Tag Archives: diego

#433828 Using Big Data to Give Patients Control ...

Big data, personalized medicine, artificial intelligence. String these three buzzphrases together, and what do you have?

A system that may revolutionize the future of healthcare, by bringing sophisticated health data directly to patients for them to ponder, digest, and act upon—and potentially stop diseases in their tracks.

At Singularity University’s Exponential Medicine conference in San Diego this week, Dr. Ran Balicer, director of the Clalit Research Institute in Israel, painted a futuristic picture of how big data can merge with personalized healthcare into an app-based system in which the patient is in control.

Dr. Ran Balicer at Exponential Medicine
Picture this: instead of going to a physician with your ailments, your doctor calls you with some bad news: “Within six hours, you’re going to have a heart attack. So why don’t you come into the clinic and we can fix that.” Crisis averted.

Following the treatment, you’re at home monitoring your biomarkers, lab test results, and other health information through an app with a clean, beautiful user interface. Within the app, you can observe how various health-influencing life habits—smoking, drinking, insufficient sleep—influence your chance of future cardiovascular disease risks by toggling their levels up or down.

There’s more: you can also set a health goal within the app—for example, stop smoking—which automatically informs your physician. The app will then suggest pharmaceuticals to help you ditch the nicotine and automatically sends the prescription to your local drug store. You’ll also immediately find a list of nearby support groups that can help you reach your health goal.

With this hefty dose of AI, you’re in charge of your health—in fact, probably more so than under current healthcare systems.

Sound fantastical? In fact, this type of preemptive care is already being provided in some countries, including Israel, at a massive scale, said Balicer. By mining datasets with deep learning and other powerful AI tools, we can predict the future—and put it into the hands of patients.

The Israeli Advantage
In order to apply big data approaches to medicine, you first need a giant database.

Israel is ahead of the game in this regard. With decades of electronic health records aggregated within a central warehouse, Israel offers a wealth of health-related data on the scale of millions of people and billions of data points. The data is incredibly multiplex, covering lab tests, drugs, hospital admissions, medical procedures, and more.

One of Balicer’s early successes was an algorithm that predicts diabetes, which allowed the team to notify physicians to target their care. Clalit has also been busy digging into data that predicts winter pneumonia, osteoporosis, and a long list of other preventable diseases.

So far, Balicer’s predictive health system has only been tested on a pilot group of patients, but he is expecting to roll out the platform to all patients in the database in the next few months.

Truly Personalized Medicine
To Balicer, whatever a machine can do better, it should be welcomed to do. AI diagnosticians have already enjoyed plenty of successes—but their collaboration remains mostly with physicians, at a point in time when the patient is already ill.

A particularly powerful use of AI in medicine is to bring insights and trends directly to the patient, such that they can take control over their own health and medical care.

For example, take the problem of tailored drug dosing. Current drug doses are based on average results conducted during clinical trials—the dosing is not tailored for any specific patient’s genetic and health makeup. But what if a doctor had already seen millions of other patients similar to your case, and could generate dosing recommendations more relevant to you based on that particular group of patients?

Such personalized recommendations are beyond the ability of any single human doctor. But with the help of AI, which can quickly process massive datasets to find similarities, doctors may soon be able to prescribe individually-tailored medications.

Tailored treatment doesn’t stop there. Another issue with pharmaceuticals and treatment regimes is that they often come with side effects: potentially health-threatening reactions that may, or may not, happen to you based on your biometrics.

Back in 2017, the New England Journal of Medicine launched the SPRINT Data Analysis Challenge, which urged physicians and data analysts to identify novel clinical findings using shared clinical trial data.

Working with Dr. Noa Dagan at the Clalit Research Institute, Balicer and team developed an algorithm that recommends whether or not a patient receives a particularly intensive treatment regime for hypertension.

Rather than simply looking at one outcome—normalized blood pressure—the algorithm takes into account an individual’s specific characteristics, laying out the treatment’s predicted benefits and harms for a particular patient.

“We built thousands of models for each patient to comprehensively understand the impact of the treatment for the individual; for example, a reduced risk for stroke and cardiovascular-related deaths could be accompanied by an increase in serious renal failure,” said Balicer. “This approach allows a truly personalized balance—allowing patients and their physicians to ultimately decide if the risks of the treatment are worth the benefits.”

This is already personalized medicine at its finest. But Balicer didn’t stop there.

We are not the sum of our biologics and medical stats, he said. A truly personalized approach needs to take a patient’s needs and goals and the sacrifices and tradeoffs they’re willing to make into account, rather than having the physician make decisions for them.

Balicer’s preventative system adds this layer of complexity by giving weights to different outcomes based on patients’ input of their own health goals. Rather than blindly following big data, the system holistically integrates the patient’s opinion to make recommendations.

Balicer’s system is just one example of how AI can truly transform personalized health care. The next big challenge is to work with physicians to further optimize these systems, in a way that doctors can easily integrate them into their workflow and embrace the technology.

“Health systems will not be replaced by algorithms, rest assured,” concluded Balicer, “but health systems that don’t use algorithms will be replaced by those that do.”

Image Credit: Magic mine / Shutterstock.com Continue reading

Posted in Human Robots

#432891 This Week’s Awesome Stories From ...

TRANSPORTATION
Elon Musk Presents His Tunnel Vision to the People of LA
Jack Stewart and Aarian Marshall | Wired
“Now, Musk wants to build this new, 2.1-mile tunnel, near LA’s Sepulveda pass. It’s all part of his broader vision of a sprawling network that could take riders from Sherman Oaks in the north to Long Beach Airport in the south, Santa Monica in the west to Dodger Stadium in the east—without all that troublesome traffic.”

ROBOTICS
Feel What This Robot Feels Through Tactile Expressions
Evan Ackerman | IEEE Spectrum
“Guy Hoffman’s Human-Robot Collaboration & Companionship (HRC2) Lab at Cornell University is working on a new robot that’s designed to investigate this concept of textural communication, which really hasn’t been explored in robotics all that much. The robot uses a pneumatically powered elastomer skin that can be dynamically textured with either goosebumps or spikes, which should help it communicate more effectively, especially if what it’s trying to communicate is, ‘Don’t touch me!’”

VIRTUAL REALITY
In Virtual Reality, How Much Body Do You Need?
Steph Yin | The New York Times
“In a paper published Tuesday in Scientific Reports, they showed that animating virtual hands and feet alone is enough to make people feel their sense of body drift toward an invisible avatar. Their work fits into a corpus of research on illusory body ownership, which has challenged understandings of perception and contributed to therapies like treating pain for amputees who experience phantom limb.”

MEDICINE
How Graphene and Gold Could Help Us Test Drugs and Monitor Cancer
Angela Chen | The Verge
“In today’s study, scientists learned to precisely control the amount of electricity graphene generates by changing how much light they shine on the material. When they grew heart cells on the graphene, they could manipulate the cells too, says study co-author Alex Savtchenko, a physicist at the University of California, San Diego. They could make it beat 1.5 times faster, three times faster, 10 times faster, or whatever they needed.”

DISASTER RELIEF
Robotic Noses Could Be the Future of Disaster Rescue—If They Can Outsniff Search Dogs
Eleanor Cummins | Popular Science
“While canine units are a tried and fairly true method for identifying people trapped in the wreckage of a disaster, analytical chemists have for years been working in the lab to create a robotic alternative. A synthetic sniffer, they argue, could potentially prove to be just as or even more reliable than a dog, more resilient in the face of external pressures like heat and humidity, and infinitely more portable.”

Image Credit: Sergey Nivens / Shutterstock.com Continue reading

Posted in Human Robots

#432433 Just a Few of the Amazing Things AI Is ...

In an interview at Singularity University’s Exponential Medicine in San Diego, Neil Jacobstein shared some groundbreaking developments in artificial intelligence for healthcare.

Jacobstein is Singularity University’s faculty chair in AI and robotics, a distinguished visiting scholar at Stanford University’s MediaX Program, and has served as an AI technical consultant on research and development projects for organizations like DARPA, Deloitte, NASA, Boeing, and many more.

According to Jacobstein, 2017 was an exciting year for AI, not only due to how the technology matured, but also thanks to new applications and successes in several health domains.

Among the examples cited in his interview, Jacobstein referenced a 2017 breakthrough at Stanford University where an AI system was used for skin cancer identification. To train the system, the team showed a convolutional neural network images of 129,000 skin lesions. The system was able to differentiate between images displaying malignant melanomas and benign skin lesions. When tested against 21 board–certified dermatologists, the system made comparable diagnostic calls.

Pattern recognition and image detection are just two examples of successful uses of AI in healthcare and medicine—the list goes on.

“We’re seeing AI and machine learning systems performing at narrow tasks remarkably well, and getting breakthrough results both in AI for problem-solving and AI with medicine,” Jacobstein said.

He continued, “We are not seeing super-human terminator systems. But we are seeing more members of the AI community paying attention to managing the downside risk of AI responsibly.”

Watch the full interview to learn more examples of how AI is advancing in healthcare and medicine and elsewhere and what Jacobstein thinks is coming next.

Image Credit: GrAI / Shutterstock.com Continue reading

Posted in Human Robots

#431907 The Future of Cancer Treatment Is ...

In an interview at Singularity University’s Exponential Medicine in San Diego, Richard Wender, chief cancer control officer at the American Cancer Society, discussed how technology has changed cancer care and treatment in recent years.
Just a few years ago, microscopes were the primary tool used in cancer diagnoses, but we’ve come a long way since.
“We still look at a microscope, we still look at what organ the cancer started in,” Wender said. “But increasingly we’re looking at the molecular signature. It’s not just the genomics, and it’s not just the genes. It’s also the cellular environment around that cancer. We’re now targeting our therapies to the mutations that are found in that particular cancer.”
Cancer treatments in the past have been largely reactionary, but they don’t need to be. Most cancer is genetic, which means that treatment can be preventative. This is one reason why newer cancer treatment techniques are searching for actionable targets in the specific gene before the cancer develops.

When asked how artificial intelligence and machine learning technologies are reshaping clinical trials, Wender acknowledged that how clinical trials have been run in the past won’t work moving forward.
“Our traditional ways of learning about cancer were by finding a particular cancer type and conducting a long clinical trial that took a number of years enrolling patients from around the country. That is not how we’re going to learn to treat individual patients in the future.”
Instead, Wender emphasized the need for gathering as much data as possible, and from as many individual patients as possible. This data should encompass clinical, pathological, and molecular data and should be gathered from a patient all the way through their final outcome. “Literally every person becomes a clinical trial of one,” Wender said.
For the best cancer treatment and diagnostics, Wender says the answer is to make the process collaborative by pulling in resources from organizations and companies that are both established and emerging.
It’s no surprise to hear that the best solutions come from pairing together uncommon partners to innovate.
Image Credit: jovan vitanovski / Shutterstock.com Continue reading

Posted in Human Robots

#431559 Drug Discovery AI to Scour a Universe of ...

On a dark night, away from city lights, the stars of the Milky Way can seem uncountable. Yet from any given location no more than 4,500 are visible to the naked eye. Meanwhile, our galaxy has 100–400 billion stars, and there are even more galaxies in the universe.
The numbers of the night sky are humbling. And they give us a deep perspective…on drugs.
Yes, this includes wow-the-stars-are-freaking-amazing-tonight drugs, but also the kinds of drugs that make us well again when we’re sick. The number of possible organic compounds with “drug-like” properties dwarfs the number of stars in the universe by over 30 orders of magnitude.
Next to this multiverse of possibility, the chemical configurations scientists have made into actual medicines are like the smattering of stars you’d glimpse downtown.
But for good reason.
Exploring all that potential drug-space is as humanly impossible as exploring all of physical space, and even if we could, most of what we’d find wouldn’t fit our purposes. Still, the idea that wonder drugs must surely lurk amid the multitudes is too tantalizing to ignore.
Which is why, Alex Zhavoronkov said at Singularity University’s Exponential Medicine in San Diego last week, we should use artificial intelligence to do more of the legwork and speed discovery. This, he said, could be one of the next big medical applications for AI.
Dogs, Diagnosis, and Drugs
Zhavoronkov is CEO of Insilico Medicine and CSO of the Biogerontology Research Foundation. Insilico is one of a number of AI startups aiming to accelerate drug discovery with AI.
In recent years, Zhavoronkov said, the now-famous machine learning technique, deep learning, has made progress on a number of fronts. Algorithms that can teach themselves to play games—like DeepMind’s AlphaGo Zero or Carnegie Mellon’s poker playing AI—are perhaps the most headline-grabbing of the bunch. But pattern recognition was the thing that kicked deep learning into overdrive early on, when machine learning algorithms went from struggling to tell dogs and cats apart to outperforming their peers and then their makers in quick succession.
[Watch this video for an AI update from Neil Jacobstein, chair of Artificial Intelligence and Robotics at Singularity University.]

In medicine, deep learning algorithms trained on databases of medical images can spot life-threatening disease with equal or greater accuracy than human professionals. There’s even speculation that AI, if we learn to trust it, could be invaluable in diagnosing disease. And, as Zhavoronkov noted, with more applications and a longer track record that trust is coming.
“Tesla is already putting cars on the street,” Zhavoronkov said. “Three-year, four-year-old technology is already carrying passengers from point A to point B, at 100 miles an hour, and one mistake and you’re dead. But people are trusting their lives to this technology.”
“So, why don’t we do it in pharma?”
Trial and Error and Try Again
AI wouldn’t drive the car in pharmaceutical research. It’d be an assistant that, when paired with a chemist or two, could fast-track discovery by screening more possibilities for better candidates.
There’s plenty of room to make things more efficient, according to Zhavoronkov.
Drug discovery is arduous and expensive. Chemists sift tens of thousands of candidate compounds for the most promising to synthesize. Of these, a handful will go on to further research, fewer will make it to human clinical trials, and a fraction of those will be approved.
The whole process can take many years and cost hundreds of millions of dollars.
This is a big data problem if ever there was one, and deep learning thrives on big data. Early applications have shown their worth unearthing subtle patterns in huge training databases. Although drug-makers already use software to sift compounds, such software requires explicit rules written by chemists. AI’s allure is its ability to learn and improve on its own.
“There are two strategies for AI-driven innovation in pharma to ensure you get better molecules and much faster approvals,” Zhavoronkov said. “One is looking for the needle in the haystack, and another one is creating a new needle.”
To find the needle in the haystack, algorithms are trained on large databases of molecules. Then they go looking for molecules with attractive properties. But creating a new needle? That’s a possibility enabled by the generative adversarial networks Zhavoronkov specializes in.
Such algorithms pit two neural networks against each other. One generates meaningful output while the other judges whether this output is true or false, Zhavoronkov said. Together, the networks generate new objects like text, images, or in this case, molecular structures.
“We started employing this particular technology to make deep neural networks imagine new molecules, to make it perfect right from the start. So, to come up with really perfect needles,” Zhavoronkov said. “[You] can essentially go to this [generative adversarial network] and ask it to create molecules that inhibit protein X at concentration Y, with the highest viability, specific characteristics, and minimal side effects.”
Zhavoronkov believes AI can find or fabricate more needles from the array of molecular possibilities, freeing human chemists to focus on synthesizing only the most promising. If it works, he hopes we can increase hits, minimize misses, and generally speed the process up.
Proof’s in the Pudding
Insilico isn’t alone on its drug-discovery quest, nor is it a brand new area of interest.
Last year, a Harvard group published a paper on an AI that similarly suggests drug candidates. The software trained on 250,000 drug-like molecules and used its experience to generate new molecules that blended existing drugs and made suggestions based on desired properties.
An MIT Technology Review article on the subject highlighted a few of the challenges such systems may still face. The results returned aren’t always meaningful or easy to synthesize in the lab, and the quality of these results, as always, is only as good as the data dined upon.
Stanford chemistry professor and Andreesen Horowitz partner, Vijay Pande, said that images, speech, and text—three of the areas deep learning’s made quick strides in—have better, cleaner data. Chemical data, on the other hand, is still being optimized for deep learning. Also, while there are public databases, much data still lives behind closed doors at private companies.
To overcome the challenges and prove their worth, Zhavoronkov said, his company is very focused on validating the tech. But this year, skepticism in the pharmaceutical industry seems to be easing into interest and investment.
AI drug discovery startup Exscientia inked a deal with Sanofi for $280 million and GlaxoSmithKline for $42 million. Insilico is also partnering with GlaxoSmithKline, and Numerate is working with Takeda Pharmaceutical. Even Google may jump in. According to an article in Nature outlining the field, the firm’s deep learning project, Google Brain, is growing its biosciences team, and industry watchers wouldn’t be surprised to see them target drug discovery.
With AI and the hardware running it advancing rapidly, the greatest potential may yet be ahead. Perhaps, one day, all 1060 molecules in drug-space will be at our disposal. “You should take all the data you have, build n new models, and search as much of that 1060 as possible” before every decision you make, Brandon Allgood, CTO at Numerate, told Nature.
Today’s projects need to live up to their promises, of course, but Zhavoronkov believes AI will have a big impact in the coming years, and now’s the time to integrate it. “If you are working for a pharma company, and you’re still thinking, ‘Okay, where is the proof?’ Once there is a proof, and once you can see it to believe it—it’s going to be too late,” he said.
Image Credit: Klavdiya Krinichnaya / Shutterstock.com Continue reading

Posted in Human Robots