Tag Archives: humanoid

#439686 We’re Getting Closer to Flying ...

A couple of years ago, we wrote about a bipedal robot called Jet-HR1 under development at the Guangdong University of Technology. With little foot-mounted ducted fans, Jet-HR1 could step across very wide gaps by using the thrust created by the fans to futz with its center of gravity. That's cool and all, but let's take the logical (or not!) next step and see what happens when those ducted fans get cranked up as high as they'll go: flying humanoid robot! Sort of!

This is obviously just the first tentative little airborne hop, but by the end of the video, you can see that the stabilization works pretty well. I wouldn't call it completely controllable yet, but it's tangible progress.

Jet-HR2 has 10 degrees of freedom for ground locomotion, plus four ducted fans, two statically mounted on the robot's waist and two mounted inside the feet that can be actuated through ankle movements. Each fan can deliver 5 kg of thrust, for 20 kg total, enough to lift the 17 kg robot. The thrust to weight ratio here is not great, which is where the control challenge is; without a lot of spare oomph, you have to be very careful about how you allocate thrust. But the system that you see in the video is able to effectively suppress diving and spinning, leading to a stable (although not entirely under control) flying most-of-a-humanoid robot.
A word here on practical applications—there aren't a heck of a lot of good reasons to make a humanoid robot in the first place. So why, then, is a flying humanoid robot actually useful? Or does it get a pass because, I mean, c'mon, a flying humanoid robot, right? Here's what the paper says:
Recently, various disaster-response humanoid robots have been invented with unique control theories and other mechanisms to overcome uneven terrain. Traditionally, humanoid robots have overcome these obstacles by stepping and climbing yet these strategies lack efficiency, especially for dangerous environments like insurmountable obstacles and geological faults. For urgent tasks in complex real scenarios, humanoid robots are expected to have dynamic aerial skills, such as high or long jumps, short distance flights, and hovering that exceed the body length several times.
The performance of humanoid robots is still not up to the human level, especially with an increase in mass. On the other hand, even at the human level, robots may appear helpless on loose, collapse prone, or cliff-like terrain. This seems to be a limitation of using purely joint actuators to generate force. In this study, a novel humanoid robot that can fly using a ducted fan propulsion system was developed to explore its potential value for search and rescue in complex environments.Frequent readers of this site may have seen this one coming: robots for disaster relief and search and rescue tend to be the catch-all justifications for weird mobility concepts without immediately obvious applications. But on the other hand, this is actually one of the reasons why making a humanoid might be a good idea, because having robots that can go where humans go can be very helpful. That is, if you can get them to work, which you probably can't, because practical humanoid robots are super duper hard. What's not hard is imagining how a humanoid robot that can fly could be even more useful. Again, there's that whole getting it to actually work thing, but it's not completely crazy to do some of the foundational research to see what might eventually be possible.
Design of a Flying Humanoid Robot Based on Thrust Vector Control, by Yuhang Li, Yuhao Zhou, Junbin Huang, Zijun Wang, Shunjie Zhu, Kairong Wu, Li Zheng, Jiajin Luo, Rui Cao, Yun Zhang, and Zhifeng Huang, from Guangdong University of Technology, is available on arXiv. Continue reading

Posted in Human Robots

#439612 Boston Dynamics’ latest video ...

Boston Dynamics, the company known for its robotic dogs, now has a humanoid robot capable of doing gymnastics. Continue reading

Posted in Human Robots

#439559 MIT is Building a Dynamic, Acrobatic ...

For a long time, having a bipedal robot that could walk on a flat surface without falling over (and that could also maybe occasionally climb stairs or something) was a really big deal. But we’re more or less past that now. Thanks to the talented folks at companies like Agility Robotics and Boston Dynamics, we now expect bipedal robots to meet or exceed actual human performance for at least a small subset of dynamic tasks. The next step seems to be to find ways of pushing the limits of human performance, which it turns out means acrobatics. We know that IHMC has been developing their own child-size acrobatic humanoid named Nadia, and now it sounds like researchers from Sangbae Kim’s lab at MIT are working on a new acrobatic robot of their own.

We’ve seen a variety of legged robots from MIT’s Biomimetic Robotics Lab, including Cheetah and HERMES. Recently, they’ve been doing a bunch of work with their spunky little Mini Cheetahs (developed with funding and support from Naver Labs), which are designed for some dynamic stuff like gait exploration and some low-key four-legged acrobatics.

In a paper recently posted to arXiv (to be presented at Humanoids 2020 in July), Matthew Chignoli, Donghyun Kim, Elijah Stanger-Jones, and Sangbae Kim describe “a new humanoid robot design, an actuator-aware kino-dynamic motion planner, and a landing controller as part of a practical system design for highly dynamic motion control of the humanoid robot.” So it’s not just the robot itself, but all of the software infrastructure necessary to get it to do what they want it to do.

MIT Humanoid performing a back flip off of a humanoid robot off of a 0.4 m platform in simulation.
Image: MIT

First let’s talk about the hardware that we’ll be looking at once the MIT Humanoid makes it out of simulation. It’s got the appearance of a sort of upright version of Mini Cheetah, but that appearance is deceiving, says MIT’s Matt Chignoli. While the robot’s torso and arms are very similar to Mini Cheetah, the leg design is totally new and features redesigned actuators with higher power and better torque density. “The main focus of the leg design is to enable smooth but dynamic ‘heel-to-toe’ actions that happen in humans’ walking and running, while maintaining low inertia for smooth interactions with ground contacts,” Chignoli told us in an email. “Dynamic ankle actions have been rare in humanoid robots. We hope to develop robust, low inertia and powerful legs that can mimic human leg actions.”

The design strategy matters because the field of humanoid robots is presently dominated by hydraulically actuated robots and robots with series elastic actuators. As we continue to improve the performance of our proprioceptive actuator technology, as we have done for this work, we aim to demonstrate that our unique combination of high torque density, high bandwidth force control, and the ability to mitigate impacts is optimal for highly dynamic locomotion of any legged robot, including humanoids.

-Matt Chignoli

Now, it’s easy to say “oh well pfft that’s just in simulation and you can get anything to work in simulation,” which, yeah, that’s kinda true. But MIT is putting a lot of work into accurately simulating everything that they possibly can—in particular, they’re modeling the detailed physical constraints that the robot operates under as it performs dynamic motions, allowing the planner to take those constraints into account and (hopefully) resulting in motions that match the simulation pretty accurately.

“When it comes to the physical capabilities of the robot, anything we demonstrate in simulation should be feasible on the robot,” Chignoli says. “We include in our simulations detailed models for the robot’s actuators and battery, models that have been validated experimentally. Such detailed models are not frequently included in dynamic simulations for robots.” But simulation is still simulation, of course, and no matter how good your modeling is, that transfer can be tricky, especially when doing highly dynamic motions.

“Despite our confidence in our simulator’s ability to accurately mimic the physical capabilities of our robot with high fidelity, there are aspects of our simulator that remain uncertain as we aim to deploy our acrobatic motions onto hardware,” Chignoli explains. “The main difficulty we see is state estimation. We have been drawing upon research related to state estimation for drones, which makes use of visual odometry. Without having an assembled robot to test these new estimation strategies on, though, it is difficult to judge the simulation to real transfer for these types of things.”

We’re told that the design of the MIT Humanoid is complete, and that the plan is to build it for real over the summer, with the eventual goal of doing parkour over challenging terrains. It’s tempting to fixate on the whole acrobatics and parkour angle of things (and we’re totally looking forward to some awesome videos), but according to Chignoli, the really important contribution here is the framework rather than the robot itself:

The acrobatic motions that we demonstrate on our small-scale humanoid are less about the actual acrobatics and more about what the ability to perform such feats implies for both our hardware as well as our control framework. The motions are important in terms of the robot’s capabilities because we are proving, at least in simulation, that we can replicate the dynamic feats of Boston Dynamics’ ATLAS robot using an entirely different actuation scheme (proprioceptive electromagnetic motors vs. hydraulic actuators, respectively). Verification that proprioceptive actuators can achieve the necessary torque density to perform such motions while retaining the advantages of low mechanical impedance and high-bandwidth torque control is important as people consider how to design the next generation of dynamic humanoid robots. Furthermore, the acrobatic motions demonstrate the ability of our “actuator-aware” motion planner to generate feasible motion plans that push the boundaries of what our robot can do.

The MIT Humanoid Robot: Design, Motion Planning, and Control For Acrobatic Behaviors, by Matthew Chignoli, Donghyun Kim, Elijah Stanger-Jones, and Sangbae Kim from MIT and UMass Amherst, will be presented at Humanoids 2020 this July. You can read a preprint on arXiv here. Continue reading

Posted in Human Robots

#439313 Study explores the potential of using a ...

Humanoid robots have the potential of assisting humans in a variety of settings, ranging from home environments to malls, schools and healthcare facilities. Some roboticists have been specifically investigating the potential of social robots as tools to offer care and companionship to the elderly population. Continue reading

Posted in Human Robots

#439286 MIT is Building a Dynamic, Acrobatic ...

For a long time, having a bipedal robot that could walk on a flat surface without falling over (and that could also maybe occasionally climb stairs or something) was a really big deal. But we’re more or less past that now. Thanks to the talented folks at companies like Agility Robotics and Boston Dynamics, we now expect bipedal robots to meet or exceed actual human performance for at least a small subset of dynamic tasks. The next step seems to be to find ways of pushing the limits of human performance, which it turns out means acrobatics. We know that IHMC has been developing their own child-size acrobatic humanoid named Nadia, and now it sounds like researchers from Sangbae Kim’s lab at MIT are working on a new acrobatic robot of their own.

We’ve seen a variety of legged robots from MIT’s Biomimetic Robotics Lab, including Cheetah and HERMES. Recently, they’ve been doing a bunch of work with their spunky little Mini Cheetahs (developed with funding and support from Naver Labs), which are designed for some dynamic stuff like gait exploration and some low-key four-legged acrobatics.

In a paper recently posted to arXiv (to be presented at Humanoids 2020 in July), Matthew Chignoli, Donghyun Kim, Elijah Stanger-Jones, and Sangbae Kim describe “a new humanoid robot design, an actuator-aware kino-dynamic motion planner, and a landing controller as part of a practical system design for highly dynamic motion control of the humanoid robot.” So it’s not just the robot itself, but all of the software infrastructure necessary to get it to do what they want it to do.

Image: MIT

MIT Humanoid performing a back flip off of a humanoid robot off of a 0.4 m platform in simulation.

First let’s talk about the hardware that we’ll be looking at once the MIT Humanoid makes it out of simulation. It’s got the appearance of a sort of upright version of Mini Cheetah, but that appearance is deceiving, says MIT’s Matt Chignoli. While the robot’s torso and arms are very similar to Mini Cheetah, the leg design is totally new and features redesigned actuators with higher power and better torque density. “The main focus of the leg design is to enable smooth but dynamic ‘heel-to-toe’ actions that happen in humans’ walking and running, while maintaining low inertia for smooth interactions with ground contacts,” Chignoli told us in an email. “Dynamic ankle actions have been rare in humanoid robots. We hope to develop robust, low inertia and powerful legs that can mimic human leg actions.”

The design strategy matters because the field of humanoid robots is presently dominated by hydraulically actuated robots and robots with series elastic actuators. As we continue to improve the performance of our proprioceptive actuator technology, as we have done for this work, we aim to demonstrate that our unique combination of high torque density, high bandwidth force control, and the ability to mitigate impacts is optimal for highly dynamic locomotion of any legged robot, including humanoids.

-Matt Chignoli

Now, it’s easy to say “oh well pfft that’s just in simulation and you can get anything to work in simulation,” which, yeah, that’s kinda true. But MIT is putting a lot of work into accurately simulating everything that they possibly can—in particular, they’re modeling the detailed physical constraints that the robot operates under as it performs dynamic motions, allowing the planner to take those constraints into account and (hopefully) resulting in motions that match the simulation pretty accurately.

“When it comes to the physical capabilities of the robot, anything we demonstrate in simulation should be feasible on the robot,” Chignoli says. “We include in our simulations detailed models for the robot’s actuators and battery, models that have been validated experimentally. Such detailed models are not frequently included in dynamic simulations for robots.” But simulation is still simulation, of course, and no matter how good your modeling is, that transfer can be tricky, especially when doing highly dynamic motions.

“Despite our confidence in our simulator’s ability to accurately mimic the physical capabilities of our robot with high fidelity, there are aspects of our simulator that remain uncertain as we aim to deploy our acrobatic motions onto hardware,” Chignoli explains. “The main difficulty we see is state estimation. We have been drawing upon research related to state estimation for drones, which makes use of visual odometry. Without having an assembled robot to test these new estimation strategies on, though, it is difficult to judge the simulation to real transfer for these types of things.”

We’re told that the design of the MIT Humanoid is complete, and that the plan is to build it for real over the summer, with the eventual goal of doing parkour over challenging terrains. It’s tempting to fixate on the whole acrobatics and parkour angle of things (and we’re totally looking forward to some awesome videos), but according to Chignoli, the really important contribution here is the framework rather than the robot itself:

The acrobatic motions that we demonstrate on our small-scale humanoid are less about the actual acrobatics and more about what the ability to perform such feats implies for both our hardware as well as our control framework. The motions are important in terms of the robot’s capabilities because we are proving, at least in simulation, that we can replicate the dynamic feats of Boston Dynamics’ ATLAS robot using an entirely different actuation scheme (proprioceptive electromagnetic motors vs. hydraulic actuators, respectively). Verification that proprioceptive actuators can achieve the necessary torque density to perform such motions while retaining the advantages of low mechanical impedance and high-bandwidth torque control is important as people consider how to design the next generation of dynamic humanoid robots. Furthermore, the acrobatic motions demonstrate the ability of our “actuator-aware” motion planner to generate feasible motion plans that push the boundaries of what our robot can do.

The MIT Humanoid Robot: Design, Motion Planning, and Control For Acrobatic Behaviors, by Matthew Chignoli, Donghyun Kim, Elijah Stanger-Jones, and Sangbae Kim from MIT and UMass Amherst, will be presented at Humanoids 2020 this July. You can read a preprint on arXiv here. Continue reading

Posted in Human Robots