Tag Archives: be

#438762 When Robots Enter the World, Who Is ...

Over the last half decade or so, the commercialization of autonomous robots that can operate outside of structured environments has dramatically increased. But this relatively new transition of robotic technologies from research projects to commercial products comes with its share of challenges, many of which relate to the rapidly increasing visibility that these robots have in society.

Whether it's because of their appearance of agency, or because of their history in popular culture, robots frequently inspire people’s imagination. Sometimes this is a good thing, like when it leads to innovative new use cases. And sometimes this is a bad thing, like when it leads to use cases that could be classified as irresponsible or unethical. Can the people selling robots do anything about the latter? And even if they can, should they?

Roboticists understand that robots, fundamentally, are tools. We build them, we program them, and even the autonomous ones are just following the instructions that we’ve coded into them. However, that same appearance of agency that makes robots so compelling means that it may not be clear to people without much experience with or exposure to real robots that a robot itself isn’t inherently good or bad—rather, as a tool, a robot is a reflection of its designers and users.

This can put robotics companies into a difficult position. When they sell a robot to someone, that person can, hypothetically, use the robot in any way they want. Of course, this is the case with every tool, but it’s the autonomous aspect that makes robots unique. I would argue that autonomy brings with it an implied association between a robot and its maker, or in this case, the company that develops and sells it. I’m not saying that this association is necessarily a reasonable one, but I think that it exists, even if that robot has been sold to someone else who has assumed full control over everything it does.

“All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon”
—Robert Playter, Boston Dynamics

Robotics companies are certainly aware of this, because many of them are very careful about who they sell their robots to, and very explicit about what they want their robots to be doing. But once a robot is out in the wild, as it were, how far should that responsibility extend? And realistically, how far can it extend? Should robotics companies be held accountable for what their robots do in the world, or should we accept that once a robot is sold to someone else, responsibility is transferred as well? And what can be done if a robot is being used in an irresponsible or unethical way that could have a negative impact on the robotics community?

For perspective on this, we contacted folks from three different robotics companies, each of which has experience selling distinctive mobile robots to commercial end users. We asked them the same five questions about the responsibility that robotics companies have regarding the robots that they sell, and here’s what they had to say:

Do you have any restrictions on what people can do with your robots? If so, what are they, and if not, why not?

Péter Fankhauser, CEO, ANYbotics:

We closely work together with our customers to make sure that our solution provides the right approach for their problem. Thereby, the target use case is clear from the beginning and we do not work with customers interested in using our robot ANYmal outside the intended target applications. Specifically, we strictly exclude any military or weaponized uses and since the foundation of ANYbotics it is close to our heart to make human work easier, safer, and more enjoyable.

Robert Playter, CEO, Boston Dynamics:

Yes, we have restrictions on what people can do with our robots, which are outlined in our Terms and Conditions of Sale. All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon. Spot, just like any product, must be used in compliance with the law.

Ryan Gariepy, CTO, Clearpath Robotics:

We do have strict restrictions and KYC processes which are based primarily on Canadian export control regulations. They depend on the type of equipment sold as well as where it is going. More generally, we also will not sell or support a robot if we know that it will create an uncontrolled safety hazard or if we have reason to believe that the buyer is unqualified to use the product. And, as always, we do not support using our products for the development of fully autonomous weapons systems.

More broadly, if you sell someone a robot, why should they be restricted in what they can do with it?
Péter Fankhauser, ANYbotics: We see the robot less as a simple object but more as an artificial workforce. This implies to us that the usage is closely coupled with the transfer of the robot and both the customer and the provider agree what the robot is expected to do. This approach is supported by what we hear from our customers with an increasing interest to pay for the robots as a service or per use.

Robert Playter, Boston Dynamics: We’re offering a product for sale. We’re going to do the best we can to stop bad actors from using our technology for harm, but we don’t have the control to regulate every use. That said, we believe that our business will be best served if our technology is used for peaceful purposes—to work alongside people as trusted assistants and remove them from harm’s way. We do not want to see our technology used to cause harm or promote violence. Our restrictions are similar to those of other manufacturers or technology companies that take steps to reduce or eliminate the violent or unlawful use of their products.

Ryan Gariepy, Clearpath Robotics: Assuming the organization doing the restricting is a private organization and the robot and its software is sold vs. leased or “managed,” there aren't strong legal reasons to restrict use. That being said, the manufacturer likewise has no obligation to continue supporting that specific robot or customer going forward. However, given that we are only at the very edge of how robots will reshape a great deal of society, it is in the best interest for the manufacturer and user to be honest with each other about their respective goals. Right now, you're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.

“If a robot is being used in a way that is irresponsible due to safety: intervene! If it’s unethical: speak up!”
—Péter Fankhauser, ANYbotics

What can you realistically do to make sure that people who buy your robots use them in the ways that you intend?
Péter Fankhauser, ANYbotics: We maintain a close collaboration with our customers to ensure their success with our solution. So for us, we have refrained from technical solutions to block unintended use.

Robert Playter, Boston Dynamics: We vet our customers to make sure that their desired applications are things that Spot can support, and are in alignment with our Terms and Conditions of Sale. We’ve turned away customers whose applications aren’t a good match with our technology. If customers misuse our technology, we’re clear in our Terms of Sale that their violations may void our warranty and prevent their robots from being updated, serviced, repaired, or replaced. We may also repossess robots that are not purchased, but leased. Finally, we will refuse future sales to customers that violate our Terms of Sale.

Ryan Gariepy, Clearpath Robotics: We typically work with our clients ahead of the purchase to make sure their expectations match reality, in particular on aspects like safety, supervisory requirements, and usability. It's far worse to sell a robot that'll sit on a shelf or worse, cause harm, then to not sell a robot at all, so we prefer to reduce the risk of this situation in advance of receiving an order or shipping a robot.

How do you evaluate the merit of edge cases, for example if someone wants to use your robot in research or art that may push the boundaries of what you personally think is responsible or ethical?
Péter Fankhauser, ANYbotics: It’s about the dialog, understanding, and figuring out alternatives that work for all involved parties and the earlier you can have this dialog the better.

Robert Playter, Boston Dynamics: There’s a clear line between exploring robots in research and art, and using the robot for violent or illegal purposes.

Ryan Gariepy, Clearpath Robotics: We have sold thousands of robots to hundreds of clients, and I do not recall the last situation that was not covered by a combination of export control and a general evaluation of the client's goals and expectations. I'm sure this will change as robots continue to drop in price and increase in flexibility and usability.

“You're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.”
—Ryan Gariepy, Clearpath Robotics

What should roboticists do if we see a robot being used in a way that we feel is unethical or irresponsible?
Péter Fankhauser, ANYbotics: If it’s irresponsible due to safety: intervene! If it’s unethical: speak up!

Robert Playter, Boston Dynamics: We want robots to be beneficial for humanity, which includes the notion of not causing harm. As an industry, we think robots will achieve long-term commercial viability only if people see robots as helpful, beneficial tools without worrying if they’re going to cause harm.

Ryan Gariepy, Clearpath Robotics: On a one off basis, they should speak to a combination of the user, the supplier or suppliers, the media, and, if safety is an immediate concern, regulatory or government agencies. If the situation in question risks becoming commonplace and is not being taken seriously, they should speak up more generally in appropriate forums—conferences, industry groups, standards bodies, and the like.

As more and more robots representing different capabilities become commercially available, these issues are likely to come up more frequently. The three companies we talked to certainly don’t represent every viewpoint, and we did reach out to other companies who declined to comment. But I would think (I would hope?) that everyone in the robotics community can agree that robots should be used in a way that makes people’s lives better. What “better” means in the context of art and research and even robots in the military may not always be easy to define, and inevitably there’ll be disagreement as to what is ethical and responsible, and what isn’t.

We’ll keep on talking about it, though, and do our best to help the robotics community to continue growing and evolving in a positive way. Let us know what you think in the comments. Continue reading

Posted in Human Robots

#438755 Soft Legged Robot Uses Pneumatic ...

Soft robots are inherently safe, highly resilient, and potentially very cheap, making them promising for a wide array of applications. But development on them has been a bit slow relative to other areas of robotics, at least partially because soft robots can’t directly benefit from the massive increase in computing power and sensor and actuator availability that we’ve seen over the last few decades. Instead, roboticists have had to get creative to find ways of achieving the functionality of conventional robotics components using soft materials and compatible power sources.

In the current issue of Science Robotics, researchers from UC San Diego demonstrate a soft walking robot with four legs that moves with a turtle-like gait controlled by a pneumatic circuit system made from tubes and valves. This air-powered nervous system can actuate multiple degrees of freedom in sequence from a single source of pressurized air, offering a huge reduction in complexity and bringing a very basic form of decision making onto the robot itself.

Generally, when people talk about soft robots, the robots are only mostly soft. There are some components that are very difficult to make soft, including pressure sources and the necessary electronics to direct that pressure between different soft actuators in a way that can be used for propulsion. What’s really cool about this robot is that researchers have managed to take a pressure source (either a single tether or an onboard CO2 cartridge) and direct it to four different legs, each with three different air chambers, using an oscillating three valve circuit made entirely of soft materials.

Photo: UCSD

The pneumatic circuit that powers and controls the soft quadruped.

The inspiration for this can be found in biology—natural organisms, including quadrupeds, use nervous system components called central pattern generators (CPGs) to prompt repetitive motions with limbs that are used for walking, flying, and swimming. This is obviously more complicated in some organisms than in others, and is typically mediated by sensory feedback, but the underlying structure of a CPG is basically just a repeating circuit that drives muscles in sequence to produce a stable, continuous gait. In this case, we’ve got pneumatic muscles being driven in opposing pairs, resulting in a diagonal couplet gait, where diagonally opposed limbs rotate forwards and backwards at the same time.

Diagram: Science Robotics

(J) Pneumatic logic circuit for rhythmic leg motion. A constant positive pressure source (P+) applied to three inverter components causes a high-pressure state to propagate around the circuit, with a delay at each inverter. While the input to one inverter is high, the attached actuator (i.e., A1, A2, or A3) is inflated. This sequence of high-pressure states causes each pair of legs of the robot to rotate in a direction determined by the pneumatic connections. (K) By reversing the sequence of activation of the pneumatic oscillator circuit, the attached actuators inflate in a new sequence (A1, A3, and A2), causing (L) the legs of the robot to rotate in reverse. (M) Schematic bottom view of the robot with the directions of leg motions indicated for forward walking.

Diagram: Science Robotics

Each of the valves acts as an inverter by switching the normally closed half (top) to open and the normally open half (bottom) to closed.

The circuit itself is made up of three bistable pneumatic valves connected by tubing that acts as a delay by providing resistance to the gas moving through it that can be adjusted by altering the tube’s length and inner diameter. Within the circuit, the movement of the pressurized gas acts as both a source of energy and as a signal, since wherever the pressure is in the circuit is where the legs are moving. The simplest circuit uses only three valves, and can keep the robot walking in one single direction, but more valves can add more complex leg control options. For example, the researchers were able to use seven valves to tune the phase offset of the gait, and even just one additional valve (albeit of a slightly more complex design) could enable reversal of the system, causing the robot to walk backwards in response to input from a soft sensor. And with another complex valve, a manual (tethered) controller could be used for omnidirectional movement.

This work has some similarities to the rover that JPL is developing to explore Venus—that rover isn’t a soft robot, of course, but it operates under similar constraints in that it can’t rely on conventional electronic systems for autonomous navigation or control. It turns out that there are plenty of clever ways to use mechanical (or in this case, pneumatic) intelligence to make robots with relatively complex autonomous behaviors, meaning that in the future, soft (or soft-ish) robots could find valuable roles in situations where using a non-compliant system is not a good option.

For more on why we should be so excited about soft robots and just how soft a soft robot needs to be, we spoke with Michael Tolley, who runs the Bioinspired Robotics and Design Lab at UCSD, and Dylan Drotman, the paper’s first author.

IEEE Spectrum: What can soft robots do for us that more rigid robotic designs can’t?

Michael Tolley: At the very highest level, one of the fundamental assumptions of robotics is that you have rigid bodies connected at joints, and all your motion happens at these joints. That's a really nice approach because it makes the math easy, frankly, and it simplifies control. But when you look around us in nature, even though animals do have bones and joints, the way we interact with the world is much more complicated than that simple story. I’m interested in where we can take advantage of material properties in robotics. If you look at robots that have to operate in very unknown environments, I think you can build in some of the intelligence for how to deal with those environments into the body of the robot itself. And that’s the category this work really falls under—it's about navigating the world.

Dylan Drotman: Walking through confined spaces is a good example. With the rigid legged robot, you would have to completely change the way that the legs move to walk through a confined space, while if you have flexible legs, like the robot in our paper, you can use relatively simple control strategies to squeeze through an area you wouldn’t be able to get through with a rigid system.

How smart can a soft robot get?

Drotman: Right now we have a sensor on the front that's connected through a fluidic transmission to a bistable valve that causes the robot to reverse. We could add other sensors around the robot to allow it to change direction whenever it runs into an obstacle to effectively make an electronics-free version of a Roomba.

Tolley: Stepping back a little bit from that, one could make an argument that we’re using basic memory elements to generate very basic signals. There’s nothing in principle that would stop someone from making a pneumatic computer—it’s just very complicated to make something that complex. I think you could build on this and do more intelligent decision making, but using this specific design and the components we’re using, it’s likely to be things that are more direct responses to the environment.

How well would robots like these scale down?

Drotman: At the moment we’re manufacturing these components by hand, so the idea would be to make something more like a printed circuit board instead, and looking at how the channel sizes and the valve design would affect the actuation properties. We’ll also be coming up with new circuits, and different designs for the circuits themselves.

Tolley: Down to centimeter or millimeter scale, I don’t think you’d have fundamental fluid flow problems. I think you’re going to be limited more by system design constraints. You’ll have to be able to locomote while carrying around your pressure source, and possibly some other components that are also still rigid. When you start to talk about really small scales, though, it's not as clear to me that you really need an intrinsically soft robot. If you think about insects, their structural geometry can make them behave like they’re soft, but they’re not intrinsically soft.

Should we be thinking about soft robots and compliant robots in the same way, or are they fundamentally different?

Tolley: There’s certainly a connection between the two. You could have a compliant robot that behaves in a very similar way to an intrinsically soft robot, or a robot made of intrinsically soft materials. At that point, it comes down to design and manufacturing and practical limitations on what you can make. I think when you get down to small scales, the two sort of get connected.

There was some interesting work several years ago on using explosions to power soft robots. Is that still a thing?

Tolley: One of the opportunities with soft robots is that with material compliance, you have the potential to store energy. I think there’s exciting potential there for rapid motion with a soft body. Combustion is one way of doing that with power coming from a chemical source all at once, but you could also use a relatively weak muscle that over time stores up energy in a soft body and then releases it.

Is it realistic to expect complete softness from soft robots, or will they likely always have rigid components because they have to store or generate and move pressurized gas somehow?

Tolley: If you look in nature, you do have soft pumps like the heart, but although it’s soft, it’s still relatively stiff. Like, if you grab a heart, it’s not totally squishy. I haven’t done it, but I’d imagine. If you have a container that you’re pressurizing, it has to be stiff enough to not just blow up like a balloon. Certainly pneumatics or hydraulics are not the only way to go for soft actuators; there has been some really nice work on smart muscles and smart materials like hydraulic electrostatic (HASEL) actuators. They seem promising, but all of these actuators have challenges. We’ve chosen to stick with pressurized pneumatics in the near term; longer term, I think you’ll start to see more of these smart material actuators become more practical.

Personally, I don’t have any problem with soft robots having some rigid components. Most animals on land have some rigid components, but they can still take advantage of being soft, so it’s probably going to be a combination. But I do also like the vision of making an entirely soft, squishy thing. Continue reading

Posted in Human Robots

#438751 Soft Legged Robot Uses Pneumatic ...

Soft robots are inherently safe, highly resilient, and potentially very cheap, making them promising for a wide array of applications. But development on them has been a bit slow relative to other areas of robotics, at least partially because soft robots can’t directly benefit from the massive increase in computing power and sensor and actuator availability that we’ve seen over the last few decades. Instead, roboticists have had to get creative to find ways of achieving the functionality of conventional robotics components using soft materials and compatible power sources.

In the current issue of Science Robotics, researchers from UC San Diego demonstrate a soft walking robot with four legs that moves with a turtle-like gait controlled by a pneumatic circuit system made from tubes and valves. This air-powered nervous system can actuate multiple degrees of freedom in sequence from a single source of pressurized air, offering a huge reduction in complexity and bringing a very basic form of decision making onto the robot itself.

Generally, when people talk about soft robots, the robots are only mostly soft. There are some components that are very difficult to make soft, including pressure sources and the necessary electronics to direct that pressure between different soft actuators in a way that can be used for propulsion. What’s really cool about this robot is that researchers have managed to take a pressure source (either a single tether or an onboard CO2 cartridge) and direct it to four different legs, each with three different air chambers, using an oscillating three valve circuit made entirely of soft materials.

Photo: UCSD

The pneumatic circuit that powers and controls the soft quadruped.

The inspiration for this can be found in biology—natural organisms, including quadrupeds, use nervous system components called central pattern generators (CPGs) to prompt repetitive motions with limbs that are used for walking, flying, and swimming. This is obviously more complicated in some organisms than in others, and is typically mediated by sensory feedback, but the underlying structure of a CPG is basically just a repeating circuit that drives muscles in sequence to produce a stable, continuous gait. In this case, we’ve got pneumatic muscles being driven in opposing pairs, resulting in a diagonal couplet gait, where diagonally opposed limbs rotate forwards and backwards at the same time.

Diagram: Science Robotics

(J) Pneumatic logic circuit for rhythmic leg motion. A constant positive pressure source (P+) applied to three inverter components causes a high-pressure state to propagate around the circuit, with a delay at each inverter. While the input to one inverter is high, the attached actuator (i.e., A1, A2, or A3) is inflated. This sequence of high-pressure states causes each pair of legs of the robot to rotate in a direction determined by the pneumatic connections. (K) By reversing the sequence of activation of the pneumatic oscillator circuit, the attached actuators inflate in a new sequence (A1, A3, and A2), causing (L) the legs of the robot to rotate in reverse. (M) Schematic bottom view of the robot with the directions of leg motions indicated for forward walking.

Diagram: Science Robotics

Each of the valves acts as an inverter by switching the normally closed half (top) to open and the normally open half (bottom) to closed.

The circuit itself is made up of three bistable pneumatic valves connected by tubing that acts as a delay by providing resistance to the gas moving through it that can be adjusted by altering the tube’s length and inner diameter. Within the circuit, the movement of the pressurized gas acts as both a source of energy and as a signal, since wherever the pressure is in the circuit is where the legs are moving. The simplest circuit uses only three valves, and can keep the robot walking in one single direction, but more valves can add more complex leg control options. For example, the researchers were able to use seven valves to tune the phase offset of the gait, and even just one additional valve (albeit of a slightly more complex design) could enable reversal of the system, causing the robot to walk backwards in response to input from a soft sensor. And with another complex valve, a manual (tethered) controller could be used for omnidirectional movement.

This work has some similarities to the rover that JPL is developing to explore Venus—that rover isn’t a soft robot, of course, but it operates under similar constraints in that it can’t rely on conventional electronic systems for autonomous navigation or control. It turns out that there are plenty of clever ways to use mechanical (or in this case, pneumatic) intelligence to make robots with relatively complex autonomous behaviors, meaning that in the future, soft (or soft-ish) robots could find valuable roles in situations where using a non-compliant system is not a good option.

For more on why we should be so excited about soft robots and just how soft a soft robot needs to be, we spoke with Michael Tolley, who runs the Bioinspired Robotics and Design Lab at UCSD, and Dylan Drotman, the paper’s first author.

IEEE Spectrum: What can soft robots do for us that more rigid robotic designs can’t?

Michael Tolley: At the very highest level, one of the fundamental assumptions of robotics is that you have rigid bodies connected at joints, and all your motion happens at these joints. That's a really nice approach because it makes the math easy, frankly, and it simplifies control. But when you look around us in nature, even though animals do have bones and joints, the way we interact with the world is much more complicated than that simple story. I’m interested in where we can take advantage of material properties in robotics. If you look at robots that have to operate in very unknown environments, I think you can build in some of the intelligence for how to deal with those environments into the body of the robot itself. And that’s the category this work really falls under—it's about navigating the world.

Dylan Drotman: Walking through confined spaces is a good example. With the rigid legged robot, you would have to completely change the way that the legs move to walk through a confined space, while if you have flexible legs, like the robot in our paper, you can use relatively simple control strategies to squeeze through an area you wouldn’t be able to get through with a rigid system.

How smart can a soft robot get?

Drotman: Right now we have a sensor on the front that's connected through a fluidic transmission to a bistable valve that causes the robot to reverse. We could add other sensors around the robot to allow it to change direction whenever it runs into an obstacle to effectively make an electronics-free version of a Roomba.

Tolley: Stepping back a little bit from that, one could make an argument that we’re using basic memory elements to generate very basic signals. There’s nothing in principle that would stop someone from making a pneumatic computer—it’s just very complicated to make something that complex. I think you could build on this and do more intelligent decision making, but using this specific design and the components we’re using, it’s likely to be things that are more direct responses to the environment.

How well would robots like these scale down?

Drotman: At the moment we’re manufacturing these components by hand, so the idea would be to make something more like a printed circuit board instead, and looking at how the channel sizes and the valve design would affect the actuation properties. We’ll also be coming up with new circuits, and different designs for the circuits themselves.

Tolley: Down to centimeter or millimeter scale, I don’t think you’d have fundamental fluid flow problems. I think you’re going to be limited more by system design constraints. You’ll have to be able to locomote while carrying around your pressure source, and possibly some other components that are also still rigid. When you start to talk about really small scales, though, it's not as clear to me that you really need an intrinsically soft robot. If you think about insects, their structural geometry can make them behave like they’re soft, but they’re not intrinsically soft.

Should we be thinking about soft robots and compliant robots in the same way, or are they fundamentally different?

Tolley: There’s certainly a connection between the two. You could have a compliant robot that behaves in a very similar way to an intrinsically soft robot, or a robot made of intrinsically soft materials. At that point, it comes down to design and manufacturing and practical limitations on what you can make. I think when you get down to small scales, the two sort of get connected.

There was some interesting work several years ago on using explosions to power soft robots. Is that still a thing?

Tolley: One of the opportunities with soft robots is that with material compliance, you have the potential to store energy. I think there’s exciting potential there for rapid motion with a soft body. Combustion is one way of doing that with power coming from a chemical source all at once, but you could also use a relatively weak muscle that over time stores up energy in a soft body and then releases it.

Is it realistic to expect complete softness from soft robots, or will they likely always have rigid components because they have to store or generate and move pressurized gas somehow?

Tolley: If you look in nature, you do have soft pumps like the heart, but although it’s soft, it’s still relatively stiff. Like, if you grab a heart, it’s not totally squishy. I haven’t done it, but I’d imagine. If you have a container that you’re pressurizing, it has to be stiff enough to not just blow up like a balloon. Certainly pneumatics or hydraulics are not the only way to go for soft actuators; there has been some really nice work on smart muscles and smart materials like hydraulic electrostatic (HASEL) actuators. They seem promising, but all of these actuators have challenges. We’ve chosen to stick with pressurized pneumatics in the near term; longer term, I think you’ll start to see more of these smart material actuators become more practical.

Personally, I don’t have any problem with soft robots having some rigid components. Most animals on land have some rigid components, but they can still take advantage of being soft, so it’s probably going to be a combination. But I do also like the vision of making an entirely soft, squishy thing. Continue reading

Posted in Human Robots

#438749 Folding Drone Can Drop Into Inaccessible ...

Inspecting old mines is a dangerous business. For humans, mines can be lethal: prone to rockfalls and filled with noxious gases. Robots can go where humans might suffocate, but even robots can only do so much when mines are inaccessible from the surface.

Now, researchers in the UK, led by Headlight AI, have developed a drone that could cast a light in the darkness. Named Prometheus, this drone can enter a mine through a borehole not much larger than a football, before unfurling its arms and flying around the void. Once down there, it can use its payload of scanning equipment to map mines where neither humans nor robots can presently go. This, the researchers hope, could make mine inspection quicker and easier. The team behind Prometheus published its design in November in the journal Robotics.

Mine inspection might seem like a peculiarly specific task to fret about, but old mines can collapse, causing the ground to sink and damaging nearby buildings. It’s a far-reaching threat: the geotechnical engineering firm Geoinvestigate, based in Northeast England, estimates that around 8 percent of all buildings in the UK are at risk from any of the thousands of abandoned coal mines near the country’s surface. It’s also a threat to transport, such as road and rail. Indeed, Prometheus is backed by Network Rail, which operates Britain’s railway infrastructure.

Such grave dangers mean that old mines need periodic check-ups. To enter depths that are forbidden to traditional wheeled robots—such as those featured in the DARPA SubT Challenge—inspectors today drill boreholes down into the mine and lower scanners into the darkness.

But that can be an arduous and often fruitless process. Inspecting the entirety of a mine can take multiple boreholes, and that still might not be enough to chart a complete picture. Mines are jagged, labyrinthine places, and much of the void might lie out of sight. Furthermore, many old mines aren’t well-mapped, so it’s hard to tell where best to enter them.

Prometheus can fly around some of those challenges. Inspectors can lower Prometheus, tethered to a docking apparatus, down a single borehole. Once inside the mine, the drone can undock and fly around, using LIDAR scanners—common in mine inspection today—to generate a 3D map of the unknown void. Prometheus can fly through the mine autonomously, using infrared data to plot out its own course.

Other drones exist that can fly underground, but they’re either too small to carry a relatively heavy payload of scanning equipment, or too large to easily fit down a borehole. What makes Prometheus unique is its ability to fold its arms, allowing it to squeeze down spaces its counterparts cannot.

It’s that ability to fold and enter a borehole that makes Prometheus remarkable, says Jason Gross, a professor of mechanical and aerospace engineering at West Virginia University. Gross calls Prometheus “an exciting idea,” but he does note that it has a relatively short flight window and few abilities beyond scanning.

The researchers have conducted a number of successful test flights, both in a basement and in an old mine near Shrewsbury, England. Not only was Prometheus able to map out its space, the drone was able to plot its own course in an unknown area.

The researchers’ next steps, according to Puneet Chhabra, co-founder of Headlight AI, will be to test Prometheus’s ability to unfold in an actual mine. Following that, researchers plan to conduct full-scale test flights by the end of 2021. Continue reading

Posted in Human Robots

#438738 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
A New Artificial Intelligence Makes Mistakes—on Purpose
Will Knight | Wired
“It took about 50 years for computers to eviscerate humans in the venerable game of chess. A standard smartphone can now play the kind of moves that make a grandmaster’s head spin. But one artificial intelligence program is taking a few steps backward, to appreciate how average humans play—blunders and all.”

CRYPTOCURRENCY
Bitcoin’s Price Rises to $50,000 as Mainstream Institutions Hop On
Timothy B. Lee | Ars Technica
“Bitcoin’s price is now far above the previous peak of $19,500 reached in December 2017. Bitcoin’s value has risen by almost 70 percent since the start of 2021. No single factor seems to be driving the cryptocurrency’s rise. Instead, the price is rising as more and more mainstream organizations are deciding to treat it as an ordinary investment asset.”

SCIENCE
Million-Year-Old Mammoth Teeth Contain Oldest DNA Ever Found
Jeanne Timmons | Gizmodo
“An international team of scientists has sequenced DNA from mammoth teeth that is at least a million years old, if not older. This research, published today in Nature, not only provides exciting new insight into mammoth evolutionary history, it reveals an entirely unknown lineage of ancient mammoth.”

SCIENCE
Scientists Accidentally Discover Strange Creatures Under a Half Mile of Ice
Matt Simon | Wired
“i‘It’s like, bloody hell!’ Smith says. ‘It’s just one big boulder in the middle of a relatively flat seafloor. It’s not as if the seafloor is littered with these things.’ Just his luck to drill in the only wrong place. Wrong place for collecting seafloor muck, but the absolute right place for a one-in-a-million shot at finding life in an environment that scientists didn’t reckon could support much of it.”

BIOTECH
Highest-Resolution Images of DNA Reveal It’s Surprisingly Jiggly
George Dvorsky | Gizmodo
“Scientists have captured the highest-resolution images ever taken of DNA, revealing previously unseen twisting and squirming behaviors. …These hidden movements were revealed by computer simulations fed with the highest-resolution images ever taken of a single molecule of DNA. The new study is exposing previously unseen behaviors in the self-replicating molecule, and this research could eventually lead to the development of powerful new genetic therapies.”

TRANSPORTATION
The First Battery-Powered Tanker Is Coming to Tokyo
Maria Gallucci | IEEE Spectrum
“The Japanese tanker is Corvus’s first fully-electric coastal freighter project; the company hopes the e5 will be the first of hundreds more just like it. ‘We see it [as] a beachhead for the coastal shipping market globally,’ Puchalski said. ‘There are many other coastal freighter types that are similar in size and energy demand.’ The number of battery-powered ships has ballooned from virtually zero a decade ago to hundreds worldwide.”

SPACE
Report: NASA’s Only Realistic Path for Humans on Mars Is Nuclear Propulsion
Eric Berger | Ars Technica
“Conducted at the request of NASA, a broad-based committee of experts assessed the viability of two means of propulsion—nuclear thermal and nuclear electric—for a human mission launching to Mars in 2039. ‘One of the primary takeaways of the report is that if we want to send humans to Mars, and we want to do so repeatedly and in a sustainable way, nuclear space propulsion is on the path,’ said [JPL’s] Bobby Braun.”

NASA’s Perseverance Rover Successfully Lands on Mars
Joey Roulette | The Verge
“Perseverance hit Mars’ atmosphere on time at 3:48PM ET at speeds of about 12,100 miles per hour, diving toward the surface in an infamously challenging sequence engineers call the “seven minutes of terror.” With an 11-minute comms delay between Mars and Earth, the spacecraft had to carry out its seven-minute plunge at all by itself with a wickedly complex set of pre-programmed instructions.”

ENVIRONMENT
A First-of-Its-Kind Geoengineering Experiment Is About to Take Its First Step
James Temple | MIT Technology Review
“When I visited Frank Keutsch in the fall of 2019, he walked me down to the lab, where the tube, wrapped in gray insulation, ran the length of a bench in the back corner. By filling it with the right combination of gases, at particular temperatures and pressures, Keutsch and his colleagues had simulated the conditions some 20 kilometers above Earth’s surface. In testing how various chemicals react in this rarefied air, the team hoped to conduct a crude test of a controversial scheme known as solar geoengineering.”

Image Credit: Garcia / Unsplash Continue reading

Posted in Human Robots