Tag Archives: Mike

#435676 Intel’s Neuromorphic System Hits 8 ...

At the DARPA Electronics Resurgence Initiative Summit today in Detroit, Intel plans to unveil an 8-million-neuron neuromorphic system comprising 64 Loihi research chips—codenamed Pohoiki Beach. Loihi chips are built with an architecture that more closely matches the way the brain works than do chips designed to do deep learning or other forms of AI. For the set of problems that such “spiking neural networks” are particularly good at, Loihi is about 1,000 times as fast as a CPU and 10,000 times as energy efficient. The new 64-Loihi system represents the equivalent of 8-million neurons, but that’s just a step to a 768-chip, 100-million-neuron system that the company plans for the end of 2019.

Intel and its research partners are just beginning to test what massive neural systems like Pohoiki Beach can do, but so far the evidence points to even greater performance and efficiency, says Mike Davies, director of neuromorphic research at Intel.

“We’re quickly accumulating results and data that there are definite benefits… mostly in the domain of efficiency. Virtually every one that we benchmark…we find significant gains in this architecture,” he says.

Going from a single-Loihi to 64 of them is more of a software issue than a hardware one. “We designed scalability into the Loihi chip from the beginning,” says Davies. “The chip has a hierarchical routing interface…which allows us to scale to up to 16,000 chips. So 64 is just the next step.”

Photo: Tim Herman/Intel Corporation

One of Intel’s Nahuku boards, each of which contains 8 to 32 Intel Loihi neuromorphic chips, shown here interfaced to an Intel Arria 10 FPGA development kit. Intel’s latest neuromorphic system, Pohoiki Beach, is made up of multiple Nahuku boards and contains 64 Loihi chips.

Finding algorithms that run well on an 8-million-neuron system and optimizing those algorithms in software is a considerable effort, he says. Still, the payoff could be huge. Neural networks that are more brain-like, such as Loihi, could be immune to some of the artificial intelligence’s—for lack of a better word—dumbness.

For example, today’s neural networks suffer from something called catastrophic forgetting. If you tried to teach a trained neural network to recognize something new—a new road sign, say—by simply exposing the network to the new input, it would disrupt the network so badly that it would become terrible at recognizing anything. To avoid this, you have to completely retrain the network from the ground up. (DARPA’s Lifelong Learning, or L2M, program is dedicated to solving this problem.)

(Here’s my favorite analogy: Say you coached a basketball team, and you raised the net by 30 centimeters while nobody was looking. The players would miss a bunch at first, but they’d figure things out quickly. If those players were like today’s neural networks, you’d have to pull them off the court and teach them the entire game over again—dribbling, passing, everything.)

Loihi can run networks that might be immune to catastrophic forgetting, meaning it learns a bit more like a human. In fact, there’s evidence through a research collaboration with Thomas Cleland’s group at Cornell University, that Loihi can achieve what’s called one-shot learning. That is, learning a new feature after being exposed to it only once. The Cornell group showed this by abstracting a model of the olfactory system so that it would run on Loihi. When exposed to a new virtual scent, the system not only didn't catastrophically forget everything else it had smelled, it learned to recognize the new scent just from the single exposure.

Loihi might also be able to run feature-extraction algorithms that are immune to the kinds of adversarial attacks that befuddle today’s image recognition systems. Traditional neural networks don’t really understand the features they’re extracting from an image in the way our brains do. “They can be fooled with simplistic attacks like changing individual pixels or adding a screen of noise that wouldn’t fool a human in any way,” Davies explains. But the sparse-coding algorithms Loihi can run work more like the human visual system and so wouldn’t fall for such shenanigans. (Disturbingly, humans are not completely immune to such attacks.)

Photo: Tim Herman/Intel Corporation

A close-up shot of Loihi, Intel’s neuromorphic research chip. Intel’s latest neuromorphic system, Pohoiki Beach, will be comprised of 64 of these Loihi chips.

Researchers have also been using Loihi to improve real-time control for robotic systems. For example, last week at the Telluride Neuromorphic Cognition Engineering Workshop—an event Davies called “summer camp for neuromorphics nerds”—researchers were hard at work using a Loihi-based system to control a foosball table. “It strikes people as crazy,” he says. “But it’s a nice illustration of neuromorphic technology. It’s fast, requires quick response, quick planning, and anticipation. These are what neuromorphic chips are good at.” Continue reading

Posted in Human Robots

#435174 Revolt on the Horizon? How Young People ...

As digital technologies facilitate the growth of both new and incumbent organizations, we have started to see the darker sides of the digital economy unravel. In recent years, many unethical business practices have been exposed, including the capture and use of consumers’ data, anticompetitive activities, and covert social experiments.

But what do young people who grew up with the internet think about this development? Our research with 400 digital natives—19- to 24-year-olds—shows that this generation, dubbed “GenTech,” may be the one to turn the digital revolution on its head. Our findings point to a frustration and disillusionment with the way organizations have accumulated real-time information about consumers without their knowledge and often without their explicit consent.

Many from GenTech now understand that their online lives are of commercial value to an array of organizations that use this insight for the targeting and personalization of products, services, and experiences.

This era of accumulation and commercialization of user data through real-time monitoring has been coined “surveillance capitalism” and signifies a new economic system.

Artificial Intelligence
A central pillar of the modern digital economy is our interaction with artificial intelligence (AI) and machine learning algorithms. We found that 47 percent of GenTech do not want AI technology to monitor their lifestyle, purchases, and financial situation in order to recommend them particular things to buy.

In fact, only 29 percent see this as a positive intervention. Instead, they wish to maintain a sense of autonomy in their decision making and have the opportunity to freely explore new products, services, and experiences.

As individuals living in the digital age, we constantly negotiate with technology to let go of or retain control. This pendulum-like effect reflects the ongoing battle between humans and technology.

My Life, My Data?
Our research also reveals that 54 percent of GenTech are very concerned about the access organizations have to their data, while only 19 percent were not worried. Despite the EU General Data Protection Regulation being introduced in May 2018, this is still a major concern, grounded in a belief that too much of their data is in the possession of a small group of global companies, including Google, Amazon, and Facebook. Some 70 percent felt this way.

In recent weeks, both Facebook and Google have vowed to make privacy a top priority in the way they interact with users. Both companies have faced public outcry for their lack of openness and transparency when it comes to how they collect and store user data. It wasn’t long ago that a hidden microphone was found in one of Google’s home alarm products.

Google now plans to offer auto-deletion of users’ location history data, browsing, and app activity as well as extend its “incognito mode” to Google Maps and search. This will enable users to turn off tracking.

At Facebook, CEO Mark Zuckerberg is keen to reposition the platform as a “privacy focused communications platform” built on principles such as private interactions, encryption, safety, interoperability (communications across Facebook-owned apps and platforms), and secure data storage. This will be a tough turnaround for the company that is fundamentally dependent on turning user data into opportunities for highly individualized advertising.

Privacy and transparency are critically important themes for organizations today, both for those that have “grown up” online as well as the incumbents. While GenTech want organizations to be more transparent and responsible, 64 percent also believe that they cannot do much to keep their data private. Being tracked and monitored online by organizations is seen as part and parcel of being a digital consumer.

Despite these views, there is a growing revolt simmering under the surface. GenTech want to take ownership of their own data. They see this as a valuable commodity, which they should be given the opportunity to trade with organizations. Some 50 percent would willingly share their data with companies if they got something in return, for example a financial incentive.

Rewiring the Power Shift
GenTech are looking to enter into a transactional relationship with organizations. This reflects a significant change in attitudes from perceiving the free access to digital platforms as the “product” in itself (in exchange for user data), to now wishing to use that data to trade for explicit benefits.

This has created an opportunity for companies that seek to empower consumers and give them back control of their data. Several companies now offer consumers the opportunity to sell the data they are comfortable sharing or take part in research that they get paid for. More and more companies are joining this space, including People.io, Killi, and Ocean Protocol.

Sir Tim Berners Lee, the creator of the world wide web, has also been working on a way to shift the power from organizations and institutions back to citizens and consumers. The platform, Solid, offers users the opportunity to be in charge of where they store their data and who can access it. It is a form of re-decentralization.

The Solid POD (Personal Online Data storage) is a secure place on a hosted server or the individual’s own server. Users can grant apps access to their POD as a person’s data is stored centrally and not by an app developer or on an organization’s server. We see this as potentially being a way to let people take back control from technology and other companies.

GenTech have woken up to a reality where a life lived “plugged in” has significant consequences for their individual privacy and are starting to push back, questioning those organizations that have shown limited concern and continue to exercise exploitative practices.

It’s no wonder that we see these signs of revolt. GenTech is the generation with the most to lose. They face a life ahead intertwined with digital technology as part of their personal and private lives. With continued pressure on organizations to become more transparent, the time is now for young people to make their move.

Dr Mike Cooray, Professor of Practice, Hult International Business School and Dr Rikke Duus, Research Associate and Senior Teaching Fellow, UCL

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Ser Borakovskyy / Shutterstock.com Continue reading

Posted in Human Robots