Tag Archives: fiction

#433939 The Promise—and Complications—of ...

Every year, for just a few days in a major city, a small team of roboticists get to live the dream: ordering around their own personal robot butlers. In carefully-constructed replicas of a restaurant scene or a domestic setting, these robots perform any number of simple algorithmic tasks. “Get the can of beans from the shelf. Greet the visitors to the museum. Help the humans with their shopping. Serve the customers at the restaurant.”

This is Robocup @ Home, the annual tournament where teams of roboticists put their autonomous service robots to the test for practical domestic applications. The tasks seem simple and mundane, but considering the technology required reveals that they’re really not.

The Robot Butler Contest
Say you want a robot to fetch items in the supermarket. In a crowded, noisy environment, the robot must understand your commands, ask for clarification, and map out and navigate an unfamiliar environment, avoiding obstacles and people as it does so. Then it must recognize the product you requested, perhaps in a cluttered environment, perhaps in an unfamiliar orientation. It has to grasp that product appropriately—recall that there are entire multi-million-dollar competitions just dedicated to developing robots that can grasp a range of objects—and then return it to you.

It’s a job so simple that a child could do it—and so complex that teams of smart roboticists can spend weeks programming and engineering, and still end up struggling to complete simplified versions of this task. Of course, the child has the advantage of millions of years of evolutionary research and development, while the first robots that could even begin these tasks were only developed in the 1970s.

Even bearing this in mind, Robocup @ Home can feel like a place where futurist expectations come crashing into technologist reality. You dream of a smooth-voiced, sardonic JARVIS who’s already made your favorite dinner when you come home late from work; you end up shouting “remember the biscuits” at a baffled, ungainly droid in aisle five.

Caring for the Elderly
Famously, Japan is one of the most robo-enthusiastic nations in the world; they are the nation that stunned us all with ASIMO in 2000, and several studies have been conducted into the phenomenon. It’s no surprise, then, that humanoid robotics should be seriously considered as a solution to the crisis of the aging population. The Japanese government, as part of its robots strategy, has already invested $44 million in their development.

Toyota’s Human Support Robot (HSR-2) is a simple but programmable robot with a single arm; it can be remote-controlled to pick up objects and can monitor patients. HSR-2 has become the default robot for use in Robocup @ Home tournaments, at least in tasks that involve manipulating objects.

Alongside this, Toyota is working on exoskeletons to assist people in walking after strokes. It may surprise you to learn that nurses suffer back injuries more than any other occupation, at roughly three times the rate of construction workers, due to the day-to-day work of lifting patients. Toyota has a Care Assist robot/exoskeleton designed to fix precisely this problem by helping care workers with the heavy lifting.

The Home of the Future
The enthusiasm for domestic robotics is easy to understand and, in fact, many startups already sell robots marketed as domestic helpers in some form or another. In general, though, they skirt the immensely complicated task of building a fully capable humanoid robot—a task that even Google’s skunk-works department gave up on, at least until recently.

It’s plain to see why: far more research and development is needed before these domestic robots could be used reliably and at a reasonable price. Consumers with expectations inflated by years of science fiction saturation might find themselves frustrated as the robots fail to perform basic tasks.

Instead, domestic robotics efforts fall into one of two categories. There are robots specialized to perform a domestic task, like iRobot’s Roomba, which stuck to vacuuming and became the most successful domestic robot of all time by far.

The tasks need not necessarily be simple, either: the impressive but expensive automated kitchen uses the world’s most dexterous hands to cook meals, providing it can recognize the ingredients. Other robots focus on human-robot interaction, like Jibo: they essentially package the abilities of a voice assistant like Siri, Cortana, or Alexa to respond to simple questions and perform online tasks in a friendly, dynamic robot exterior.

In this way, the future of domestic automation starts to look a lot more like smart homes than a robot or domestic servant. General robotics is difficult in the same way that general artificial intelligence is difficult; competing with humans, the great all-rounders, is a challenge. Getting superhuman performance at a more specific task, however, is feasible and won’t cost the earth.

Individual startups without the financial might of a Google or an Amazon can develop specialized robots, like Seven Dreamers’ laundry robot, and hope that one day it will form part of a network of autonomous robots that each have a role to play in the household.

Domestic Bliss?
The Smart Home has been a staple of futurist expectations for a long time, to the extent that movies featuring smart homes out of control are already a cliché. But critics of the smart home idea—and of the internet of things more generally—tend to focus on the idea that, more often than not, software just adds an additional layer of things that can break (NSFW), in exchange for minimal added convenience. A toaster that can short-circuit is bad enough, but a toaster that can refuse to serve you toast because its firmware is updating is something else entirely.

That’s before you even get into the security vulnerabilities, which are all the more important when devices are installed in your home and capable of interacting with them. The idea of a smart watch that lets you keep an eye on your children might sound like something a security-conscious parent would like: a smart watch that can be hacked to track children, listen in on their surroundings, and even fool them into thinking a call is coming from their parents is the stuff of nightmares.

Key to many of these problems is the lack of standardization for security protocols, and even the products themselves. The idea of dozens of startups each developing a highly-specialized piece of robotics to perform a single domestic task sounds great in theory, until you realize the potential hazards and pitfalls of getting dozens of incompatible devices to work together on the same system.

It seems inevitable that there are yet more layers of domestic drudgery that can be automated away, decades after the first generation of time-saving domestic devices like the dishwasher and vacuum cleaner became mainstream. With projected market values into the billions and trillions of dollars, there is no shortage of industry interest in ironing out these kinks. But, for now at least, the answer to the question: “Where’s my robot butler?” is that it is gradually, painstakingly learning how to sort through groceries.

Image Credit: Nonchanon / Shutterstock.com Continue reading

Posted in Human Robots

#433928 The Surprising Parallels Between ...

The human mind can be a confusing and overwhelming place. Despite incredible leaps in human progress, many of us still struggle to make our peace with our thoughts. The roots of this are complex and multifaceted. To find explanations for the global mental health epidemic, one can tap into neuroscience, psychology, evolutionary biology, or simply observe the meaningless systems that dominate our modern-day world.

This is not only the context of our reality but also that of the critically-acclaimed Netflix series, Maniac. Psychological dark comedy meets science fiction, Maniac is a retro, futuristic, and hallucinatory trip that is filled with hidden symbols. Directed by Cary Joji Fukunaga, the series tells the story of two strangers who decide to participate in the final stage of a “groundbreaking” pharmaceutical trial—one that combines novel pharmaceuticals with artificial intelligence, and promises to make their emotional pain go away.

Naturally, things don’t go according to plan.

From exams used for testing defense mechanisms to techniques such as cognitive behavioral therapy, the narrative infuses genuine psychological science. As perplexing as the series may be to some viewers, many of the tools depicted actually have a strong grounding in current technological advancements.

Catalysts for Alleviating Suffering
In the therapy of Maniac, participants undergo a three-day trial wherein they ingest three pills and appear to connect their consciousness to a superintelligent AI. Each participant is hurled into the traumatic experiences imprinted in their subconscious and forced to cope with them in a series of hallucinatory and dream-like experiences.

Perhaps the most recognizable parallel that can be drawn is with the latest advancements in psychedelic therapy. Psychedelics are a class of drugs that alter the experience of consciousness, and often cause radical changes in perception and cognitive processes.

Through a process known as transient hypofrontality, the executive “over-thinking” parts of our brains get a rest, and deeper areas become more active. This experience, combined with the breakdown of the ego, is often correlated with feelings of timelessness, peacefulness, presence, unity, and above all, transcendence.

Despite being not addictive and extremely difficult to overdose on, regulators looked down on the use of psychedelics for decades and many continue to dismiss them as “party drugs.” But in the last few years, all of this began to change.

Earlier this summer, the FDA granted breakthrough therapy designation to MDMA for the treatment of PTSD, after several phases of successful trails. Similar research has discovered that Psilocybin (also known as magic mushrooms) combined with therapy is far more effective than traditional forms of treatment to treat depression and anxiety. Today, there is a growing and overwhelming body of research that proves that not only are psychedelics such as LSD, MDMA, or Psylicybin effective catalysts to alleviate suffering and enhance the human condition, but they are potentially the most effective tools out there.

It’s important to realize that these substances are not solutions on their own, but rather catalysts for more effective therapy. They can be groundbreaking, but only in the right context and setting.

Brain-Machine Interfaces
In Maniac, the medication-assisted therapy is guided by what appears to be a super-intelligent form of artificial intelligence called the GRTA, nicknamed Gertie. Gertie, who is a “guide” in machine form, accesses the minds of the participants through what appears to be a futuristic brain-scanning technology and curates customized hallucinatory experiences with the goal of accelerating the healing process.

Such a powerful form of brain-scanning technology is not unheard of. Current levels of scanning technology are already allowing us to decipher dreams and connect three human brains, and are only growing exponentially. Though they are nowhere as advanced as Gertie (we have a long way to go before we get to this kind of general AI), we are also seeing early signs of AI therapy bots, chatbots that listen, think, and communicate with users like a therapist would.

The parallels between current advancements in mental health therapy and the methods in Maniac can be startling, and are a testament to how science fiction and the arts can be used to explore the existential implications of technology.

Not Necessarily a Dystopia
While there are many ingenious similarities between the technology in Maniac and the state of mental health therapy, it’s important to recognize the stark differences. Like many other blockbuster science fiction productions, Maniac tells a fundamentally dystopian tale.

The series tells the story of the 73rd iteration of a controversial drug trial, one that has experienced many failures and even led to various participants being braindead. The scientists appear to be evil, secretive, and driven by their own superficial agendas and deep unresolved emotional issues.

In contrast, clinicians and researchers are not only required to file an “investigational new drug application” with the FDA (and get approval) but also update the agency with safety and progress reports throughout the trial.

Furthermore, many of today’s researchers are driven by a strong desire to contribute to the well-being and progress of our species. Even more, the results of decades of research by organizations like MAPS have been exceptionally promising and aligned with positive values. While Maniac is entertaining and thought-provoking, viewers must not forget the positive potential of such advancements in mental health therapy.

Science, technology, and psychology aside, Maniac is a deep commentary on the human condition and the often disorienting states that pain us all. Within any human lifetime, suffering is inevitable. It is the disproportionate, debilitating, and unjust levels of suffering that we ought to tackle as a society. Ultimately, Maniac explores whether advancements in science and technology can help us live not a life devoid of suffering, but one where it is balanced with fulfillment.

Image Credit: xpixel / Shutterstock.com Continue reading

Posted in Human Robots

#433895 Sci-Fi Movies Are the Secret Weapon That ...

If there’s one line that stands the test of time in Steven Spielberg’s 1993 classic Jurassic Park, it’s probably Jeff Goldblum’s exclamation, “Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should.”

Goldblum’s character, Dr. Ian Malcolm, was warning against the hubris of naively tinkering with dinosaur DNA in an effort to bring these extinct creatures back to life. Twenty-five years on, his words are taking on new relevance as a growing number of scientists and companies are grappling with how to tread the line between “could” and “should” in areas ranging from gene editing and real-world “de-extinction” to human augmentation, artificial intelligence and many others.

Despite growing concerns that powerful emerging technologies could lead to unexpected and wide-ranging consequences, innovators are struggling with how to develop beneficial new products while being socially responsible. Part of the answer could lie in watching more science fiction movies like Jurassic Park.

Hollywood Lessons in Societal Risks
I’ve long been interested in how innovators and others can better understand the increasingly complex landscape around the social risks and benefits associated with emerging technologies. Growing concerns over the impacts of tech on jobs, privacy, security and even the ability of people to live their lives without undue interference highlight the need for new thinking around how to innovate responsibly.

New ideas require creativity and imagination, and a willingness to see the world differently. And this is where science fiction movies can help.

Sci-fi flicks are, of course, notoriously unreliable when it comes to accurately depicting science and technology. But because their plots are often driven by the intertwined relationships between people and technology, they can be remarkably insightful in revealing social factors that affect successful and responsible innovation.

This is clearly seen in Jurassic Park. The movie provides a surprisingly good starting point for thinking about the pros and cons of modern-day genetic engineering and the growing interest in bringing extinct species back from the dead. But it also opens up conversations around the nature of complex systems that involve both people and technology, and the potential dangers of “permissionless” innovation that’s driven by power, wealth and a lack of accountability.

Similar insights emerge from a number of other movies, including Spielberg’s 2002 film “Minority Report”—which presaged a growing capacity for AI-enabled crime prediction and the ethical conundrums it’s raising—as well as the 2014 film Ex Machina.

As with Jurassic Park, Ex Machina centers around a wealthy and unaccountable entrepreneur who is supremely confident in his own abilities. In this case, the technology in question is artificial intelligence.

The movie tells a tale of an egotistical genius who creates a remarkable intelligent machine—but he lacks the awareness to recognize his limitations and the risks of what he’s doing. It also provides a chilling insight into potential dangers of creating machines that know us better than we know ourselves, while not being bound by human norms or values.

The result is a sobering reminder of how, without humility and a good dose of humanity, our innovations can come back to bite us.

The technologies in Jurassic Park, Minority Report, and Ex Machina lie beyond what is currently possible. Yet these films are often close enough to emerging trends that they help reveal the dangers of irresponsible, or simply naive, innovation. This is where these and other science fiction movies can help innovators better understand the social challenges they face and how to navigate them.

Real-World Problems Worked Out On-Screen
In a recent op-ed in the New York Times, journalist Kara Swisher asked, “Who will teach Silicon Valley to be ethical?” Prompted by a growing litany of socially questionable decisions amongst tech companies, Swisher suggests that many of them need to grow up and get serious about ethics. But ethics alone are rarely enough. It’s easy for good intentions to get swamped by fiscal pressures and mired in social realities.

Elon Musk has shown that brilliant tech innovators can take ethical missteps along the way. Image Credit:AP Photo/Chris Carlson
Technology companies increasingly need to find some way to break from business as usual if they are to become more responsible. High-profile cases involving companies like Facebook and Uber as well as Tesla’s Elon Musk have highlighted the social as well as the business dangers of operating without fully understanding the consequences of people-oriented actions.

Many more companies are struggling to create socially beneficial technologies and discovering that, without the necessary insights and tools, they risk blundering about in the dark.

For instance, earlier this year, researchers from Google and DeepMind published details of an artificial intelligence-enabled system that can lip-read far better than people. According to the paper’s authors, the technology has enormous potential to improve the lives of people who have trouble speaking aloud. Yet it doesn’t take much to imagine how this same technology could threaten the privacy and security of millions—especially when coupled with long-range surveillance cameras.

Developing technologies like this in socially responsible ways requires more than good intentions or simply establishing an ethics board. People need a sophisticated understanding of the often complex dynamic between technology and society. And while, as Mozilla’s Mitchell Baker suggests, scientists and technologists engaging with the humanities can be helpful, it’s not enough.

An Easy Way into a Serious Discipline
The “new formulation” of complementary skills Baker says innovators desperately need already exists in a thriving interdisciplinary community focused on socially responsible innovation. My home institution, the School for the Future of Innovation in Society at Arizona State University, is just one part of this.

Experts within this global community are actively exploring ways to translate good ideas into responsible practices. And this includes the need for creative insights into the social landscape around technology innovation, and the imagination to develop novel ways to navigate it.

People love to come together as a movie audience.Image credit: The National Archives UK, CC BY 4.0
Here is where science fiction movies become a powerful tool for guiding innovators, technology leaders and the companies where they work. Their fictional scenarios can reveal potential pitfalls and opportunities that can help steer real-world decisions toward socially beneficial and responsible outcomes, while avoiding unnecessary risks.

And science fiction movies bring people together. By their very nature, these films are social and educational levelers. Look at who’s watching and discussing the latest sci-fi blockbuster, and you’ll often find a diverse cross-section of society. The genre can help build bridges between people who know how science and technology work, and those who know what’s needed to ensure they work for the good of society.

This is the underlying theme in my new book Films from the Future: The Technology and Morality of Sci-Fi Movies. It’s written for anyone who’s curious about emerging trends in technology innovation and how they might potentially affect society. But it’s also written for innovators who want to do the right thing and just don’t know where to start.

Of course, science fiction films alone aren’t enough to ensure socially responsible innovation. But they can help reveal some profound societal challenges facing technology innovators and possible ways to navigate them. And what better way to learn how to innovate responsibly than to invite some friends round, open the popcorn and put on a movie?

It certainly beats being blindsided by risks that, with hindsight, could have been avoided.

Andrew Maynard, Director, Risk Innovation Lab, Arizona State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Fred Mantel / Shutterstock.com Continue reading

Posted in Human Robots

#433884 Designer Babies, and Their Babies: How ...

As if stand-alone technologies weren’t advancing fast enough, we’re in age where we must study the intersection points of these technologies. How is what’s happening in robotics influenced by what’s happening in 3D printing? What could be made possible by applying the latest advances in quantum computing to nanotechnology?

Along these lines, one crucial tech intersection is that of artificial intelligence and genomics. Each field is seeing constant progress, but Jamie Metzl believes it’s their convergence that will really push us into uncharted territory, beyond even what we’ve imagined in science fiction. “There’s going to be this push and pull, this competition between the reality of our biology with its built-in limitations and the scope of our aspirations,” he said.

Metzl is a senior fellow at the Atlantic Council and author of the upcoming book Hacking Darwin: Genetic Engineering and the Future of Humanity. At Singularity University’s Exponential Medicine conference last week, he shared his insights on genomics and AI, and where their convergence could take us.

Life As We Know It
Metzl explained how genomics as a field evolved slowly—and then quickly. In 1953, James Watson and Francis Crick identified the double helix structure of DNA, and realized that the order of the base pairs held a treasure trove of genetic information. There was such a thing as a book of life, and we’d found it.

In 2003, when the Human Genome Project was completed (after 13 years and $2.7 billion), we learned the order of the genome’s 3 billion base pairs, and the location of specific genes on our chromosomes. Not only did a book of life exist, we figured out how to read it.

Jamie Metzl at Exponential Medicine
Fifteen years after that, it’s 2018 and precision gene editing in plants, animals, and humans is changing everything, and quickly pushing us into an entirely new frontier. Forget reading the book of life—we’re now learning how to write it.

“Readable, writable, and hackable, what’s clear is that human beings are recognizing that we are another form of information technology, and just like our IT has entered this exponential curve of discovery, we will have that with ourselves,” Metzl said. “And it’s intersecting with the AI revolution.”

Learning About Life Meets Machine Learning
In 2016, DeepMind’s AlphaGo program outsmarted the world’s top Go player. In 2017 AlphaGo Zero was created: unlike AlphaGo, AlphaGo Zero wasn’t trained using previous human games of Go, but was simply given the rules of Go—and in four days it defeated the AlphaGo program.

Our own biology is, of course, vastly more complex than the game of Go, and that, Metzl said, is our starting point. “The system of our own biology that we are trying to understand is massively, but very importantly not infinitely, complex,” he added.

Getting a standardized set of rules for our biology—and, eventually, maybe even outsmarting our biology—will require genomic data. Lots of it.

Multiple countries already starting to produce this data. The UK’s National Health Service recently announced a plan to sequence the genomes of five million Britons over the next five years. In the US the All of Us Research Program will sequence a million Americans. China is the most aggressive in sequencing its population, with a goal of sequencing half of all newborns by 2020.

“We’re going to get these massive pools of sequenced genomic data,” Metzl said. “The real gold will come from comparing people’s sequenced genomes to their electronic health records, and ultimately their life records.” Getting people comfortable with allowing open access to their data will be another matter; Metzl mentioned that Luna DNA and others have strategies to help people get comfortable with giving consent to their private information. But this is where China’s lack of privacy protection could end up being a significant advantage.

To compare genotypes and phenotypes at scale—first millions, then hundreds of millions, then eventually billions, Metzl said—we’re going to need AI and big data analytic tools, and algorithms far beyond what we have now. These tools will let us move from precision medicine to predictive medicine, knowing precisely when and where different diseases are going to occur and shutting them down before they start.

But, Metzl said, “As we unlock the genetics of ourselves, it’s not going to be about just healthcare. It’s ultimately going to be about who and what we are as humans. It’s going to be about identity.”

Designer Babies, and Their Babies
In Metzl’s mind, the most serious application of our genomic knowledge will be in embryo selection.

Currently, in-vitro fertilization (IVF) procedures can extract around 15 eggs, fertilize them, then do pre-implantation genetic testing; right now what’s knowable is single-gene mutation diseases and simple traits like hair color and eye color. As we get to the millions and then billions of people with sequences, we’ll have information about how these genetics work, and we’re going to be able to make much more informed choices,” Metzl said.

Imagine going to a fertility clinic in 2023. You give a skin graft or a blood sample, and using in-vitro gametogenesis (IVG)—infertility be damned—your skin or blood cells are induced to become eggs or sperm, which are then combined to create embryos. The dozens or hundreds of embryos created from artificial gametes each have a few cells extracted from them, and these cells are sequenced. The sequences will tell you the likelihood of specific traits and disease states were that embryo to be implanted and taken to full term. “With really anything that has a genetic foundation, we’ll be able to predict with increasing levels of accuracy how that potential child will be realized as a human being,” Metzl said.

This, he added, could lead to some wild and frightening possibilities: if you have 1,000 eggs and you pick one based on its optimal genetic sequence, you could then mate your embryo with somebody else who has done the same thing in a different genetic line. “Your five-day-old embryo and their five-day-old embryo could have a child using the same IVG process,” Metzl said. “Then that child could have a child with another five-day-old embryo from another genetic line, and you could go on and on down the line.”

Sounds insane, right? But wait, there’s more: as Jason Pontin reported earlier this year in Wired, “Gene-editing technologies such as Crispr-Cas9 would make it relatively easy to repair, add, or remove genes during the IVG process, eliminating diseases or conferring advantages that would ripple through a child’s genome. This all may sound like science fiction, but to those following the research, the combination of IVG and gene editing appears highly likely, if not inevitable.”

From Crazy to Commonplace?
It’s a slippery slope from gene editing and embryo-mating to a dystopian race to build the most perfect humans possible. If somebody’s investing so much time and energy in selecting their embryo, Metzl asked, how will they think about the mating choices of their children? IVG could quickly leave the realm of healthcare and enter that of evolution.

“We all need to be part of an inclusive, integrated, global dialogue on the future of our species,” Metzl said. “Healthcare professionals are essential nodes in this.” Not least among this dialogue should be the question of access to tech like IVG; are there steps we can take to keep it from becoming a tool for a wealthy minority, and thereby perpetuating inequality and further polarizing societies?

As Pontin points out, at its inception 40 years ago IVF also sparked fear, confusion, and resistance—and now it’s as normal and common as could be, with millions of healthy babies conceived using the technology.

The disruption that genomics, AI, and IVG will bring to reproduction could follow a similar story cycle—if we’re smart about it. As Metzl put it, “This must be regulated, because it is life.”

Image Credit: hywards / Shutterstock.com Continue reading

Posted in Human Robots

#433872 Breaking Out of the Corporate Bubble ...

For big companies, success is a blessing and a curse. You don’t get big without doing something (or many things) very right. It might start with an invention or service the world didn’t know it needed. Your product takes off, and growth brings a whole new set of logistical challenges. Delivering consistent quality, hiring the right team, establishing a strong culture, tapping into new markets, satisfying shareholders. The list goes on.

Eventually, however, what made you successful also makes you resistant to change.

You’ve built a machine for one purpose, and it’s running smoothly, but what about retooling that machine to make something new? Not so easy. Leaders of big companies know there is no future for their organizations without change. And yet, they struggle to drive it.

In their new book, Leading Transformation: How to Take Charge of Your Company’s Future, Kyle Nel, Nathan Furr, and Thomas Ramsøy aim to deliver a roadmap for corporate transformation.

The book focuses on practical tools that have worked in big companies to break down behavioral and cognitive biases, envision radical futures, and run experiments. These include using science fiction and narrative to see ahead and adopting better measures of success for new endeavors.

A thread throughout is how to envision a new future and move into that future.

We’re limited by the bubbles in which we spend the most time—the corporate bubble, the startup bubble, the nonprofit bubble. The mutually beneficial convergence of complementary bubbles, then, can be a powerful tool for kickstarting transformation. The views and experiences of one partner can challenge the accepted wisdom of the other; resources can flow into newly co-created visions and projects; and connections can be made that wouldn’t otherwise exist.

The authors call such alliances uncommon partners. In the following excerpt from the book, Made In Space, a startup building 3D printers for space, helps Lowe’s explore an in-store 3D printing system, and Lowe’s helps Made In Space expand its vision and focus.

Uncommon Partners
In a dingy conference room at NASA, five prototypical nerds, smelling of Thai food, laid out the path to printing satellites in space and buildings on distant planets. At the end of their four-day marathon, they emerged with an artifact trail that began with early prototypes for the first 3D printer on the International Space Station and ended in the additive-manufacturing future—a future much bigger than 3D printing.

In the additive-manufacturing future, we will view everything as transient, or capable of being repurposed into new things. Rather than throwing away a soda bottle or a bent nail, we will simply reprocess these things into a new hinge for the fence we are building or a light switch plate for the tool shed. Indeed, we might not even go buy bricks for the tool shed, but instead might print them from impurities pulled from the air and the dirt beneath our feet. Such a process would both capture carbon in the air to make the bricks and avoid all the carbon involved in making and then transporting traditional bricks to your house.

If it all sounds a little too science fiction, think again. Lowe’s has already been honored as a Champion of Change by the US government for its prototype system to recycle plastic (e.g., plastic bags and bottles). The future may be closer than you have imagined. But to get there, Lowe’s didn’t work alone. It had to work with uncommon partners to create the future.

Uncommon partners are the types of organizations you might not normally work with, but which can greatly help you create radical new futures. Increasingly, as new technologies emerge and old industries converge, companies are finding that working independently to create all the necessary capabilities to enter new industries or create new technologies is costly, risky, and even counterproductive. Instead, organizations are finding that they need to collaborate with uncommon partners as an ecosystem to cocreate the future together. Nathan [Furr] and his colleague at INSEAD, Andrew Shipilov, call this arrangement an adaptive ecosystem strategy and described how companies such as Lowe’s, Samsung, Mastercard, and others are learning to work differently with partners and to work with different kinds of partners to more effectively discover new opportunities. For Lowe’s, an adaptive ecosystem strategy working with uncommon partners forms the foundation of capturing new opportunities and transforming the company. Despite its increased agility, Lowe’s can’t be (and shouldn’t become) an independent additive-manufacturing, robotics-using, exosuit-building, AR-promoting, fill-in-the-blank-what’s-next-ing company in addition to being a home improvement company. Instead, Lowe’s applies an adaptive ecosystem strategy to find the uncommon partners with which it can collaborate in new territory.

To apply the adaptive ecosystem strategy with uncommon partners, start by identifying the technical or operational components required for a particular focus area (e.g., exosuits) and then sort these components into three groups. First, there are the components that are emerging organically without any assistance from the orchestrator—the leader who tries to bring together the adaptive ecosystem. Second, there are the elements that might emerge, with encouragement and support. Third are the elements that won’t happen unless you do something about it. In an adaptive ecosystem strategy, you can create regular partnerships for the first two elements—those already emerging or that might emerge—if needed. But you have to create the elements in the final category (those that won’t emerge) either with an uncommon partner or by yourself.

For example, when Lowe’s wanted to explore the additive-manufacturing space, it began a search for an uncommon partner to provide the missing but needed capabilities. Unfortunately, initial discussions with major 3D printing companies proved disappointing. The major manufacturers kept trying to sell Lowe’s 3D printers. But the vision our group had created with science fiction was not for vendors to sell Lowe’s a printer, but for partners to help the company build a system—something that would allow customers to scan, manipulate, print, and eventually recycle additive-manufacturing objects. Every time we discussed 3D printing systems with these major companies, they responded that they could do it and then tried to sell printers. When Carin Watson, one of the leading lights at Singularity University, introduced us to Made In Space (a company being incubated in Singularity University’s futuristic accelerator), we discovered an uncommon partner that understood what it meant to cocreate a system.

Initially, Made In Space had been focused on simply getting 3D printing to work in space, where you can’t rely on gravity, you can’t send up a technician if the machine breaks, and you can’t release noxious fumes into cramped spacecraft quarters. But after the four days in the conference room going over the comic for additive manufacturing, Made In Space and Lowe’s emerged with a bigger vision. The company helped lay out an artifact trail that included not only the first printer on the International Space Station but also printing system services in Lowe’s stores.

Of course, the vision for an additive-manufacturing future didn’t end there. It also reshaped Made In Space’s trajectory, encouraging the startup, during those four days in a NASA conference room, to design a bolder future. Today, some of its bold projects include the Archinaut, a system that enables satellites to build themselves while in space, a direction that emerged partly from the science fiction narrative we created around additive manufacturing.

In summary, uncommon partners help you succeed by providing you with the capabilities you shouldn’t be building yourself, as well as with fresh insights. You also help uncommon partners succeed by creating new opportunities from which they can prosper.

Helping Uncommon Partners Prosper
Working most effectively with uncommon partners can require a shift from more familiar outsourcing or partnership relationships. When working with uncommon partners, you are trying to cocreate the future, which entails a great deal more uncertainty. Because you can’t specify outcomes precisely, agreements are typically less formal than in other types of relationships, and they operate under the provisions of shared vision and trust more than binding agreement clauses. Moreover, your goal isn’t to extract all the value from the relationship. Rather, you need to find a way to share the value.

Ideally, your uncommon partners should be transformed for the better by the work you do. For example, Lowe’s uncommon partner developing the robotics narrative was a small startup called Fellow Robots. Through their work with Lowe’s, Fellow Robots transformed from a small team focused on a narrow application of robotics (which was arguably the wrong problem) to a growing company developing a very different and valuable set of capabilities: putting cutting-edge technology on top of the old legacy systems embedded at the core of most companies. Working with Lowe’s allowed Fellow Robots to discover new opportunities, and today Fellow Robots works with retailers around the world, including BevMo! and Yamada. Ultimately, working with uncommon partners should be transformative for both of you, so focus more on creating a bigger pie than on how you are going to slice up a smaller pie.

The above excerpt appears in the new book Leading Transformation: How to Take Charge of Your Company’s Future by Kyle Nel, Nathan Furr, and Thomas Ramsøy, published by Harvard Business Review Press.

Image Credit: Here / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots