Tag Archives: rescue

#432891 This Week’s Awesome Stories From ...

Elon Musk Presents His Tunnel Vision to the People of LA
Jack Stewart and Aarian Marshall | Wired
“Now, Musk wants to build this new, 2.1-mile tunnel, near LA’s Sepulveda pass. It’s all part of his broader vision of a sprawling network that could take riders from Sherman Oaks in the north to Long Beach Airport in the south, Santa Monica in the west to Dodger Stadium in the east—without all that troublesome traffic.”

Feel What This Robot Feels Through Tactile Expressions
Evan Ackerman | IEEE Spectrum
“Guy Hoffman’s Human-Robot Collaboration & Companionship (HRC2) Lab at Cornell University is working on a new robot that’s designed to investigate this concept of textural communication, which really hasn’t been explored in robotics all that much. The robot uses a pneumatically powered elastomer skin that can be dynamically textured with either goosebumps or spikes, which should help it communicate more effectively, especially if what it’s trying to communicate is, ‘Don’t touch me!’”

In Virtual Reality, How Much Body Do You Need?
Steph Yin | The New York Times
“In a paper published Tuesday in Scientific Reports, they showed that animating virtual hands and feet alone is enough to make people feel their sense of body drift toward an invisible avatar. Their work fits into a corpus of research on illusory body ownership, which has challenged understandings of perception and contributed to therapies like treating pain for amputees who experience phantom limb.”

How Graphene and Gold Could Help Us Test Drugs and Monitor Cancer
Angela Chen | The Verge
“In today’s study, scientists learned to precisely control the amount of electricity graphene generates by changing how much light they shine on the material. When they grew heart cells on the graphene, they could manipulate the cells too, says study co-author Alex Savtchenko, a physicist at the University of California, San Diego. They could make it beat 1.5 times faster, three times faster, 10 times faster, or whatever they needed.”

Robotic Noses Could Be the Future of Disaster Rescue—If They Can Outsniff Search Dogs
Eleanor Cummins | Popular Science
“While canine units are a tried and fairly true method for identifying people trapped in the wreckage of a disaster, analytical chemists have for years been working in the lab to create a robotic alternative. A synthetic sniffer, they argue, could potentially prove to be just as or even more reliable than a dog, more resilient in the face of external pressures like heat and humidity, and infinitely more portable.”

Image Credit: Sergey Nivens / Shutterstock.com Continue reading

Posted in Human Robots

#431951 Robots to the rescue: Saving lives with ...

Last week's sea rescue of Australian swimmers by an Unmanned Aerial Vehicle (UAV) is just the start of a robotics revolution. Continue reading

Posted in Human Robots

#431654 Controllable Cyborg Beetles for Swarming ...

The smallest, most controllable cybernetic insect we've seen so far Continue reading

Posted in Human Robots

#431653 9 Robot Animals Built From Nature’s ...

Millions of years of evolution have allowed animals to develop some elegant and highly efficient solutions to problems like locomotion, flight, and dexterity. As Boston Dynamics unveils its latest mechanical animals, here’s a rundown of nine recent robots that borrow from nature and why.
SpotMini – Boston Dynamics

Starting with BigDog in 2005, the US company has built a whole stable of four-legged robots in recent years. Their first product was designed to be a robotic packhorse for soldiers that borrowed the quadrupedal locomotion of animals to travel over terrain too rough for conventional vehicles.
The US Army ultimately rejected the robot for being too noisy, according to the Guardian, but since then the company has scaled down its design, first to the Spot, then a first edition of the SpotMini that came out last year.
The latter came with a robotic arm where its head should be and was touted as a domestic helper, but a sleeker second edition without the arm was released earlier this month. There’s little detail on what the new robot is designed for, but the more polished design suggests a more consumer-focused purpose.
OctopusGripper – Festo

Festo has released a long line of animal-inspired machines over the years, from a mechanical kangaroo to robotic butterflies. Its latest creation isn’t a full animal—instead it’s a gripper based on an octopus tentacle that can be attached to the end of a robotic arm.
The pneumatically-powered device is made of soft silicone and features two rows of suction cups on its inner edge. By applying compressed air the tentacle can wrap around a wide variety of differently shaped objects, just like its natural counterpart, and a vacuum can be applied to the larger suction cups to grip the object securely. Because it’s soft, it holds promise for robots required to operate safely in collaboration with humans.
CRAM – University of California, Berkeley

Cockroaches are renowned for their hardiness and ability to disappear down cracks that seem far too small for them. Researchers at UC Berkeley decided these capabilities could be useful for search and rescue missions and so set about experimenting on the insects to find out their secrets.
They found the bugs can squeeze into gaps a fifth of their normal standing height by splaying their legs out to the side without significantly slowing themselves down. So they built a palm-sized robot with a jointed plastic shell that could do the same to squeeze into crevices half its normal height.
Snake Robot – Carnegie Mellon University

Search and rescue missions are a common theme for animal-inspired robots, but the snake robot built by CMU researchers is one of the first to be tested in a real disaster.
A team of roboticists from the university helped Mexican Red Cross workers search collapsed buildings for survivors after the 7.1-magnitude earthquake that struck Mexico City in September. The snake design provides a small diameter and the ability to move in almost any direction, which makes the robot ideal for accessing tight spaces, though the team was unable to locate any survivors.
The snake currently features a camera on the front, but researchers told IEEE Spectrum that the experience helped them realize they should also add a microphone to listen for people trapped under the rubble.
Bio-Hybrid Stingray – Harvard University

Taking more than just inspiration from the animal kingdom, a group from Harvard built a robotic stingray out of silicone and rat heart muscle cells.
The robot uses the same synchronized undulations along the edge of its fins to propel itself as a ray does. But while a ray has two sets of muscles to pull the fins up and down, the new device has only one that pulls them down, with a springy gold skeleton that pulls them back up again. The cells are also genetically modified to be activated by flashes of light.
The project’s leader eventually hopes to engineer a human heart, and both his stingray and an earlier jellyfish bio-robot are primarily aimed at better understanding how that organ works.
Bat Bot – Caltech

Most recent advances in drone technology have come from quadcopters, but Caltech engineers think rigid devices with rapidly spinning propellers are probably not ideal for use in close quarters with humans.
That’s why they turned to soft-winged bats for inspiration. That’s no easy feat, though, considering bats use more than 40 joints with each flap of their wings, so the team had to optimize down to nine joints to avoid it becoming too bulky. The simplified bat can’t ascend yet, but its onboard computer and sensors let it autonomously carry out glides, turns, and dives.
Salto – UC Berkeley

While even the most advanced robots tend to plod around, tree-dwelling animals have the ability to spring from branch to branch to clear obstacles and climb quickly. This could prove invaluable for search and rescue robots by allowing them to quickly traverse disordered rubble.
UC Berkeley engineers turned to the Senegal bush baby for inspiration after determining it scored highest in “vertical jumping agility”—a combination of how high and how frequently an animal can jump. They recreated its ability to get into a super-low crouch that stores energy in its tendons to create a robot that could carry out parkour-style double jumps off walls to quickly gain height.
Pleurobot – École Polytechnique Fédérale de Lausanne

Normally robots are masters of air, land, or sea, but the robotic salamander built by researchers at EPFL can both walk and swim.
Its designers used X-ray videos to carefully study how the amphibians move before using this to build a true-to-life robotic version using 3D printed bones, motorized joints, and a synthetic nervous system made up of electronic circuitry.
The robot’s low center of mass and segmented legs make it great at navigating rough terrain without losing balance, and the ability to swim gives added versatility. They also hope it will help paleontologists gain a better understanding of the movements of the first tetrapods to transition from water to land, which salamanders are the best living analog of.
Eelume – Eelume

A snakelike body isn’t only useful on land—eels are living proof it’s an efficient way to travel underwater, too. Norwegian robotics company Eelume has borrowed these principles to build a robot capable of sub-sea inspection, maintenance, and repair.
The modular design allows operators to put together their own favored configuration of joints and payloads such as sensors and tools. And while an early version of the robot used the same method of locomotion as an eel, the latest version undergoing sea trials has added a variety of thrusters for greater speeds and more maneuverability.
Image Credit: Boston Dynamics / YouTube Continue reading

Posted in Human Robots

#430955 This Inspiring Teenager Wants to Save ...

It’s not every day you meet a high school student who’s been building functional robots since age 10. Then again, Mihir Garimella is definitely not your average teenager.
When I sat down to interview him recently at Singularity University’s Global Summit, that much was clear.
Mihir’s curiosity for robotics began at age two when his parents brought home a pet dog—well, a robotic dog. A few years passed with this robotic companion by his side, and Mihir became fascinated with how software and hardware could bring inanimate objects to “life.”
When he was 10, Mihir built a robotic violin tuner called Robo-Mozart to help him address a teacher’s complaints about his always-out-of-tune violin. The robot analyzes the sound of the violin, determines which strings are out of tune, and then uses motors to turn the tuning pegs.
Robo-Mozart and other earlier projects helped Mihir realize he could use robotics to solve real problems. Fast-forward to age 14 and Flybot, a tiny, low-cost emergency response drone that won Mihir top honors in his age category at the 2015 Google Science Fair.

The small drone is propelled by four rotors and is designed to mimic how fruit flies can speedily see and react to surrounding threats. It’s a design idea that hit Mihir when he and his family returned home after a long vacation to discover they had left bananas on their kitchen counter. The house was filled with fruit flies.
After many failed attempts to swat the flies, Mihir started wondering how these tiny creatures with small brains and horrible vision were such masterful escape artists. He began digging through research papers on fruit flies and came to an interesting conclusion.
Since fruit flies can’t see a lot of detail, they compensate by processing visual information very fast—ten times faster than people do.
“That’s what enables them to escape so effectively,” says Mihir.
Escaping a threat for a fruit fly could mean quickly avoiding a fatal swat from a human hand. Applied to a search-and-response drone, the scenario shifts—picture a drone instantaneously detecting and avoiding a falling ceiling while searching for survivors inside a collapsing building.

Now, at 17, Mihir is still pushing Flybot forward. He’s developing software to enable the drone to operate autonomously and hopes it will be able to navigate environments such as a burning building, or a structure that’s been hit by an earthquake. The drone is also equipped with intelligent sensors to collect spatial data it will use to maneuver around obstacles and detect things like a trapped person or the location of a gas leak.
For everyone concerned about robots eating jobs, Flybot is a perfect example of how technology can aid existing jobs.
Flybot could substitute for a first responder entering a dangerous situation or help a firefighter make a quicker rescue by showing where victims are trapped. With its small and fast design, the drone could also presumably carry out an initial search-and-rescue sweep in just a few minutes.
Mihir is committed to commercializing the product and keeping it within a $250–$500 price range, which is a fraction of the cost of many current emergency response drones. He hopes the low cost will allow the technology to be used in developing countries.
Next month, Mihir starts his freshman year at Stanford, where he plans to keep up his research and create a company to continue work on the drone.
When I asked Mihir what fuels him, he said, “Curiosity is a great skill for inventors. It lets you find inspiration in a lot of places that you may not look. If I had started by trying to build an escape algorithm for these drones, I wouldn’t know where to start. But looking at fruit flies and getting inspired by them, it gave me a really good place to look for inspiration.”
It’s a bit mind boggling how much Mihir has accomplished by age 17, but I suspect he’s just getting started.
Image Credit: Google Science Fair via YouTube Continue reading

Posted in Human Robots