Tag Archives: flying

#437990 Video Friday: Record-Breaking Drone Show ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

A new parent STAR robot is presented. The parent robot has a tail on which the child robot can climb. By collaborating together, the two robots can reach locations that neither can reach on its own.

The parent robot can also supply the child robot with energy by recharging its batteries. The parent STAR can dispatch and recuperate the child STAR automatically (when aligned). The robots are fitted with sensors and controllers and have automatic capabilities but make no decisions on their own.

[ Bio-Inspired and Medical Robotics Lab ]

How TRI trains its robots.

[ TRI ]

The only thing more satisfying than one SCARA robot is two SCARA robots working together.

[ Fanuc ]

I'm not sure that this is strictly robotics, but it's so cool that it's worth a watch anyway.

[ Shinoda & Makino Lab ]

Flying insects heavily rely on optical flow for visual navigation and flight control. Roboticists have endowed small flying robots with optical flow control as well, since it requires just a tiny vision sensor. However, when using optical flow, the robots run into two problems that insects appear to have overcome. Firstly, since optical flow only provides mixed information on distances and velocities, using it for control leads to oscillations when getting closer to obstacles. Secondly, since optical flow provides very little information on obstacles in the direction of motion, it is hardest to detect obstacles that the robot is actually going to collide with! We propose a solution to these problems by means of a learning process.

[ Nature ]

A new Guinness World Record was set on Friday in north China for the longest animation performed by 600 unmanned aerial vehicles (UAVs).

[ Xinhua ]

Translucency is prevalent in everyday scenes. As such, perception of transparent objects is essential for robots to perform manipulation. In this work, we propose LIT, a two-stage method for transparent object pose estimation using light-field sensing and photorealistic rendering.

[ University of Michigan ] via [ Fetch Robotics ]

This paper reports the technological progress and performance of team “CERBERUS” after participating in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge.

And here's a video report on the SubT Urban Beta Course performance:

[ CERBERUS ]

Congrats to Energy Robotics on 2 million euros in seed funding!

[ Energy Robotics ]

Thanks Stefan!

In just 2 minutes, watch HEBI robotics spending 23 minutes assembling a robot arm.

HEBI Robotics is hosting a webinar called 'Redefining the Robotic Arm' next week, which you can check out at the link below.

[ HEBI Robotics ]

Thanks Hardik!

Achieving versatile robot locomotion requires motor skills which can adapt to previously unseen situations. We propose a Multi-Expert Learning Architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialised by a distinct set of pre-trained experts, each in a separate deep neural network (DNN). Then by learning the combination of these DNNs using a Gating Neural Network (GNN), MELA can acquire more specialised experts and transitional skills across various locomotion modes.

[ Paper ]

Since the dawn of history, advances in science and technology have pursued “power” and “accuracy.” Initially, “hardness” in machines and materials was sought for reliable operations. In our area of Science of Soft Robots, we have combined emerging academic fields aimed at “softness” to increase the exposure and collaboration of researchers in different fields.

[ Science of Soft Robots ]

A team from the Laboratory of Robotics and IoT for Smart Precision Agriculture and Forestry at INESC TEC – Technology and Science are creating a ROS stack solution using Husky UGV for precision field crop agriculture.

[ Clearpath Robotics ]

Associate Professor Christopher J. Hasson in the Department of Physical Therapy is the director Neuromotor Systems Laboratory at Northeastern University. There he is working with a robotic arm to provide enhanced assistance to physical therapy patients, while maintaining the intimate therapist and patient relationship.

[ Northeastern ]

Mobile Robotic telePresence (MRP) systems aim to support enhanced collaboration between remote and local members of a given setting. But MRP systems also put the remote user in positions where they frequently rely on the help of local partners. Getting or ‘recruiting’ such help can be done with various verbal and embodied actions ranging in explicitness. In this paper, we look at how such recruitment occurs in video data drawn from an experiment where pairs of participants (one local, one remote) performed a timed searching task.

[ Microsoft Research ]

A presentation [from Team COSTAR] for the American Geophysical Union annual fall meeting on the application of robotic multi-sensor 3D Mapping for scientific exploration of caves. Lidar-based 3D maps are combined with visual/thermal/spectral/gas sensors to provide rich 3D context for scientific measurements map.

[ COSTAR ] Continue reading

Posted in Human Robots

#437929 These Were Our Favorite Tech Stories ...

This time last year we were commemorating the end of a decade and looking ahead to the next one. Enter the year that felt like a decade all by itself: 2020. News written in January, the before-times, feels hopelessly out of touch with all that came after. Stories published in the early days of the pandemic are, for the most part, similarly naive.

The year’s news cycle was swift and brutal, ping-ponging from pandemic to extreme social and political tension, whipsawing economies, and natural disasters. Hope. Despair. Loneliness. Grief. Grit. More hope. Another lockdown. It’s been a hell of a year.

Though 2020 was dominated by big, hairy societal change, science and technology took significant steps forward. Researchers singularly focused on the pandemic and collaborated on solutions to a degree never before seen. New technologies converged to deliver vaccines in record time. The dark side of tech, from biased algorithms to the threat of omnipresent surveillance and corporate control of artificial intelligence, continued to rear its head.

Meanwhile, AI showed uncanny command of language, joined Reddit threads, and made inroads into some of science’s grandest challenges. Mars rockets flew for the first time, and a private company delivered astronauts to the International Space Station. Deprived of night life, concerts, and festivals, millions traveled to virtual worlds instead. Anonymous jet packs flew over LA. Mysterious monoliths appeared and disappeared worldwide.

It was all, you know, very 2020. For this year’s (in-no-way-all-encompassing) list of fascinating stories in tech and science, we tried to select those that weren’t totally dated by the news, but rose above it in some way. So, without further ado: This year’s picks.

How Science Beat the Virus
Ed Yong | The Atlantic
“Much like famous initiatives such as the Manhattan Project and the Apollo program, epidemics focus the energies of large groups of scientists. …But ‘nothing in history was even close to the level of pivoting that’s happening right now,’ Madhukar Pai of McGill University told me. … No other disease has been scrutinized so intensely, by so much combined intellect, in so brief a time.”

‘It Will Change Everything’: DeepMind’s AI Makes Gigantic Leap in Solving Protein Structures
Ewen Callaway | Nature
“In some cases, AlphaFold’s structure predictions were indistinguishable from those determined using ‘gold standard’ experimental methods such as X-ray crystallography and, in recent years, cryo-electron microscopy (cryo-EM). AlphaFold might not obviate the need for these laborious and expensive methods—yet—say scientists, but the AI will make it possible to study living things in new ways.”

OpenAI’s Latest Breakthrough Is Astonishingly Powerful, But Still Fighting Its Flaws
James Vincent | The Verge
“What makes GPT-3 amazing, they say, is not that it can tell you that the capital of Paraguay is Asunción (it is) or that 466 times 23.5 is 10,987 (it’s not), but that it’s capable of answering both questions and many more beside simply because it was trained on more data for longer than other programs. If there’s one thing we know that the world is creating more and more of, it’s data and computing power, which means GPT-3’s descendants are only going to get more clever.”

Artificial General Intelligence: Are We Close, and Does It Even Make Sense to Try?
Will Douglas Heaven | MIT Technology Review
“A machine that could think like a person has been the guiding vision of AI research since the earliest days—and remains its most divisive idea. …So why is AGI controversial? Why does it matter? And is it a reckless, misleading dream—or the ultimate goal?”

The Dark Side of Big Tech’s Funding for AI Research
Tom Simonite | Wired
“Timnit Gebru’s exit from Google is a powerful reminder of how thoroughly companies dominate the field, with the biggest computers and the most resources. …[Meredith] Whittaker of AI Now says properly probing the societal effects of AI is fundamentally incompatible with corporate labs. ‘That kind of research that looks at the power and politics of AI is and must be inherently adversarial to the firms that are profiting from this technology.’i”

We’re Not Prepared for the End of Moore’s Law
David Rotman | MIT Technology Review
“Quantum computing, carbon nanotube transistors, even spintronics, are enticing possibilities—but none are obvious replacements for the promise that Gordon Moore first saw in a simple integrated circuit. We need the research investments now to find out, though. Because one prediction is pretty much certain to come true: we’re always going to want more computing power.”

Inside the Race to Build the Best Quantum Computer on Earth
Gideon Lichfield | MIT Technology Review
“Regardless of whether you agree with Google’s position [on ‘quantum supremacy’] or IBM’s, the next goal is clear, Oliver says: to build a quantum computer that can do something useful. …The trouble is that it’s nearly impossible to predict what the first useful task will be, or how big a computer will be needed to perform it.”

The Secretive Company That Might End Privacy as We Know It
Kashmir Hill | The New York Times
“Searching someone by face could become as easy as Googling a name. Strangers would be able to listen in on sensitive conversations, take photos of the participants and know personal secrets. Someone walking down the street would be immediately identifiable—and his or her home address would be only a few clicks away. It would herald the end of public anonymity.”

Wrongfully Accused by an Algorithm
Kashmir Hill | The New York Times
“Mr. Williams knew that he had not committed the crime in question. What he could not have known, as he sat in the interrogation room, is that his case may be the first known account of an American being wrongfully arrested based on a flawed match from a facial recognition algorithm, according to experts on technology and the law.”

Predictive Policing Algorithms Are Racist. They Need to Be Dismantled.
Will Douglas Heaven | MIT Technology Review
“A number of studies have shown that these tools perpetuate systemic racism, and yet we still know very little about how they work, who is using them, and for what purpose. All of this needs to change before a proper reckoning can take pace. Luckily, the tide may be turning.”

The Panopticon Is Already Here
Ross Andersen | The Atlantic
“Artificial intelligence has applications in nearly every human domain, from the instant translation of spoken language to early viral-outbreak detection. But Xi [Jinping] also wants to use AI’s awesome analytical powers to push China to the cutting edge of surveillance. He wants to build an all-seeing digital system of social control, patrolled by precog algorithms that identify potential dissenters in real time.”

The Case For Cities That Aren’t Dystopian Surveillance States
Cory Doctorow | The Guardian
“Imagine a human-centered smart city that knows everything it can about things. It knows how many seats are free on every bus, it knows how busy every road is, it knows where there are short-hire bikes available and where there are potholes. …What it doesn’t know is anything about individuals in the city.”

The Modern World Has Finally Become Too Complex for Any of Us to Understand
Tim Maughan | OneZero
“One of the dominant themes of the last few years is that nothing makes sense. …I am here to tell you that the reason so much of the world seems incomprehensible is that it is incomprehensible. From social media to the global economy to supply chains, our lives rest precariously on systems that have become so complex, and we have yielded so much of it to technologies and autonomous actors that no one totally comprehends it all.”

The Conscience of Silicon Valley
Zach Baron | GQ
“What I really hoped to do, I said, was to talk about the future and how to live in it. This year feels like a crossroads; I do not need to explain what I mean by this. …I want to destroy my computer, through which I now work and ‘have drinks’ and stare at blurry simulations of my parents sometimes; I want to kneel down and pray to it like a god. I want someone—I want Jaron Lanier—to tell me where we’re going, and whether it’s going to be okay when we get there. Lanier just nodded. All right, then.”

Yes to Tech Optimism. And Pessimism.
Shira Ovide | The New York Times
“Technology is not something that exists in a bubble; it is a phenomenon that changes how we live or how our world works in ways that help and hurt. That calls for more humility and bridges across the optimism-pessimism divide from people who make technology, those of us who write about it, government officials and the public. We need to think on the bright side. And we need to consider the horribles.”

How Afrofuturism Can Help the World Mend
C. Brandon Ogbunu | Wired
“…[W. E. B. DuBois’] ‘The Comet’ helped lay the foundation for a paradigm known as Afrofuturism. A century later, as a comet carrying disease and social unrest has upended the world, Afrofuturism may be more relevant than ever. Its vision can help guide us out of the rubble, and help us to consider universes of better alternatives.”

Wikipedia Is the Last Best Place on the Internet
Richard Cooke | Wired
“More than an encyclopedia, Wikipedia has become a community, a library, a constitution, an experiment, a political manifesto—the closest thing there is to an online public square. It is one of the few remaining places that retains the faintly utopian glow of the early World Wide Web.”

Can Genetic Engineering Bring Back the American Chestnut?
Gabriel Popkin | The New York Times Magazine
“The geneticists’ research forces conservationists to confront, in a new and sometimes discomfiting way, the prospect that repairing the natural world does not necessarily mean returning to an unblemished Eden. It may instead mean embracing a role that we’ve already assumed: engineers of everything, including nature.”

At the Limits of Thought
David C. Krakauer | Aeon
“A schism is emerging in the scientific enterprise. On the one side is the human mind, the source of every story, theory, and explanation that our species holds dear. On the other stand the machines, whose algorithms possess astonishing predictive power but whose inner workings remain radically opaque to human observers.”

Is the Internet Conscious? If It Were, How Would We Know?
Meghan O’Gieblyn | Wired
“Does the internet behave like a creature with an internal life? Does it manifest the fruits of consciousness? There are certainly moments when it seems to. Google can anticipate what you’re going to type before you fully articulate it to yourself. Facebook ads can intuit that a woman is pregnant before she tells her family and friends. It is easy, in such moments, to conclude that you’re in the presence of another mind—though given the human tendency to anthropomorphize, we should be wary of quick conclusions.”

The Internet Is an Amnesia Machine
Simon Pitt | OneZero
“There was a time when I didn’t know what a Baby Yoda was. Then there was a time I couldn’t go online without reading about Baby Yoda. And now, Baby Yoda is a distant, shrugging memory. Soon there will be a generation of people who missed the whole thing and for whom Baby Yoda is as meaningless as it was for me a year ago.”

Digital Pregnancy Tests Are Almost as Powerful as the Original IBM PC
Tom Warren | The Verge
“Each test, which costs less than $5, includes a processor, RAM, a button cell battery, and a tiny LCD screen to display the result. …Foone speculates that this device is ‘probably faster at number crunching and basic I/O than the CPU used in the original IBM PC.’ IBM’s original PC was based on Intel’s 8088 microprocessor, an 8-bit chip that operated at 5Mhz. The difference here is that this is a pregnancy test you pee on and then throw away.”

The Party Goes on in Massive Online Worlds
Cecilia D’Anastasio | Wired
“We’re more stand-outside types than the types to cast a flashy glamour spell and chat up the nearest cat girl. But, hey, it’s Final Fantasy XIV online, and where my body sat in New York, the epicenter of America’s Covid-19 outbreak, there certainly weren’t any parties.”

The Facebook Groups Where People Pretend the Pandemic Isn’t Happening
Kaitlyn Tiffany | The Atlantic
“Losing track of a friend in a packed bar or screaming to be heard over a live band is not something that’s happening much in the real world at the moment, but it happens all the time in the 2,100-person Facebook group ‘a group where we all pretend we’re in the same venue.’ So does losing shoes and Juul pods, and shouting matches over which bands are the saddest, and therefore the greatest.”

Did You Fly a Jetpack Over Los Angeles This Weekend? Because the FBI Is Looking for You
Tom McKay | Gizmodo
“Did you fly a jetpack over Los Angeles at approximately 3,000 feet on Sunday? Some kind of tiny helicopter? Maybe a lawn chair with balloons tied to it? If the answer to any of the above questions is ‘yes,’ you should probably lay low for a while (by which I mean cool it on the single-occupant flying machine). That’s because passing airline pilots spotted you, and now it’s this whole thing with the FBI and the Federal Aviation Administration, both of which are investigating.”

Image Credit: Thomas Kinto / Unsplash Continue reading

Posted in Human Robots

#437864 Video Friday: Jet-Powered Flying ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRA 2020 – June 1-15, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

ICRA 2020, the world’s best, biggest, longest virtual robotics conference ever, kicked off last Sunday with an all-star panel on a critical topic: “COVID-19: How Can Roboticists Help?”

Watch other ICRA keynotes on IEEE.tv.

We’re getting closer! Well, kinda. iRonCub, the jet-powered flying humanoid, is still a simulation for now, but not only are the simulations getting better—the researchers have begun testing real jet engines!

This video shows the latest results on Aerial Humanoid Robotics obtained by the Dynamic Interaction Control Lab at the Italian Institute of Technology. The video simulates robot and jet dynamics, where the latter uses the results obtained in the paper “Modeling, Identification and Control of Model Jet Engines for Jet Powered Robotics” published in IEEE Robotics and Automation Letters.

This video presents the paper entitled “Modeling, Identification and Control of Model Jet Engines for Jet Powered Robotics” published in IEEE Robotics and Automation Letters (Volume: 5 , Issue: 2 , April 2020 ) Page(s): 2070 – 2077. Preprint at https://arxiv.org/pdf/1909.13296.pdf.​

[ IIT ]

In a new pair of papers, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) came up with new tools to let robots better perceive what they’re interacting with: the ability to see and classify items, and a softer, delicate touch.

[ MIT CSAIL ]

UBTECH’s anti-epidemic solutions greatly relieve the workload of front-line medical staff and cut the consumption of personal protective equipment (PPE).

[ UBTECH ]

We demonstrate a method to assess the concrete deterioration in sewers by performing a tactile inspection motion with a sensorized foot of a legged robot.

[ THING ] via [ ANYmal Research ]

Get a closer look at the Virtual competition of the Urban Circuit and how teams can use the simulated environments to better prepare for the physical courses of the Subterranean Challenge.

[ SubT ]

Roboticists at the University of California San Diego have developed flexible feet that can help robots walk up to 40 percent faster on uneven terrain, such as pebbles and wood chips. The work has applications for search-and-rescue missions as well as space exploration.

[ UCSD ]

Thanks Ioana!

Tsuki is a ROS-enabled, highly dynamic quadruped robot developed by Lingkang Zhang.

And as far as we know, Lingkang is still chasing it.

[ Quadruped Tsuki ]

Thanks Lingkang!

Watch this.

This video shows an impressive demo of how YuMi’s superior precision, using precise servo gripper fingers and vacuum suction tool to pick up extremely small parts inside a mechanical watch. The video is not a final application used in production, it is a demo of how such an application can be implemented.

[ ABB ]

Meet Presso, the “5-minute dry cleaning robot.” Can you really call this a robot? We’re not sure. The company says it uses “soft robotics to hold the garment correctly, then clean, sanitize, press and dry under 5 minutes.” The machine was initially designed for use in the hospitality industry, but after adding a disinfectant function for COVID-19, it is now being used on movie and TV sets.

[ Presso ]

The next Mars rover launches next month (!), and here’s a look at some of the instruments on board.

[ JPL ]

Embodied Lead Engineer, Peter Teel, describes why we chose to build Moxie’s computing system from scratch and what makes it so unique.

[ Embodied ]

I did not know that this is where Pepper’s e-stop is. Nice design!

[ Softbank Robotics ]

State of the art in the field of swarm robotics lacks systems capable of absolute decentralization and is hence unable to mimic complex biological swarm systems consisting of simple units. Our research interconnects fields of swarm robotics and computer vision, and introduces novel use of a vision-based method UVDAR for mutual localization in swarm systems, allowing for absolute decentralization found among biological swarm systems. The developed methodology allows us to deploy real-world aerial swarming systems with robots directly localizing each other instead of communicating their states via a communication network, which is a typical bottleneck of current state of the art systems.

[ CVUT ]

I’m almost positive I could not do this task.

It’s easy to pick up objects using YuMi’s integrated vacuum functionality, it also supports ABB Robot’s Conveyor Tracking and Pickmaster 3 functionality, enabling it to track a moving conveyor and pick up objects using vision. Perfect for consumer products handling applications.

[ ABB ]

Cycling safety gestures, such as hand signals and shoulder checks, are an essential part of safe manoeuvring on the road. Child cyclists, in particular, might have difficulties performing safety gestures on the road or even forget about them, given the lack of cycling experience, road distractions and differences in motor and perceptual-motor abilities compared with adults. To support them, we designed two methods to remind about safety gestures while cycling. The first method employs an icon-based reminder in heads-up display (HUD) glasses and the second combines vibration on the handlebar and ambient light in the helmet. We investigated the performance of both methods in a controlled test-track experiment with 18 children using a mid-size tricycle, augmented with a set of sensors to recognize children’s behavior in real time. We found that both systems are successful in reminding children about safety gestures and have their unique advantages and disadvantages.

[ Paper ]

Nathan Sam and Robert “Red” Jensen fabricate and fly a Prandtl-M aircraft at NASA’s Armstrong Flight Research Center in California. The aircraft is the second of three prototypes of varying sizes to provide scientists with options to fly sensors in the Martian atmosphere to collect weather and landing site information for future human exploration of Mars.

[ NASA ]

This is clever: In order to minimize time spent labeling datasets, you can use radar to identify other vehicles, not because the radar can actually recognize other vehicles, but because the radar can recognize other stuff that’s big and moving, which turns out to be almost as good.

[ ICRA Paper ]

Happy 10th birthday to the Natural Robotics Lab at the University of Sheffield.

[ NRL ] Continue reading

Posted in Human Robots

#437778 A Bug-Sized Camera for Bug-Sized Robots ...

As if it’s not hard enough to make very small mobile robots, once you’ve gotten the power and autonomy all figured out (good luck with that), your robot isn’t going to be all that useful unless it can carry some payload. And the payload that everybody wants robots to carry is a camera, which is of course a relatively big, heavy, power hungry payload. Great, just great.

This whole thing is frustrating because tiny, lightweight, power efficient vision systems are all around us. Literally, all around us right this second, stuffed into the heads of insects. We can’t make anything quite that brilliant (yet), but roboticists from the University of Washington, in Seattle, have gotten us a bit closer, with the smallest wireless, steerable video camera we’ve ever seen—small enough to fit on the back of a microbot, or even a live bug.

To make a camera this small, the UW researchers, led by Shyam Gollakota, a professor of computer science and engineering, had to start nearly from scratch, primarily because existing systems aren’t nearly so constrained by power availability. Even things like swallowable pill cameras require batteries that weigh more than a gram, but only power the camera for under half an hour. With a focus on small size and efficiency, they started with an off-the-shelf ultra low-power image sensor that’s 2.3 mm wide and weighs 6.7 mg. They stuck on a Bluetooth 5.0 chip (3 mm wide, 6.8 mg), and had a fun time connecting those two things together without any intermediary hardware to broadcast the camera output. A functional wireless camera also requires a lens (20 mg) and an antenna, which is just 5 mm of wire. An accelerometer is useful so that insect motion can be used to trigger the camera, minimizing the redundant frames that you’d get from a robot or an insect taking a nap.

Photo: University of Washington

The microcamera developed by the UW researchers can stream monochrome video at up to 5 frames per second to a cellphone 120 meters away.

The last bit to make up this system is a mechanically steerable “head,” weighing 35 mg and bringing the total weight of the wireless camera system to 84 mg. If the look of the little piezoelectric actuator seems familiar, you have very good eyes because it’s tiny, and also, it’s the same kind of piezoelectric actuator that the folks at UW use to power their itty bitty flying robots. It’s got a 60-degree panning range, but also requires a 96 mg boost converter to function, which is a huge investment in size and weight just to be able to point the camera a little bit. But overall, the researchers say that this pays off, because not having to turn the entire robot (or insect) when you want to look around reduces the energy consumption of the system as a whole by a factor of up to 84 (!).

Photo: University of Washington

Insects are very mobile platforms for outdoor use, but they’re also not easy to steer, so the researchers also built a little insect-scale robot that they could remotely control while watching the camera feed. As it turns out, this seems to be the smallest, power-autonomous terrestrial robot with a camera ever made.

This efficiency means that the wireless camera system can stream video frames (160×120 pixels monochrome) to a cell phone up to 120 meters away for up to 6 hours when powered by a 0.5-g, 10-mAh battery. A live, first-bug view can be streamed at up to 5 frames per second. The system was successfully tested on a pair of darkling beetles that were allowed to roam freely outdoors, and the researchers noted that they could also mount it on spiders or moths, or anything else that could handle the payload. (The researchers removed the electronics from the insects after the experiments and observed no noticeable adverse effects on their behavior.)

The researchers are already thinking about what it might take to put a wireless camera system on something that flies, and it’s not going to be easy—a bumblebee can only carry between 100 and 200 mg. The power system is the primary limitation here, but it might be possible to use a solar cell to cut down on battery requirements. And the camera itself could be scaled down as well, by using a completely custom sensor and a different type of lens. The other thing to consider is that with a long-range wireless link and a vision system, it’s possible to add sophisticated vision-based autonomy to tiny robots by doing the computation remotely. So, next time you see something scuttling across the ground, give it another look, because it might be looking right back at you.

“Wireless steerable vision for live insects and insect-scale robots,” by Vikram Iyer, Ali Najafi, Johannes James, Sawyer Fuller, and Shyamnath Gollakota from the University of Washington, is published in Science Robotics. Continue reading

Posted in Human Robots

#437776 Video Friday: This Terrifying Robot Will ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today's videos.

The Aigency, which created the FitBot launch video below, is “the world’s first talent management resource for robotic personalities.”

Robots will be playing a bigger role in our lives in the future. By learning to speak their language and work with them now, we can make this future better for everybody. If you’re a creator that’s producing content to entertain and educate people, robots can be a part of that. And we can help you. Robotic actors can show up alongside the rest of your actors.

The folks at Aigency have put together a compilation reel of clips they’ve put on TikTok, which is nice of them, because some of us don’t know how to TikTok because we’re old and boring.

Do googly eyes violate the terms and conditions?

[ Aigency ]

Shane Wighton of the “Stuff Made Here” YouTube channel, who you might remember from that robotic basketball hoop, has a new invention: A haircut robot. This is not the the first barber bot, but previous designs typically used hair clippers. Shane wanted his robot to use scissors. Hilarious and terrifying at once.

[ Stuff Made Here ]

Starting in October of 2016, Prof. Charlie Kemp and Henry M. Clever invented a new kind of robot. They named the prototype NewRo. In March of 2017, Prof. Kemp filmed this video of Henry operating NewRo to perform a number of assistive tasks. While visiting the Bay Area for a AAAI Symposium workshop at Stanford, Prof. Kemp showed this video to a select group of people to get advice, including Dr. Aaron Edsinger. In August of 2017, Dr. Edsinger and Dr. Kemp founded Hello Robot Inc. to commercialize this patent pending assistive technology. Hello Robot Inc. licensed the intellectual property (IP) from Georgia Tech. After three years of stealthy effort, Hello Robot Inc. revealed Stretch, a new kind of robot!

[ Georgia Tech ]

NASA’s Ingenuity Mars Helicopter will make history's first attempt at powered flight on another planet next spring. It is riding with the agency's next mission to Mars (the Mars 2020 Perseverance rover) as it launches from Cape Canaveral Air Force Station later this summer. Perseverance, with Ingenuity attached to its belly, will land on Mars February 18, 2021.

[ JPL ]

For humans, it can be challenging to manipulate thin flexible objects like ropes, wires, or cables. But if these problems are hard for humans, they are nearly impossible for robots. As a cable slides between the fingers, its shape is constantly changing, and the robot’s fingers must be constantly sensing and adjusting the cable’s position and motion. A group of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and from the MIT Department of Mechanical Engineering pursued the task from a different angle, in a manner that more closely mimics us humans. The team’s new system uses a pair of soft robotic grippers with high-resolution tactile sensors (and no added mechanical constraints) to successfully manipulate freely moving cables.

The team observed that it was difficult to pull the cable back when it reached the edge of the finger, because of the convex surface of the GelSight sensor. Therefore, they hope to improve the finger-sensor shape to enhance the overall performance. In the future, they plan to study more complex cable manipulation tasks such as cable routing and cable inserting through obstacles, and they want to eventually explore autonomous cable manipulation tasks in the auto industry.

[ MIT ]

Gripping robots typically have troubles grabbing transparent or shiny objects. A new technique by Carnegie Mellon University relies on color camera system and machine learning to recognize shapes based on color.

[ CMU ]

A new robotic prosthetic leg prototype offers a more natural, comfortable gait while also being quieter and more energy efficient than other designs. The key is the use of new small and powerful motors with fewer gears, borrowed from the space industry. This streamlined technology enables a free-swinging knee and regenerative braking, which charges the battery during use with energy that would typically be dissipated when the foot hits the ground. This feature enables the leg to more than double a typical prosthetic user's walking needs with one charge per day.

[ University of Michigan ]

Thanks Kate!

This year’s Wonder League teams have been put to the test not only with the challenges set forth by Wonder Workshop and Cartoon Network as they look to help the creek kids from Craig of the Creek solve the greatest mystery of all – the quest for the Lost Realm but due to forces outside their control. With a global pandemic displacing many teams from one another due to lockdowns and quarantines, these teams continued to push themselves to find new ways to work together, solve problems, communicate more effectively, and push themselves to complete a journey that they started and refused to give up on. We at Wonder Workshop are humbled and in awe of all these teams have accomplished.

[ Wonder Workshop ]

Thanks Nicole!

Meet Colin Creager, a mechanical engineer at NASA's Glenn Research Center. Colin is focusing on developing tires that can be used on other worlds. These tires use coil springs made of a special shape memory alloy that will let rovers move across sharp jagged rocks or through soft sand on the Moon or Mars.

[ NASA ]

To be presented at IROS this year, “the first on robot collision detection system using low cost microphones.”

[ Rutgers ]

Robot and mechanism designs inspired by the art of Origami have the potential to generate compact, deployable, lightweight morphing structures, as seen in nature, for potential applications in search-and-rescue, aerospace systems, and medical devices. However, it is challenging to obtain actuation that is easily patternable, reversible, and made with a scalable manufacturing process for origami-inspired self-folding machines. In this work, we describe an approach to design reversible self-folding machines using liquid crystal elastomer (LCE), that contracts when heated, as an artificial muscle.

[ UCSD ]

Just in case you need some extra home entertainment, and you’d like cleaner floors at the same time.

[ iRobot ]

Sure, toss it from a drone. Or from orbit. Whatever, it’s squishy!

[ Squishy Robotics ]

The [virtual] RSS conference this week featured an excellent lineup of speakers and panels, and the best part about it being virtual is that you can watch them all at your leisure! Here’s what’s been posted so far:

[ RSS 2020 ]

Lockheed Martin Robotics Seminar: Toward autonomous flying insect-sized robots: recent results in fabrication, design, power systems, control, and sensing with Sawyer Fuller.

[ UMD ]

In this episode of the AI Podcast, Lex interviews Sergey Levine.

[ AI Podcast ] Continue reading

Posted in Human Robots