Tag Archives: machines

#434544 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind Beats Pros at Starcraft in Another Triumph for Bots
Tom Simonite | Wired
“DeepMind’s feat is the most complex yet in a long train of contests in which computers have beaten top humans at games. Checkers fell in 1994, chess in 1997, and DeepMind’s earlier bot AlphaGo became the first to beat a champion at the board game Go in 2016. The StarCraft bot is the most powerful AI game player yet; it may also be the least unexpected.”

GENETICS
Complete Axolotl Genome Could Pave the Way Toward Human Tissue Regeneration
George Dvorsky | Gizmodo
“Now that researchers have a near-complete axolotl genome—the new assembly still requires a bit of fine-tuning (more on that in a bit)—they, along with others, can now go about the work of identifying the genes responsible for axolotl tissue regeneration.”

FUTURE
We Analyzed 16,625 Papers to Figure Out Where AI Is Headed Next
Karen Hao | MIT Technology Review
“…though deep learning has singlehandedly thrust AI into the public eye, it represents just a small blip in the history of humanity’s quest to replicate our own intelligence. It’s been at the forefront of that effort for less than 10 years. When you zoom out on the whole history of the field, it’s easy to realize that it could soon be on its way out.”

COMPUTING
Apple’s Finger-Controller Patent Is a Glimpse at Mixed Reality’s Future
Mark Sullivan | Fast Company
“[Apple’s] engineers are now looking past the phone touchscreen toward mixed reality, where the company’s next great UX will very likely be built. A recent patent application gives some tantalizing clues as to how Apple’s people are thinking about aspects of that challenge.”

GOVERNANCE
How Do You Govern Machines That Can Learn? Policymakers Are Trying to Figure That Out
Steve Lohr | The New York Times
“Regulation is coming. That’s a good thing. Rules of competition and behavior are the foundation of healthy, growing markets. That was the consensus of the policymakers at MIT. But they also agreed that artificial intelligence raises some fresh policy challenges.”

Image Credit: Victoria Shapiro / Shutterstock.com Continue reading

Posted in Human Robots

#434336 These Smart Seafaring Robots Have a ...

Drones. Self-driving cars. Flying robo taxis. If the headlines of the last few years are to be believed, terrestrial transportation in the future will someday be filled with robotic conveyances and contraptions that will require little input from a human other than to download an app.

But what about the other 70 percent of the planet’s surface—the part that’s made up of water?

Sure, there are underwater drones that can capture 4K video for the next BBC documentary. Remotely operated vehicles (ROVs) are capable of diving down thousands of meters to investigate ocean vents or repair industrial infrastructure.

Yet most of the robots on or below the water today still lean heavily on the human element to operate. That’s not surprising given the unstructured environment of the seas and the poor communication capabilities for anything moving below the waves. Autonomous underwater vehicles (AUVs) are probably the closest thing today to smart cars in the ocean, but they generally follow pre-programmed instructions.

A new generation of seafaring robots—leveraging artificial intelligence, machine vision, and advanced sensors, among other technologies—are beginning to plunge into the ocean depths. Here are some of the latest and most exciting ones.

The Transformer of the Sea
Nic Radford, chief technology officer of Houston Mechatronics Inc. (HMI), is hesitant about throwing around the word “autonomy” when talking about his startup’s star creation, Aquanaut. He prefers the term “shared control.”

Whatever you want to call it, Aquanaut seems like something out of the script of a Transformers movie. The underwater robot begins each mission in a submarine-like shape, capable of autonomously traveling up to 200 kilometers on battery power, depending on the assignment.

When Aquanaut reaches its destination—oil and gas is the primary industry HMI hopes to disrupt to start—its four specially-designed and built linear actuators go to work. Aquanaut then unfolds into a robot with a head, upper torso, and two manipulator arms, all while maintaining proper buoyancy to get its job done.

The lightbulb moment of how to engineer this transformation from submarine to robot came one day while Aquanaut’s engineers were watching the office’s stand-up desks bob up and down. The answer to the engineering challenge of the hull suddenly seemed obvious.

“We’re just gonna build a big, gigantic, underwater stand-up desk,” Radford told Singularity Hub.

Hardware wasn’t the only problem the team, comprised of veteran NASA roboticists like Radford, had to solve. In order to ditch the expensive support vessels and large teams of humans required to operate traditional ROVs, Aquanaut would have to be able to sense its environment in great detail and relay that information back to headquarters using an underwater acoustics communications system that harkens back to the days of dial-up internet connections.

To tackle that problem of low bandwidth, HMI equipped Aquanaut with a machine vision system comprised of acoustic, optical, and laser-based sensors. All of that dense data is compressed using in-house designed technology and transmitted to a single human operator who controls Aquanaut with a few clicks of a mouse. In other words, no joystick required.

“I don’t know of anyone trying to do this level of autonomy as it relates to interacting with the environment,” Radford said.

HMI got $20 million earlier this year in Series B funding co-led by Transocean, one of the world’s largest offshore drilling contractors. That should be enough money to finish the Aquanaut prototype, which Radford said is about 99.8 percent complete. Some “high-profile” demonstrations are planned for early next year, with commercial deployments as early as 2020.

“What just gives us an incredible advantage here is that we have been born and bred on doing robotic systems for remote locations,” Radford noted. “This is my life, and I’ve bet the farm on it, and it takes this kind of fortitude and passion to see these things through, because these are not easy problems to solve.”

On Cruise Control
Meanwhile, a Boston-based startup is trying to solve the problem of making ships at sea autonomous. Sea Machines is backed by about $12.5 million in capital venture funding, with Toyota AI joining the list of investors in a $10 million Series A earlier this month.

Sea Machines is looking to the self-driving industry for inspiration, developing what it calls “vessel intelligence” systems that can be retrofitted on existing commercial vessels or installed on newly-built working ships.

For instance, the startup announced a deal earlier this year with Maersk, the world’s largest container shipping company, to deploy a system of artificial intelligence, computer vision, and LiDAR on the Danish company’s new ice-class container ship. The technology works similar to advanced driver-assistance systems found in automobiles to avoid hazards. The proof of concept will lay the foundation for a future autonomous collision avoidance system.

It’s not just startups making a splash in autonomous shipping. Radford noted that Rolls Royce—yes, that Rolls Royce—is leading the way in the development of autonomous ships. Its Intelligence Awareness system pulls in nearly every type of hyped technology on the market today: neural networks, augmented reality, virtual reality, and LiDAR.

In augmented reality mode, for example, a live feed video from the ship’s sensors can detect both static and moving objects, overlaying the scene with details about the types of vessels in the area, as well as their distance, heading, and other pertinent data.

While safety is a primary motivation for vessel automation—more than 1,100 ships have been lost over the past decade—these new technologies could make ships more efficient and less expensive to operate, according to a story in Wired about the Rolls Royce Intelligence Awareness system.

Sea Hunt Meets Science
As Singularity Hub noted in a previous article, ocean robots can also play a critical role in saving the seas from environmental threats. One poster child that has emerged—or, invaded—is the spindly lionfish.

A venomous critter endemic to the Indo-Pacific region, the lionfish is now found up and down the east coast of North America and beyond. And it is voracious, eating up to 30 times its own stomach volume and reducing juvenile reef fish populations by nearly 90 percent in as little as five weeks, according to the Ocean Support Foundation.

That has made the colorful but deadly fish Public Enemy No. 1 for many marine conservationists. Both researchers and startups are developing autonomous robots to hunt down the invasive predator.

At the Worcester Polytechnic Institute, for example, students are building a spear-carrying robot that uses machine learning and computer vision to distinguish lionfish from other aquatic species. The students trained the algorithms on thousands of different images of lionfish. The result: a lionfish-killing machine that boasts an accuracy of greater than 95 percent.

Meanwhile, a small startup called the American Marine Research Corporation out of Pensacola, Florida is applying similar technology to seek and destroy lionfish. Rather than spearfishing, the AMRC drone would stun and capture the lionfish, turning a profit by selling the creatures to local seafood restaurants.

Lionfish: It’s what’s for dinner.

Water Bots
A new wave of smart, independent robots are diving, swimming, and cruising across the ocean and its deepest depths. These autonomous systems aren’t necessarily designed to replace humans, but to venture where we can’t go or to improve safety at sea. And, perhaps, these latest innovations may inspire the robots that will someday plumb the depths of watery planets far from Earth.

Image Credit: Houston Mechatronics, Inc. Continue reading

Posted in Human Robots

#434303 Making Superhumans Through Radical ...

Imagine trying to read War and Peace one letter at a time. The thought alone feels excruciating. But in many ways, this painful idea holds parallels to how human-machine interfaces (HMI) force us to interact with and process data today.

Designed back in the 1970s at Xerox PARC and later refined during the 1980s by Apple, today’s HMI was originally conceived during fundamentally different times, and specifically, before people and machines were generating so much data. Fast forward to 2019, when humans are estimated to produce 44 zettabytes of data—equal to two stacks of books from here to Pluto—and we are still using the same HMI from the 1970s.

These dated interfaces are not equipped to handle today’s exponential rise in data, which has been ushered in by the rapid dematerialization of many physical products into computers and software.

Breakthroughs in perceptual and cognitive computing, especially machine learning algorithms, are enabling technology to process vast volumes of data, and in doing so, they are dramatically amplifying our brain’s abilities. Yet even with these powerful technologies that at times make us feel superhuman, the interfaces are still crippled with poor ergonomics.

Many interfaces are still designed around the concept that human interaction with technology is secondary, not instantaneous. This means that any time someone uses technology, they are inevitably multitasking, because they must simultaneously perform a task and operate the technology.

If our aim, however, is to create technology that truly extends and amplifies our mental abilities so that we can offload important tasks, the technology that helps us must not also overwhelm us in the process. We must reimagine interfaces to work in coherence with how our minds function in the world so that our brains and these tools can work together seamlessly.

Embodied Cognition
Most technology is designed to serve either the mind or the body. It is a problematic divide, because our brains use our entire body to process the world around us. Said differently, our minds and bodies do not operate distinctly. Our minds are embodied.

Studies using MRI scans have shown that when a person feels an emotion in their gut, blood actually moves to that area of the body. The body and the mind are linked in this way, sharing information back and forth continuously.

Current technology presents data to the brain differently from how the brain processes data. Our brains, for example, use sensory data to continually encode and decipher patterns within the neocortex. Our brains do not create a linguistic label for each item, which is how the majority of machine learning systems operate, nor do our brains have an image associated with each of these labels.

Our bodies move information through us instantaneously, in a sense “computing” at the speed of thought. What if our technology could do the same?

Using Cognitive Ergonomics to Design Better Interfaces
Well-designed physical tools, as philosopher Martin Heidegger once meditated on while using the metaphor of a hammer, seem to disappear into the “hand.” They are designed to amplify a human ability and not get in the way during the process.

The aim of physical ergonomics is to understand the mechanical movement of the human body and then adapt a physical system to amplify the human output in accordance. By understanding the movement of the body, physical ergonomics enables ergonomically sound physical affordances—or conditions—so that the mechanical movement of the body and the mechanical movement of the machine can work together harmoniously.

Cognitive ergonomics applied to HMI design uses this same idea of amplifying output, but rather than focusing on physical output, the focus is on mental output. By understanding the raw materials the brain uses to comprehend information and form an output, cognitive ergonomics allows technologists and designers to create technological affordances so that the brain can work seamlessly with interfaces and remove the interruption costs of our current devices. In doing so, the technology itself “disappears,” and a person’s interaction with technology becomes fluid and primary.

By leveraging cognitive ergonomics in HMI design, we can create a generation of interfaces that can process and present data the same way humans process real-world information, meaning through fully-sensory interfaces.

Several brain-machine interfaces are already on the path to achieving this. AlterEgo, a wearable device developed by MIT researchers, uses electrodes to detect and understand nonverbal prompts, which enables the device to read the user’s mind and act as an extension of the user’s cognition.

Another notable example is the BrainGate neural device, created by researchers at Stanford University. Just two months ago, a study was released showing that this brain implant system allowed paralyzed patients to navigate an Android tablet with their thoughts alone.

These are two extraordinary examples of what is possible for the future of HMI, but there is still a long way to go to bring cognitive ergonomics front and center in interface design.

Disruptive Innovation Happens When You Step Outside Your Existing Users
Most of today’s interfaces are designed by a narrow population, made up predominantly of white, non-disabled men who are prolific in the use of technology (you may recall The New York Times viral article from 2016, Artificial Intelligence’s White Guy Problem). If you ask this population if there is a problem with today’s HMIs, most will say no, and this is because the technology has been designed to serve them.

This lack of diversity means a limited perspective is being brought to interface design, which is problematic if we want HMI to evolve and work seamlessly with the brain. To use cognitive ergonomics in interface design, we must first gain a more holistic understanding of how people with different abilities understand the world and how they interact with technology.

Underserved groups, such as people with physical disabilities, operate on what Clayton Christensen coined in The Innovator’s Dilemma as the fringe segment of a market. Developing solutions that cater to fringe groups can in fact disrupt the larger market by opening a downward, much larger market.

Learning From Underserved Populations
When technology fails to serve a group of people, that group must adapt the technology to meet their needs.

The workarounds created are often ingenious, specifically because they have not been arrived at by preferences, but out of necessity that has forced disadvantaged users to approach the technology from a very different vantage point.

When a designer or technologist begins learning from this new viewpoint and understanding challenges through a different lens, they can bring new perspectives to design—perspectives that otherwise can go unseen.

Designers and technologists can also learn from people with physical disabilities who interact with the world by leveraging other senses that help them compensate for one they may lack. For example, some blind people use echolocation to detect objects in their environments.

The BrainPort device developed by Wicab is an incredible example of technology leveraging one human sense to serve or compliment another. The BrainPort device captures environmental information with a wearable video camera and converts this data into soft electrical stimulation sequences that are sent to a device on the user’s tongue—the most sensitive touch receptor in the body. The user learns how to interpret the patterns felt on their tongue, and in doing so, become able to “see” with their tongue.

Key to the future of HMI design is learning how different user groups navigate the world through senses beyond sight. To make cognitive ergonomics work, we must understand how to leverage the senses so we’re not always solely relying on our visual or verbal interactions.

Radical Inclusion for the Future of HMI
Bringing radical inclusion into HMI design is about gaining a broader lens on technology design at large, so that technology can serve everyone better.

Interestingly, cognitive ergonomics and radical inclusion go hand in hand. We can’t design our interfaces with cognitive ergonomics without bringing radical inclusion into the picture, and we also will not arrive at radical inclusion in technology so long as cognitive ergonomics are not considered.

This new mindset is the only way to usher in an era of technology design that amplifies the collective human ability to create a more inclusive future for all.

Image Credit: jamesteohart / Shutterstock.com Continue reading

Posted in Human Robots

#434297 How Can Leaders Ensure Humanity in a ...

It’s hard to avoid the prominence of AI in our lives, and there is a plethora of predictions about how it will influence our future. In their new book Solomon’s Code: Humanity in a World of Thinking Machines, co-authors Olaf Groth, Professor of Strategy, Innovation and Economics at HULT International Business School and CEO of advisory network Cambrian.ai, and Mark Nitzberg, Executive Director of UC Berkeley’s Center for Human-Compatible AI, believe that the shift in balance of power between intelligent machines and humans is already here.

I caught up with the authors about how the continued integration between technology and humans, and their call for a “Digital Magna Carta,” a broadly-accepted charter developed by a multi-stakeholder congress that would help guide the development of advanced technologies to harness their power for the benefit of all humanity.

Lisa Kay Solomon: Your new book, Solomon’s Code, explores artificial intelligence and its broader human, ethical, and societal implications that all leaders need to consider. AI is a technology that’s been in development for decades. Why is it so urgent to focus on these topics now?

Olaf Groth and Mark Nitzberg: Popular perception always thinks of AI in terms of game-changing narratives—for instance, Deep Blue beating Gary Kasparov at chess. But it’s the way these AI applications are “getting into our heads” and making decisions for us that really influences our lives. That’s not to say the big, headline-grabbing breakthroughs aren’t important; they are.

But it’s the proliferation of prosaic apps and bots that changes our lives the most, by either empowering or counteracting who we are and what we do. Today, we turn a rapidly growing number of our decisions over to these machines, often without knowing it—and even more often without understanding the second- and third-order effects of both the technologies and our decisions to rely on them.

There is genuine power in what we call a “symbio-intelligent” partnership between human, machine, and natural intelligences. These relationships can optimize not just economic interests, but help improve human well-being, create a more purposeful workplace, and bring more fulfillment to our lives.

However, mitigating the risks while taking advantage of the opportunities will require a serious, multidisciplinary consideration of how AI influences human values, trust, and power relationships. Whether or not we acknowledge their existence in our everyday life, these questions are no longer just thought exercises or fodder for science fiction.

In many ways, these technologies can challenge what it means to be human, and their ramifications already affect us in real and often subtle ways. We need to understand how

LKS: There is a lot of hype and misconceptions about AI. In your book, you provide a useful distinction between the cognitive capability that we often associate with AI processes, and the more human elements of consciousness and conscience. Why are these distinctions so important to understand?

OG & MN: Could machines take over consciousness some day as they become more powerful and complex? It’s hard to say. But there’s little doubt that, as machines become more capable, humans will start to think of them as something conscious—if for no other reason than our natural inclination to anthropomorphize.

Machines are already learning to recognize our emotional states and our physical health. Once they start talking that back to us and adjusting their behavior accordingly, we will be tempted to develop a certain rapport with them, potentially more trusting or more intimate because the machine recognizes us in our various states.

Consciousness is hard to define and may well be an emergent property, rather than something you can easily create or—in turn—deduce to its parts. So, could it happen as we put more and more elements together, from the realms of AI, quantum computing, or brain-computer interfaces? We can’t exclude that possibility.

Either way, we need to make sure we’re charting out a clear path and guardrails for this development through the Three Cs in machines: cognition (where AI is today); consciousness (where AI could go); and conscience (what we need to instill in AI before we get there). The real concern is that we reach machine consciousness—or what humans decide to grant as consciousness—without a conscience. If that happens, we will have created an artificial sociopath.

LKS: We have been seeing major developments in how AI is influencing product development and industry shifts. How is the rise of AI changing power at the global level?

OG & MN: Both in the public and private sectors, the data holder has the power. We’ve already seen the ascendance of about 10 “digital barons” in the US and China who sit on huge troves of data, massive computing power, and the resources and money to attract the world’s top AI talent. With these gaps already open between the haves and the have-nots on the technological and corporate side, we’re becoming increasingly aware that similar inequalities are forming at a societal level as well.

Economic power flows with data, leaving few options for socio-economically underprivileged populations and their corrupt, biased, or sparse digital footprints. By concentrating power and overlooking values, we fracture trust.

We can already see this tension emerging between the two dominant geopolitical models of AI. China and the US have emerged as the most powerful in both technological and economic terms, and both remain eager to drive that influence around the world. The EU countries are more contained on these economic and geopolitical measures, but they’ve leaped ahead on privacy and social concerns.

The problem is, no one has yet combined leadership on all three critical elements of values, trust, and power. The nations and organizations that foster all three of these elements in their AI systems and strategies will lead the future. Some are starting to recognize the need for the combination, but we found just 13 countries that have created significant AI strategies. Countries that wait too long to join them risk subjecting themselves to a new “data colonialism” that could change their economies and societies from the outside.

LKS: Solomon’s Code looks at AI from a variety of perspectives, considering both positive and potentially dangerous effects. You caution against the rising global threat and weaponization of AI and data, suggesting that “biased or dirty data is more threatening than nuclear arms or a pandemic.” For global leaders, entrepreneurs, technologists, policy makers and social change agents reading this, what specific strategies do you recommend to ensure ethical development and application of AI?

OG & MN: We’ve surrendered many of our most critical decisions to the Cult of Data. In most cases, that’s a great thing, as we rely more on scientific evidence to understand our world and our way through it. But we swing too far in other instances, assuming that datasets and algorithms produce a complete story that’s unsullied by human biases or intellectual shortcomings. We might choose to ignore it, but no one is blind to the dangers of nuclear war or pandemic disease. Yet, we willfully blind ourselves to the threat of dirty data, instead believing it to be pristine.

So, what do we do about it? On an individual level, it’s a matter of awareness, knowing who controls your data and how outsourcing of decisions to thinking machines can present opportunities and threats alike.

For business, government, and political leaders, we need to see a much broader expansion of ethics committees with transparent criteria with which to evaluate new products and services. We might consider something akin to clinical trials for pharmaceuticals—a sort of testing scheme that can transparently and independently measure the effects on humans of algorithms, bots, and the like. All of this needs to be multidisciplinary, bringing in expertise from across technology, social systems, ethics, anthropology, psychology, and so on.

Finally, on a global level, we need a new charter of rights—a Digital Magna Carta—that formalizes these protections and guides the development of new AI technologies toward all of humanity’s benefit. We’ve suggested the creation of a multi-stakeholder Cambrian Congress (harkening back to the explosion of life during the Cambrian period) that can not only begin to frame benefits for humanity, but build the global consensus around principles for a basic code-of-conduct, and ideas for evaluation and enforcement mechanisms, so we can get there without any large-scale failures or backlash in society. So, it’s not one or the other—it’s both.

Image Credit: whiteMocca / Shutterstock.com Continue reading

Posted in Human Robots

#434270 AI Will Create Millions More Jobs Than ...

In the past few years, artificial intelligence has advanced so quickly that it now seems hardly a month goes by without a newsworthy AI breakthrough. In areas as wide-ranging as speech translation, medical diagnosis, and gameplay, we have seen computers outperform humans in startling ways.

This has sparked a discussion about how AI will impact employment. Some fear that as AI improves, it will supplant workers, creating an ever-growing pool of unemployable humans who cannot compete economically with machines.

This concern, while understandable, is unfounded. In fact, AI will be the greatest job engine the world has ever seen.

New Technology Isn’t a New Phenomenon
On the one hand, those who predict massive job loss from AI can be excused. It is easier to see existing jobs disrupted by new technology than to envision what new jobs the technology will enable.

But on the other hand, radical technological advances aren’t a new phenomenon. Technology has progressed nonstop for 250 years, and in the US unemployment has stayed between 5 to 10 percent for almost all that time, even when radical new technologies like steam power and electricity came on the scene.

But you don’t have to look back to steam, or even electricity. Just look at the internet. Go back 25 years, well within the memory of today’s pessimistic prognosticators, to 1993. The web browser Mosaic had just been released, and the phrase “surfing the web,” that most mixed of metaphors, was just a few months old.

If someone had asked you what would be the result of connecting a couple billion computers into a giant network with common protocols, you might have predicted that email would cause us to mail fewer letters, and the web might cause us to read fewer newspapers and perhaps even do our shopping online. If you were particularly farsighted, you might have speculated that travel agents and stockbrokers would be adversely affected by this technology. And based on those surmises, you might have thought the internet would destroy jobs.

But now we know what really happened. The obvious changes did occur. But a slew of unexpected changes happened as well. We got thousands of new companies worth trillions of dollars. We bettered the lot of virtually everyone on the planet touched by the technology. Dozens of new careers emerged, from web designer to data scientist to online marketer. The cost of starting a business with worldwide reach plummeted, and the cost of communicating with customers and leads went to nearly zero. Vast storehouses of information were made freely available and used by entrepreneurs around the globe to build new kinds of businesses.

But yes, we mail fewer letters and buy fewer newspapers.

The Rise of Artificial Intelligence
Then along came a new, even bigger technology: artificial intelligence. You hear the same refrain: “It will destroy jobs.”

Consider the ATM. If you had to point to a technology that looked as though it would replace people, the ATM might look like a good bet; it is, after all, an automated teller machine. And yet, there are more tellers now than when ATMs were widely released. How can this be? Simple: ATMs lowered the cost of opening bank branches, and banks responded by opening more, which required hiring more tellers.

In this manner, AI will create millions of jobs that are far beyond our ability to imagine. For instance, AI is becoming adept at language translation—and according to the US Bureau of Labor Statistics, demand for human translators is skyrocketing. Why? If the cost of basic translation drops to nearly zero, the cost of doing business with those who speak other languages falls. Thus, it emboldens companies to do more business overseas, creating more work for human translators. AI may do the simple translations, but humans are needed for the nuanced kind.

In fact, the BLS forecasts faster-than-average job growth in many occupations that AI is expected to impact: accountants, forensic scientists, geological technicians, technical writers, MRI operators, dietitians, financial specialists, web developers, loan officers, medical secretaries, and customer service representatives, to name a very few. These fields will not experience job growth in spite of AI, but through it.

But just as with the internet, the real gains in jobs will come from places where our imaginations cannot yet take us.

Parsing Pessimism
You may recall waking up one morning to the news that “47 percent of jobs will be lost to technology.”

That report by Carl Frey and Michael Osborne is a fine piece of work, but readers and the media distorted their 47 percent number. What the authors actually said is that some functions within 47 percent of jobs will be automated, not that 47 percent of jobs will disappear.

Frey and Osborne go on to rank occupations by “probability of computerization” and give the following jobs a 65 percent or higher probability: social science research assistants, atmospheric and space scientists, and pharmacy aides. So what does this mean? Social science professors will no longer have research assistants? Of course they will. They will just do different things because much of what they do today will be automated.

The intergovernmental Organization for Economic Co-operation and Development released a report of their own in 2016. This report, titled “The Risk of Automation for Jobs in OECD Countries,” applies a different “whole occupations” methodology and puts the share of jobs potentially lost to computerization at nine percent. That is normal churn for the economy.

But what of the skills gap? Will AI eliminate low-skilled workers and create high-skilled job opportunities? The relevant question is whether most people can do a job that’s just a little more complicated than the one they currently have. This is exactly what happened with the industrial revolution; farmers became factory workers, factory workers became factory managers, and so on.

Embracing AI in the Workplace
A January 2018 Accenture report titled “Reworking the Revolution” estimates that new applications of AI combined with human collaboration could boost employment worldwide as much as 10 percent by 2020.

Electricity changed the world, as did mechanical power, as did the assembly line. No one can reasonably claim that we would be better off without those technologies. Each of them bettered our lives, created jobs, and raised wages. AI will be bigger than electricity, bigger than mechanization, bigger than anything that has come before it.

This is how free economies work, and why we have never run out of jobs due to automation. There are not a fixed number of jobs that automation steals one by one, resulting in progressively more unemployment. There are as many jobs in the world as there are buyers and sellers of labor.

Image Credit: enzozo / Shutterstock.com Continue reading

Posted in Human Robots