
Will Knight | Wired
“As demand for artificial intelligence grows, so does hunger for the computer power needed to keep AI running. Lightmatter, a startup born at MIT, is betting that AI’s voracious hunger will spawn demand for a fundamentally different kind of computer chip—one that uses light to perform key calculations. ‘Either we invent new kinds of computers to continue,’ says Lightmatter CEO Nick Harris, ‘or AI slows down.’i”

BIOTECH
With This CAD for Genomes, You Can Design New Organisms
Eliza Strickland | IEEE Spectrum
“Imagine being able to design a new organism as easily as you can design a new integrated circuit. That’s the ultimate vision behind the computer-aided design (CAD) program being developed by the GP-write consortium. ‘We’re taking the same things we’d do for design automation in electronics, and applying them to biology,’ says Doug Densmore, an associate professor of electrical and computer engineering at Boston University.”

BIOLOGY
Hey, So These Sea Slugs Decapitate Themselves and Grow New Bodies
Matt Simon | Wired
“That’s right: It pulled a Deadpool. Just a few hours after its self-decapitation, the head began dragging itself around to feed. After a day, the neck wound had closed. After a week, it started to regenerate a heart. In less than a month, the whole body had grown back, and the disembodied slug was embodied once more.”

INTERNET
Move Over, Deep Nostalgia, This AI App Can Make Kim Jong-un Sing ‘I Will Survive’
Helen Sullivan | The Guardian
“If you’ve ever wanted to know what it might be like to see Kim Jong-un let loose at karaoke, your wish has been granted, thanks to an app that lets users turn photographs of anyone—or anything remotely resembling a face—into uncanny AI-powered videos of them lip syncing famous songs.”

ENERGY
GM Unveils Plans for Lithium-Metal Batteries That Could Boost EV Range
Steve Dent | Engadget
“GM has released more details about its next-generation Ultium batteries, including plans for lithium-metal (Li-metal) technology to boost performance and energy density. The automaker announced that it has signed an agreement to work with SolidEnergy Systems (SES), an MIT spinoff developing prototype Li-metal batteries with nearly double the capacity of current lithium-ion cells.”

TECHNOLOGY
Xi’s Gambit: China Plans for a World Without American Technology
Paul Mozur and Steven Lee Myers | The New York Times
“China is freeing up tens of billions of dollars for its tech industry to borrow. It is cataloging the sectors where the United States or others could cut off access to crucial technologies. And when its leaders released their most important economic plans last week, they laid out their ambitions to become an innovation superpower beholden to none.”

SCIENCE
Imaginary Numbers May Be Essential for Describing Reality
Charlie Wood | Wired
“…physicists may have just shown for the first time that imaginary numbers are, in a sense, real. A group of quantum theorists designed an experiment whose outcome depends on whether nature has an imaginary side. Provided that quantum mechanics is correct—an assumption few would quibble with—the team’s argument essentially guarantees that complex numbers are an unavoidable part of our description of the physical universe.”

PHILOSOPHY
What Is Life? Its Vast Diversity Defies Easy Definition
Carl Zimmer | Quanta
“i‘It is commonly said,’ the scientists Frances Westall and André Brack wrote in 2018, ‘that there are as many definitions of life as there are people trying to define it.’ …As an observer of science and of scientists, I find this behavior strange. It is as if astronomers kept coming up with new ways to define stars. …With scientists adrift in an ocean of definitions, philosophers rowed out to offer lifelines.”

Image Credit: Kir Simakov / Unsplash Continue reading

Posted in Human Robots

#438807 Visible Touch: How Cameras Can Help ...

The dawn of the robot revolution is already here, and it is not the dystopian nightmare we imagined. Instead, it comes in the form of social robots: Autonomous robots in homes and schools, offices and public spaces, able to interact with humans and other robots in a socially acceptable, human-perceptible way to resolve tasks related to core human needs.

To design social robots that “understand” humans, robotics scientists are delving into the psychology of human communication. Researchers from Cornell University posit that embedding the sense of touch in social robots could teach them to detect physical interactions and gestures. They describe a way of doing so by relying not on touch but on vision.

A USB camera inside the robot captures shadows of hand gestures on the robot’s surface and classifies them with machine-learning software. They call this method ShadowSense, which they define as a modality between vision and touch, bringing “the high resolution and low cost of vision-sensing to the close-up sensory experience of touch.”

Touch-sensing in social or interactive robots is usually achieved with force sensors or capacitive sensors, says study co-author Guy Hoffman of the Sibley School of Mechanical and Aerospace Engineering at Cornell University. The drawback to his group’s approach has been that, even to achieve coarse spatial resolution, many sensors are needed in a small area.

However, working with non-rigid, inflatable robots, Hoffman and his co-researchers installed a consumer-grade USB camera to which they attached a fisheye lens for a wider field of vision.

“Given that the robot is already hollow, and has a soft and translucent skin, we could do touch interaction by looking at the shadows created by people touching the robot,” says Hoffman. They used deep neural networks to interpret the shadows. “And we were able to do it with very high accuracy,” he says. The robot was able to interpret six different gestures, including one- or two-handed touch, pointing, hugging and punching, with an accuracy of 87.5 to 96 percent, depending on the lighting.

This is not the first time that computer vision has been used for tactile sensing, though the scale and application of ShadowSense is unique. “Photography has been used for touch mainly in robotic grasping,” says Hoffman. By contrast, Hoffman and collaborators wanted to develop a sense that could be “felt” across the whole of the device.

The potential applications for ShadowSense include mobile robot guidance using touch, and interactive screens on soft robots. A third concerns privacy, especially in home-based social robots. “We have another paper currently under review that looks specifically at the ability to detect gestures that are further away [from the robot’s skin],” says Hoffman. This way, users would be able to cover their robot’s camera with a translucent material and still allow it to interpret actions and gestures from shadows. Thus, even though it’s prevented from capturing a high-resolution image of the user or their surrounding environment, using the right kind of training datasets, the robot can continue to monitor some kinds of non-tactile activities.

In its current iteration, Hoffman says, ShadowSense doesn’t do well in low-light conditions. Environmental noise, or shadows from surrounding objects, also interfere with image classification. Relying on one camera also means a single point of failure. “I think if this were to become a commercial product, we would probably [have to] work a little bit better on image detection,” says Hoffman.

As it was, the researchers used transfer learning—reusing a pre-trained deep-learning model in a new problem—for image analysis. “One of the problems with multi-layered neural networks is that you need a lot of training data to make accurate predictions,” says Hoffman. “Obviously, we don’t have millions of examples of people touching a hollow, inflatable robot. But we can use pre-trained networks trained on general images, which we have billions of, and we only retrain the last layers of the network using our own dataset.” Continue reading

Posted in Human Robots

#438731 Video Friday: Perseverance Lands on Mars

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

Hmm, did anything interesting happen in robotics yesterday week?

Obviously, we're going to have tons more on the Mars Rover and Mars Helicopter over the next days, weeks, months, years, and (if JPL's track record has anything to say about it) decades. Meantime, here's what's going to happen over the next day or two:

[ Mars 2020 ]

PLEN hopes you had a happy Valentine's Day!

[ PLEN ]

Unitree dressed up a whole bunch of Laikago quadrupeds to take part in the 2021 Spring Festival Gala in China.

[ Unitree ]

Thanks Xingxing!

Marine iguanas compete for the best nesting sites on the Galapagos Islands. Meanwhile RoboSpy Iguana gets involved in a snot sneezing competition after the marine iguanas return from the sea.

[ Spy in the Wild ]

Tails, it turns out, are useful for almost everything.

[ DART Lab ]

Partnered with MD-TEC, this video demonstrates use of teleoperated robotic arms and virtual reality interface to perform closed suction for self-ventilating tracheostomy patients during COVID -19 outbreak. Use of closed suction is recommended to minimise aerosol generated during this procedure. This robotic method avoids staff exposure to virus to further protect NHS.

[ Extend Robotics ]

Fotokite is a safe, practical way to do local surveillance with a drone.

I just wish they still had a consumer version 🙁

[ Fotokite ]

How to confuse fish.

[ Harvard ]

Army researchers recently expanded their research area for robotics to a site just north of Baltimore. Earlier this year, Army researchers performed the first fully-autonomous tests onsite using an unmanned ground vehicle test bed platform, which serves as the standard baseline configuration for multiple programmatic efforts within the laboratory. As a means to transition from simulation-based testing, the primary purpose of this test event was to capture relevant data in a live, operationally-relevant environment.

[ Army ]

Flexiv's new RIZON 10 robot hopes you had a happy Valentine's Day!

[ Flexiv ]

Thanks Yunfan!

An inchworm-inspired crawling robot (iCrawl) is a 5 DOF robot with two legs; each with an electromagnetic foot to crawl on the metal pipe surfaces. The robot uses a passive foot-cap underneath an electromagnetic foot, enabling it to be a versatile pipe-crawler. The robot has the ability to crawl on the metal pipes of various curvatures in horizontal and vertical directions. The robot can be used as a new robotic solution to assist close inspection outside the pipelines, thus minimizing downtime in the oil and gas industry.

[ Paper ]

Thanks Poramate!

A short film about Robot Wars from Blender Magazine in 1995.

[ YouTube ]

While modern cameras provide machines with a very well-developed sense of vision, robots still lack such a comprehensive solution for their sense of touch. The talk will present examples of why the sense of touch can prove crucial for a wide range of robotic applications, and a tech demo will introduce a novel sensing technology targeting the next generation of soft robotic skins. The prototype of the tactile sensor developed at ETH Zurich exploits the advances in camera technology to reconstruct the forces applied to a soft membrane. This technology has the potential to revolutionize robotic manipulation, human-robot interaction, and prosthetics.

[ ETHZ ]

Thanks Markus!

Quadrupedal robotics has reached a level of performance and maturity that enables some of the most advanced real-world applications with autonomous mobile robots. Driven by excellent research in academia and industry all around the world, a growing number of platforms with different skills target different applications and markets. We have invited a selection of experts with long-standing experience in this vibrant research area

[ IFRR ]

Thanks Fan!

Since January 2020, more than 300 different robots in over 40 countries have been used to cope with some aspect of the impact of the coronavirus pandemic on society. The majority of these robots have been used to support clinical care and public safety, allowing responders to work safely and to handle the surge in infections. This panel will discuss how robots have been successfully used and what is needed, both in terms of fundamental research and policy, for robotics to be prepared for the future emergencies.

[ IFRR ]

At Skydio, we ship autonomous robots that are flown at scale in complex, unknown environments every day. We’ve invested six years of R&D into handling extreme visual scenarios not typically considered by academia nor encountered by cars, ground robots, or AR applications. Drones are commonly in scenes with few or no semantic priors on the environment and must deftly navigate thin objects, extreme lighting, camera artifacts, motion blur, textureless surfaces, vibrations, dirt, smudges, and fog. These challenges are daunting for classical vision, because photometric signals are simply inconsistent. And yet, there is no ground truth for direct supervision of deep networks. We’ll take a detailed look at these issues and how we’ve tackled them to push the state of the art in visual inertial navigation, obstacle avoidance, rapid trajectory planning. We will also cover the new capabilities on top of our core navigation engine to autonomously map complex scenes and capture all surfaces, by performing real-time 3D reconstruction across multiple flights.

[ UPenn ] Continue reading

Posted in Human Robots

#438613 Video Friday: Digit Takes a Hike

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

It's winter in Oregon, so everything is damp, all the time. No problem for Digit!

Also the case for summer in Oregon.

[ Agility Robotics ]

While other organisms form collective flocks, schools, or swarms for such purposes as mating, predation, and protection, the Lumbriculus variegatus worms are unusual in their ability to braid themselves together to accomplish tasks that unconnected individuals cannot. A new study reported by researchers at the Georgia Institute of Technology describes how the worms self-organize to act as entangled “active matter,” creating surprising collective behaviors whose principles have been applied to help blobs of simple robots evolve their own locomotion.

No, this doesn't squick me out at all, why would it.

[ Georgia Tech ]

A few years ago, we wrote about Zhifeng Huang's jet-foot equipped bipedal robot, and he's been continuing to work on it to the point where it can now step over gaps that are an absolutely astonishing 147% of its leg length.

[ Paper ]

Thanks Zhifeng!

The Inception Drive is a novel, ultra-compact design for an Infinitely Variable Transmission (IVT) that uses nested-pulleys to adjust the gear ratio between input and output shafts. This video shows the first proof-of-concept prototype for a “Fully Balanced” design, where the spinning masses within the drive are completely balanced to reduce vibration, thereby allowing the drive to operate more efficiently and at higher speeds than achievable on an unbalanced design.

As shown in this video, the Inception Drive can change both the speed and direction of rotation of the output shaft while keeping the direction and speed of the input shaft constant. This ability to adjust speed and direction within such a compact package makes the Inception Drive a compelling choice for machine designers in a wide variety of fields, including robotics, automotive, and renewable-energy generation.

[ SRI ]

Robots with kinematic loops are known to have superior mechanical performance. However, due to these loops, their modeling and control is challenging, and prevents a more widespread use. In this paper, we describe a versatile Inverse Kinematics (IK) formulation for the retargeting of expressive motions onto mechanical systems with loops.

[ Disney Research ]

Watch Engineered Arts put together one of its Mesmer robots in a not at all uncanny way.

[ Engineered Arts ]

There's been a bunch of interesting research into vision-based tactile sensing recently; here's some from Van Ho at JAIST:

[ Paper ]

Thanks Van!

This is really more of an automated system than a robot, but these little levitating pucks are very very slick.

ACOPOS 6D is based on the principle of magnetic levitation: Shuttles with integrated permanent magnets float over the surface of electromagnetic motor segments. The modular motor segments are 240 x 240 millimeters in size and can be arranged freely in any shape. A variety of shuttle sizes carry payloads of 0.6 to 14 kilograms and reach speeds of up to 2 meters per second. They can move freely in two-dimensional space, rotate and tilt along three axes and offer precise control over the height of levitation. All together, that gives them six degrees of motion control freedom.

[ ACOPOS ]

Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.

[ CHARM Lab ]

The quadrotor experts at UZH have been really cranking it up recently.

Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modelling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14m/s and accelerations beyond 4g.

[ Paper ]

I have not heard much from Harvest Automation over the last couple years and their website was last updated in 2016, but I guess they're selling robots in France, so that's good?

[ Harvest Automation ]

Last year, Clearpath Robotics introduced a ROS package for Spot which enables robotics developers to leverage ROS capabilities out-of-the-box. Here at OTTO Motors, we thought it would be a compelling test case to see just how easy it would be to integrate Spot into our test fleet of OTTO materials handling robots.

[ OTTO Motors ]

Video showcasing recent robotics activities at PRISMA Lab, coordinated by Prof. Bruno Siciliano, at Università di Napoli Federico II.

[ PRISMA Lab ]

Thanks Fan!

State estimation framework developed by the team CoSTAR for the DARPA Subterranean Challenge, where the team achieved 2nd and 1st places in the Tunnel and Urban circuits.

[ Paper ]

Highlights from the 2020 ROS Industrial conference.

[ ROS Industrial ]

Thanks Thilo!

Not robotics, but entertaining anyway. From the CHI 1995 Technical Video Program, “The Tablet Newspaper: a Vision for the Future.”

[ CHI 1995 ]

This week's GRASP on Robotics seminar comes from Allison Okamura at Stanford, on “Wearable Haptic Devices for Ubiquitous Communication.”

Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. We explore the design of a wide array of haptic feedback mechanisms, ranging from devices that can be actively touched by the fingertips to multi-modal haptic actuation mounted on the arm. We demonstrate how these devices are effective in virtual reality, human-machine communication, and human-human communication.

[ UPenn ] Continue reading

Posted in Human Robots

#438006 Smellicopter Drone Uses Live Moth ...

Research into robotic sensing has, understandably I guess, been very human-centric. Most of us navigate and experience the world visually and in 3D, so robots tend to get covered with things like cameras and lidar. Touch is important to us, as is sound, so robots are getting pretty good with understanding tactile and auditory information, too. Smell, though? In most cases, smell doesn’t convey nearly as much information for us, so while it hasn’t exactly been ignored in robotics, it certainly isn’t the sensing modality of choice in most cases.

Part of the problem with smell sensing is that we just don’t have a good way of doing it, from a technical perspective. This has been a challenge for a long time, and it’s why we either bribe or trick animals like dogs, rats, vultures, and other animals to be our sensing systems for airborne chemicals. If only they’d do exactly what we wanted them to do all the time, this would be fine, but they don’t, so it’s not.

Until we get better at making chemical sensors, leveraging biology is the best we can do, and what would be ideal would be some sort of robot-animal hybrid cyborg thing. We’ve seen some attempts at remote controlled insects, but as it turns out, you can simplify things if you don’t use the entire insect, but instead just find a way to use its sensing system. Enter the Smellicopter.

There’s honestly not too much to say about the drone itself. It’s an open-source drone project called Crazyflie 2.0, with some additional off the shelf sensors for obstacle avoidance and stabilization. The interesting bits are a couple of passive fins that keep the drone pointed into the wind, and then the sensor, called an electroantennogram.

Image: UW

The drone’s sensor, called an electroantennogram, consists of a “single excised antenna” from a Manduca sexta hawkmoth and a custom signal processing circuit.

To make one of these sensors, you just, uh, “harvest” an antenna from a live hawkmoth. Obligingly, the moth antenna is hollow, meaning that you can stick electrodes up it. Whenever the olfactory neurons in the antenna (which is still technically alive even though it’s not attached to the moth anymore) encounter an odor that they’re looking for, they produce an electrical signal that the electrodes pick up. Plug the other ends of the electrodes into a voltage amplifier and filter, run it through an analog to digital converter, and you’ve got a chemical sensor that weighs just 1.5 gram and consumes only 2.7 mW of power. It’s significantly more sensitive than a conventional metal-oxide odor sensor, in a much smaller and more efficient form factor, making it ideal for drones.

To localize an odor, the Smellicopter uses a simple bioinspired approach called crosswind casting, which involves moving laterally left and right and then forward when an odor is detected. Here’s how it works:

The vehicle takes off to a height of 40 cm and then hovers for ten seconds to allow it time to orient upwind. The smellicopter starts casting left and right crosswind. When a volatile chemical is detected, the smellicopter will surge 25 cm upwind, and then resume casting. As long as the wind direction is fairly consistent, this strategy will bring the insect or robot increasingly closer to a singular source with each surge.

Since odors are airborne, they need a bit of a breeze to spread very far, and the Smellicopter won’t be able to detect them unless it’s downwind of the source. But, that’s just how odors work— even if you’re right next to the source, if the wind is blowing from you towards the source rather than the other way around, you might not catch a whiff of it.

Whenever the olfactory neurons in the antenna encounter an odor that they’re looking for, they produce an electrical signal that the electrodes pick up

There are a few other constraints to keep in mind with this sensor as well. First, rather than detecting something useful (like explosives), it’s going to detect the smells of pretty flowers, because moths like pretty flowers. Second, the antenna will literally go dead on you within a couple hours, since it only functions while its tissues are alive and metaphorically kicking. Interestingly, it may be possible to use CRISPR-based genetic modification to breed moths with antennae that do respond to useful smells, which would be a neat trick, and we asked the researchers—Melanie Anderson, a doctoral student of mechanical engineering at the University of Washington, in Seattle; Thomas Daniel, a UW professor of biology; and Sawyer Fuller, a UW assistant professor of mechanical engineering—about this, along with some other burning questions, via email.

IEEE Spectrum, asking the important questions first: So who came up with “Smellicopter”?

Melanie Anderson: Tom Daniel coined the term “Smellicopter”. Another runner up was “OdorRotor”!

In general, how much better are moths at odor localization than robots?

Melanie Anderson: Moths are excellent at odor detection and odor localization and need to be in order to find mates and food. Their antennae are much more sensitive and specialized than any portable man-made odor sensor. We can't ask the moths how exactly they search for odors so well, but being able to have the odor sensitivity of a moth on a flying platform is a big step in that direction.

Tom Daniel: Our best estimate is that they outperform robotic sensing by at least three orders of magnitude.

How does the localization behavior of the Smellicopter compare to that of a real moth?

Anderson: The cast-and-surge odor search strategy is a simplified version of what we believe the moth (and many other odor searching animals) are doing. It is a reactive strategy that relies on the knowledge that if you detect odor, you can assume that the source is somewhere up-wind of you. When you detect odor, you simply move upwind, and when you lose the odor signal you cast in a cross-wind direction until you regain the signal.

Can you elaborate on the potential for CRISPR to be able to engineer moths for the detection of specific chemicals?

Anderson: CRISPR is already currently being used to modify the odor detection pathways in moth species. It is one of our future efforts to specifically use this to make the antennae sensitive to other chemicals of interest, such as the chemical scent of explosives.

Sawyer Fuller: We think that one of the strengths of using a moth's antenna, in addition to its speed, is that it may provide a path to both high chemical specificity as well as high sensitivity. By expressing a preponderance of only one or a few chemosensors, we are anticipating that a moth antenna will give a strong response only to that chemical. There are several efforts underway in other research groups to make such specific, sensitive chemical detectors. Chemical sensing is an area where biology exceeds man-made systems in terms of efficiency, small size, and sensitivity. So that's why we think that the approach of trying to leverage biological machinery that already exists has some merit.

You mention that the antennae lifespan can be extended for a few days with ice- how feasible do you think this technology is outside of a research context?

Anderson: The antennae can be stored in tiny vials in a standard refrigerator or just with an ice pack to extend their life to about a week. Additionally, the process for attaching the antenna to the electrical circuit is a teachable skill. It is definitely feasible outside of a research context.

Considering the trajectory that sensor development is on, how long do you think that this biological sensor system will outperform conventional alternatives?

Anderson: It's hard to speak toward what will happen in the future, but currently, the moth antenna still stands out among any commercially-available portable sensors.

There have been some experiments with cybernetic insects; what are the advantages and disadvantages of your approach, as opposed to (say) putting some sort of tracking system on a live moth?

Daniel: I was part of a cyber insect team a number of years ago. The challenge of such research is that the animal has natural reactions to attempts to steer or control it.

Anderson: While moths are better at odor tracking than robots currently, the advantage of the drone platform is that we have control over it. We can tell it to constrain the search to a certain area, and return after it finishes searching.

What can you tell us about the health, happiness, and overall wellfare of the moths in your experiments?

Anderson: The moths are cold anesthetized before the antennae are removed. They are then frozen so that they can be used for teaching purposes or in other research efforts.

What are you working on next?

Daniel: The four big efforts are (1) CRISPR modification, (2) experiments aimed at improving the longevity of the antennal preparation, (3) improved measurements of antennal electrical responses to odors combined with machine learning to see if we can classify different odors, and (4) flight in outdoor environments.

Fuller: The moth's antenna sensor gives us a new ability to sense with a much shorter latency than was previously possible with similarly-sized sensors (e.g. semiconductor sensors). What exactly a robot agent should do to best take advantage of this is an open question. In particular, I think the speed may help it to zero in on plume sources in complex environments much more quickly. Think of places like indoor settings with flow down hallways that splits out at doorways, and in industrial settings festooned with pipes and equipment. We know that it is possible to search out and find odors in such scenarios, as anybody who has had to contend with an outbreak of fruit flies can attest. It is also known that these animals respond very quickly to sudden changes in odor that is present in such turbulent, patchy plumes. Since it is hard to reduce such plumes to a simple model, we think that machine learning may provide insights into how to best take advantage of the improved temporal plume information we now have available.

Tom Daniel also points out that the relative simplicity of this project (now that the UW researchers have it all figured out, that is) means that even high school students could potentially get involved in it, even if it’s on a ground robot rather than a drone. All the details are in the paper that was just published in Bioinspiration & Biomimetics. Continue reading

Posted in Human Robots