Tag Archives: b

#432190 In the Future, There Will Be No Limit to ...

New planets found in distant corners of the galaxy. Climate models that may improve our understanding of sea level rise. The emergence of new antimalarial drugs. These scientific advances and discoveries have been in the news in recent months.

While representing wildly divergent disciplines, from astronomy to biotechnology, they all have one thing in common: Artificial intelligence played a key role in their scientific discovery.

One of the more recent and famous examples came out of NASA at the end of 2017. The US space agency had announced an eighth planet discovered in the Kepler-90 system. Scientists had trained a neural network—a computer with a “brain” modeled on the human mind—to re-examine data from Kepler, a space-borne telescope with a four-year mission to seek out new life and new civilizations. Or, more precisely, to find habitable planets where life might just exist.

The researchers trained the artificial neural network on a set of 15,000 previously vetted signals until it could identify true planets and false positives 96 percent of the time. It then went to work on weaker signals from nearly 700 star systems with known planets.

The machine detected Kepler 90i—a hot, rocky planet that orbits its sun about every two Earth weeks—through a nearly imperceptible change in brightness captured when a planet passes a star. It also found a sixth Earth-sized planet in the Kepler-80 system.

AI Handles Big Data
The application of AI to science is being driven by three great advances in technology, according to Ross King from the Manchester Institute of Biotechnology at the University of Manchester, leader of a team that developed an artificially intelligent “scientist” called Eve.

Those three advances include much faster computers, big datasets, and improved AI methods, King said. “These advances increasingly give AI superhuman reasoning abilities,” he told Singularity Hub by email.

AI systems can flawlessly remember vast numbers of facts and extract information effortlessly from millions of scientific papers, not to mention exhibit flawless logical reasoning and near-optimal probabilistic reasoning, King says.

AI systems also beat humans when it comes to dealing with huge, diverse amounts of data.

That’s partly what attracted a team of glaciologists to turn to machine learning to untangle the factors involved in how heat from Earth’s interior might influence the ice sheet that blankets Greenland.

Algorithms juggled 22 geologic variables—such as bedrock topography, crustal thickness, magnetic anomalies, rock types, and proximity to features like trenches, ridges, young rifts, and volcanoes—to predict geothermal heat flux under the ice sheet throughout Greenland.

The machine learning model, for example, predicts elevated heat flux upstream of Jakobshavn Glacier, the fastest-moving glacier in the world.

“The major advantage is that we can incorporate so many different types of data,” explains Leigh Stearns, associate professor of geology at Kansas University, whose research takes her to the polar regions to understand how and why Earth’s great ice sheets are changing, questions directly related to future sea level rise.

“All of the other models just rely on one parameter to determine heat flux, but the [machine learning] approach incorporates all of them,” Stearns told Singularity Hub in an email. “Interestingly, we found that there is not just one parameter…that determines the heat flux, but a combination of many factors.”

The research was published last month in Geophysical Research Letters.

Stearns says her team hopes to apply high-powered machine learning to characterize glacier behavior over both short and long-term timescales, thanks to the large amounts of data that she and others have collected over the last 20 years.

Emergence of Robot Scientists
While Stearns sees machine learning as another tool to augment her research, King believes artificial intelligence can play a much bigger role in scientific discoveries in the future.

“I am interested in developing AI systems that autonomously do science—robot scientists,” he said. Such systems, King explained, would automatically originate hypotheses to explain observations, devise experiments to test those hypotheses, physically run the experiments using laboratory robotics, and even interpret the results. The conclusions would then influence the next cycle of hypotheses and experiments.

His AI scientist Eve recently helped researchers discover that triclosan, an ingredient commonly found in toothpaste, could be used as an antimalarial drug against certain strains that have developed a resistance to other common drug therapies. The research was published in the journal Scientific Reports.

Automation using artificial intelligence for drug discovery has become a growing area of research, as the machines can work orders of magnitude faster than any human. AI is also being applied in related areas, such as synthetic biology for the rapid design and manufacture of microorganisms for industrial uses.

King argues that machines are better suited to unravel the complexities of biological systems, with even the most “simple” organisms are host to thousands of genes, proteins, and small molecules that interact in complicated ways.

“Robot scientists and semi-automated AI tools are essential for the future of biology, as there are simply not enough human biologists to do the necessary work,” he said.

Creating Shockwaves in Science
The use of machine learning, neural networks, and other AI methods can often get better results in a fraction of the time it would normally take to crunch data.

For instance, scientists at the National Center for Supercomputing Applications, located at the University of Illinois at Urbana-Champaign, have a deep learning system for the rapid detection and characterization of gravitational waves. Gravitational waves are disturbances in spacetime, emanating from big, high-energy cosmic events, such as the massive explosion of a star known as a supernova. The “Holy Grail” of this type of research is to detect gravitational waves from the Big Bang.

Dubbed Deep Filtering, the method allows real-time processing of data from LIGO, a gravitational wave observatory comprised of two enormous laser interferometers located thousands of miles apart in California and Louisiana. The research was published in Physics Letters B. You can watch a trippy visualization of the results below.

In a more down-to-earth example, scientists published a paper last month in Science Advances on the development of a neural network called ConvNetQuake to detect and locate minor earthquakes from ground motion measurements called seismograms.

ConvNetQuake uncovered 17 times more earthquakes than traditional methods. Scientists say the new method is particularly useful in monitoring small-scale seismic activity, which has become more frequent, possibly due to fracking activities that involve injecting wastewater deep underground. You can learn more about ConvNetQuake in this video:

King says he believes that in the long term there will be no limit to what AI can accomplish in science. He and his team, including Eve, are currently working on developing cancer therapies under a grant from DARPA.

“Robot scientists are getting smarter and smarter; human scientists are not,” he says. “Indeed, there is arguably a case that human scientists are less good. I don’t see any scientist alive today of the stature of a Newton or Einstein—despite the vast number of living scientists. The Physics Nobel [laureate] Frank Wilczek is on record as saying (10 years ago) that in 100 years’ time the best physicist will be a machine. I agree.”

Image Credit: Romaset / Shutterstock.com Continue reading

Posted in Human Robots

#431925 How the Science of Decision-Making Will ...

Neuroscientist Brie Linkenhoker believes that leaders must be better prepared for future strategic challenges by continually broadening their worldviews.
As the director of Worldview Stanford, Brie and her team produce multimedia content and immersive learning experiences to make academic research and insights accessible and useable by curious leaders. These future-focused topics are designed to help curious leaders understand the forces shaping the future.
Worldview Stanford has tackled such interdisciplinary topics as the power of minds, the science of decision-making, environmental risk and resilience, and trust and power in the age of big data.
We spoke with Brie about why understanding our biases is critical to making better decisions, particularly in a time of increasing change and complexity.

Lisa Kay Solomon: What is Worldview Stanford?
Brie Linkenhoker: Leaders and decision makers are trying to navigate this complex hairball of a planet that we live on and that requires keeping up on a lot of diverse topics across multiple fields of study and research. Universities like Stanford are where that new knowledge is being created, but it’s not getting out and used as readily as we would like, so that’s what we’re working on.
Worldview is designed to expand our individual and collective worldviews about important topics impacting our future. Your worldview is not a static thing, it’s constantly changing. We believe it should be informed by lots of different perspectives, different cultures, by knowledge from different domains and disciplines. This is more important now than ever.
At Worldview, we create learning experiences that are an amalgamation of all of those things.
LKS: One of your marquee programs is the Science of Decision Making. Can you tell us about that course and why it’s important?
BL: We tend to think about decision makers as being people in leadership positions, but every person who works in your organization, every member of your family, every member of the community is a decision maker. You have to decide what to buy, who to partner with, what government regulations to anticipate.
You have to think not just about your own decisions, but you have to anticipate how other people make decisions too. So, when we set out to create the Science of Decision Making, we wanted to help people improve their own decisions and be better able to predict, understand, anticipate the decisions of others.

“I think in another 10 or 15 years, we’re probably going to have really rich models of how we actually make decisions and what’s going on in the brain to support them.”

We realized that the only way to do that was to combine a lot of different perspectives, so we recruited experts from economics, psychology, neuroscience, philosophy, biology, and religion. We also brought in cutting-edge research on artificial intelligence and virtual reality and explored conversations about how technology is changing how we make decisions today and how it might support our decision-making in the future.
There’s no single set of answers. There are as many unanswered questions as there are answered questions.
LKS: One of the other things you explore in this course is the role of biases and heuristics. Can you explain the importance of both in decision-making?
BL: When I was a strategy consultant, executives would ask me, “How do I get rid of the biases in my decision-making or my organization’s decision-making?” And my response would be, “Good luck with that. It isn’t going to happen.”
As human beings we make, probably, thousands of decisions every single day. If we had to be actively thinking about each one of those decisions, we wouldn’t get out of our house in the morning, right?
We have to be able to do a lot of our decision-making essentially on autopilot to free up cognitive resources for more difficult decisions. So, we’ve evolved in the human brain a set of what we understand to be heuristics or rules of thumb.
And heuristics are great in, say, 95 percent of situations. It’s that five percent, or maybe even one percent, that they’re really not so great. That’s when we have to become aware of them because in some situations they can become biases.
For example, it doesn’t matter so much that we’re not aware of our rules of thumb when we’re driving to work or deciding what to make for dinner. But they can become absolutely critical in situations where a member of law enforcement is making an arrest or where you’re making a decision about a strategic investment or even when you’re deciding who to hire.
Let’s take hiring for a moment.
How many years is a hire going to impact your organization? You’re potentially looking at 5, 10, 15, 20 years. Having the right person in a role could change the future of your business entirely. That’s one of those areas where you really need to be aware of your own heuristics and biases—and we all have them. There’s no getting rid of them.
LKS: We seem to be at a time when the boundaries between different disciplines are starting to blend together. How has the advancement of neuroscience help us become better leaders? What do you see happening next?
BL: Heuristics and biases are very topical these days, thanks in part to Michael Lewis’s fantastic book, The Undoing Project, which is the story of the groundbreaking work that Nobel Prize winner Danny Kahneman and Amos Tversky did in the psychology and biases of human decision-making. Their work gave rise to the whole new field of behavioral economics.
In the last 10 to 15 years, neuroeconomics has really taken off. Neuroeconomics is the combination of behavioral economics with neuroscience. In behavioral economics, they use economic games and economic choices that have numbers associated with them and have real-world application.
For example, they ask, “How much would you spend to buy A versus B?” Or, “If I offered you X dollars for this thing that you have, would you take it or would you say no?” So, it’s trying to look at human decision-making in a format that’s easy to understand and quantify within a laboratory setting.
Now you bring neuroscience into that. You can have people doing those same kinds of tasks—making those kinds of semi-real-world decisions—in a brain scanner, and we can now start to understand what’s going on in the brain while people are making decisions. You can ask questions like, “Can I look at the signals in someone’s brain and predict what decision they’re going to make?” That can help us build a model of decision-making.
I think in another 10 or 15 years, we’re probably going to have really rich models of how we actually make decisions and what’s going on in the brain to support them. That’s very exciting for a neuroscientist.
Image Credit: Black Salmon / Shutterstock.com Continue reading

Posted in Human Robots

#431690 Oxford Study Says Alien Life Would ...

The alternative universe known as science fiction has given our culture a menagerie of alien species. From overstuffed teddy bears like Ewoks and Wookies to terrifying nightmares such as Alien and Predator, our collective imagination of what form alien life from another world may take has been irrevocably imprinted by Hollywood.
It might all be possible, or all these bug-eyed critters might turn out to be just B-movie versions of how real extraterrestrials will appear if and when they finally make the evening news.
One thing for certain is that aliens from another world will be shaped by the same evolutionary forces as here on Earth—natural selection. That’s the conclusion of a team of scientists from the University of Oxford in a study published this month in the International Journal of Astrobiology.
A complex alien that comprises a hierarchy of entities, where each lower level collection of entities has aligned evolutionary interests.Image Credit: Helen S. Cooper/University of Oxford.
The researchers suggest that evolutionary theory—famously put forth by Charles Darwin in his seminal book On the Origin of Species 158 years ago this month—can be used to make some predictions about alien species. In particular, the team argues that extraterrestrials will undergo natural selection, because that is the only process by which organisms can adapt to their environment.
“Adaptation is what defines life,” lead author Samuel Levin tells Singularity Hub.
While it’s likely that NASA or some SpaceX-like private venture will eventually kick over a few space rocks and discover microbial life in the not-too-distant future, the sorts of aliens Levin and his colleagues are interested in describing are more complex. That’s because natural selection is at work.
A quick evolutionary theory 101 refresher: Natural selection is the process by which certain traits are favored over others in a given population. For example, take a group of brown and green beetles. It just so happens that birds prefer foraging on green beetles, allowing more brown beetles to survive and reproduce than the more delectable green ones. Eventually, if these population pressures persist, brown beetles will become the dominant type. Brown wins, green loses.
And just as human beings are the result of millions of years of adaptations—eyes and thumbs, for example—aliens will similarly be constructed from parts that were once free living but through time came together to work as one organism.
“Life has so many intricate parts, so much complexity, for that to happen (randomly),” Levin explains. “It’s too complex and too many things working together in a purposeful way for that to happen by chance, as how certain molecules come about. Instead you need a process for making it, and natural selection is that process.”
Just don’t expect ET to show up as a bipedal humanoid with a large head and almond-shaped eyes, Levin says.
“They can be built from entirely different chemicals and so visually, superficially, unfamiliar,” he explains. “They will have passed through the same evolutionary history as us. To me, that’s way cooler and more exciting than them having two legs.”
Need for Data
Seth Shostak, a lead astronomer at the SETI Institute and host of the organization’s Big Picture Science radio show, wrote that while the argument is interesting, it doesn’t answer the question of ET’s appearance.
Shostak argues that a more productive approach would invoke convergent evolution, where similar environments lead to similar adaptations, at least assuming a range of Earth-like conditions such as liquid oceans and thick atmospheres. For example, an alien species that evolved in a liquid environment would evolve a streamlined body to move through water.
“Happenstance and the specifics of the environment will produce variations on an alien species’ planet as it has on ours, and there’s really no way to predict these,” Shostak concludes. “Alas, an accurate cosmic bestiary cannot be written by the invocation of biological mechanisms alone. We need data. That requires more than simply thinking about alien life. We need to actually discover it.”
Search Is On
The search is on. On one hand, the task seems easy enough: There are at least 100 billion planets in the Milky Way alone, and at least 20 percent of those are likely to be capable of producing a biosphere. Even if the evolution of life is exceedingly rare—take a conservative estimate of .001 percent or 200,000 planets, as proposed by the Oxford paper—you have to like the odds.
Of course, it’s not that easy by a billion light years.
Planet hunters can’t even agree on what signatures of life they should focus on. The idea is that where there’s smoke there’s fire. In the case of an alien world home to biological life, astrobiologists are searching for the presence of “biosignature gases,” vapors that could only be produced by alien life.
As Quanta Magazine reported, scientists do this by measuring a planet’s atmosphere against starlight. Gases in the atmosphere absorb certain frequencies of starlight, offering a clue as to what is brewing around a particular planet.
The presence of oxygen would seem to be a biological no-brainer, but there are instances where a planet can produce a false positive, meaning non-biological processes are responsible for the exoplanet’s oxygen. Scientists like Sara Seager, an astrophysicist at MIT, have argued there are plenty of examples of other types of gases produced by organisms right here on Earth that could also produce the smoking gun, er, planet.

Life as We Know It
Indeed, the existence of Earth-bound extremophiles—organisms that defy conventional wisdom about where life can exist, such as in the vacuum of space—offer another clue as to what kind of aliens we might eventually meet.
Lynn Rothschild, an astrobiologist and synthetic biologist in the Earth Science Division at NASA’s Ames Research Center in Silicon Valley, takes extremophiles as a baseline and then supersizes them through synthetic biology.
For example, say a bacteria is capable of surviving at 120 degrees Celsius. Rothschild’s lab might tweak an organism’s DNA to see if it could metabolize at 150 degrees. The idea, as she explains, is to expand the envelope for life without ever getting into a rocket ship.

While researchers may not always agree on the “where” and “how” and “what” of the search for extraterrestrial life, most do share one belief: Alien life must be out there.
“It would shock me if there weren’t [extraterrestrials],” Levin says. “There are few things that would shock me more than to find out there aren’t any aliens…If I had to bet on it, I would bet on the side of there being lots and lots of aliens out there.”
Image Credit: NASA Continue reading

Posted in Human Robots

#431682 Oxford Study Says Alien Life Would ...

The alternative universe known as science fiction has given our culture a menagerie of alien species. From overstuffed teddy bears like Ewoks and Wookies to terrifying nightmares such as Alien and Predator, our collective imagination of what form alien life from another world may take has been irrevocably imprinted by Hollywood.
It might all be possible, or all these bug-eyed critters might turn out to be just B-movie versions of how real extraterrestrials will appear if and when they finally make the evening news.
One thing for certain is that aliens from another world will be shaped by the same evolutionary forces as here on Earth—natural selection. That’s the conclusion of a team of scientists from the University of Oxford in a study published this month in the International Journal of Astrobiology.
A complex alien that comprises a hierarchy of entities, where each lower level collection of entities has aligned evolutionary interests.Image Credit: Helen S. Cooper/University of Oxford.
The researchers suggest that evolutionary theory—famously put forth by Charles Darwin in his seminal book On the Origin of Species 158 years ago this month—can be used to make some predictions about alien species. In particular, the team argues that extraterrestrials will undergo natural selection, because that is the only process by which organisms can adapt to their environment.
“Adaptation is what defines life,” lead author Samuel Levin tells Singularity Hub.
While it’s likely that NASA or some SpaceX-like private venture will eventually kick over a few space rocks and discover microbial life in the not-too-distant future, the sorts of aliens Levin and his colleagues are interested in describing are more complex. That’s because natural selection is at work.
A quick evolutionary theory 101 refresher: Natural selection is the process by which certain traits are favored over others in a given population. For example, take a group of brown and green beetles. It just so happens that birds prefer foraging on green beetles, allowing more brown beetles to survive and reproduce than the more delectable green ones. Eventually, if these population pressures persist, brown beetles will become the dominant type. Brown wins, green loses.
And just as human beings are the result of millions of years of adaptations—eyes and thumbs, for example—aliens will similarly be constructed from parts that were once free living but through time came together to work as one organism.
“Life has so many intricate parts, so much complexity, for that to happen (randomly),” Levin explains. “It’s too complex and too many things working together in a purposeful way for that to happen by chance, as how certain molecules come about. Instead you need a process for making it, and natural selection is that process.”
Just don’t expect ET to show up as a bipedal humanoid with a large head and almond-shaped eyes, Levin says.
“They can be built from entirely different chemicals and so visually, superficially, unfamiliar,” he explains. “They will have passed through the same evolutionary history as us. To me, that’s way cooler and more exciting than them having two legs.”
Need for Data
Seth Shostak, a lead astronomer at the SETI Institute and host of the organization’s Big Picture Science radio show, wrote that while the argument is interesting, it doesn’t answer the question of ET’s appearance.
Shostak argues that a more productive approach would invoke convergent evolution, where similar environments lead to similar adaptations, at least assuming a range of Earth-like conditions such as liquid oceans and thick atmospheres. For example, an alien species that evolved in a liquid environment would evolve a streamlined body to move through water.
“Happenstance and the specifics of the environment will produce variations on an alien species’ planet as it has on ours, and there’s really no way to predict these,” Shostak concludes. “Alas, an accurate cosmic bestiary cannot be written by the invocation of biological mechanisms alone. We need data. That requires more than simply thinking about alien life. We need to actually discover it.”
Search is On
The search is on. On one hand, the task seems easy enough: There are at least 100 billion planets in the Milky Way alone, and at least 20 percent of those are likely to be capable of producing a biosphere. Even if the evolution of life is exceedingly rare—take a conservative estimate of .001 percent or 200,000 planets, as proposed by the Oxford paper—you have to like the odds.
Of course, it’s not that easy by a billion light years.
Planet hunters can’t even agree on what signatures of life they should focus on. The idea is that where there’s smoke there’s fire. In the case of an alien world home to biological life, astrobiologists are searching for the presence of “biosignature gases,” vapors that could only be produced by alien life.
As Quanta Magazine reported, scientists do this by measuring a planet’s atmosphere against starlight. Gases in the atmosphere absorb certain frequencies of starlight, offering a clue as to what is brewing around a particular planet.
The presence of oxygen would seem to be a biological no-brainer, but there are instances where a planet can produce a false positive, meaning non-biological processes are responsible for the exoplanet’s oxygen. Scientists like Sara Seager, an astrophysicist at MIT, have argued there are plenty of examples of other types of gases produced by organisms right here on Earth that could also produce the smoking gun, er, planet.

Life as We Know It
Indeed, the existence of Earth-bound extremophiles—organisms that defy conventional wisdom about where life can exist, such as in the vacuum of space—offer another clue as to what kind of aliens we might eventually meet.
Lynn Rothschild, an astrobiologist and synthetic biologist in the Earth Science Division at NASA’s Ames Research Center in Silicon Valley, takes extremophiles as a baseline and then supersizes them through synthetic biology.
For example, say a bacteria is capable of surviving at 120 degrees Celsius. Rothschild’s lab might tweak an organism’s DNA to see if it could metabolize at 150 degrees. The idea, as she explains, is to expand the envelope for life without ever getting into a rocket ship.

While researchers may not always agree on the “where” and “how” and “what” of the search for extraterrestrial life, most do share one belief: Alien life must be out there.
“It would shock me if there weren’t [extraterrestrials],” Levin says. “There are few things that would shock me more than to find out there aren’t any aliens…If I had to bet on it, I would bet on the side of there being lots and lots of aliens out there.”
Image Credit: NASA Continue reading

Posted in Human Robots

#431671 The Doctor in the Machine: How AI Is ...

Artificial intelligence has received its fair share of hype recently. However, it’s hype that’s well-founded: IDC predicts worldwide spend on AI and cognitive computing will culminate to a whopping $46 billion (with a “b”) by 2020, and all the tech giants are jumping on board faster than you can say “ROI.” But what is AI, exactly?
According to Hilary Mason, AI today is being misused as a sort of catch-all term to basically describe “any system that uses data to do anything.” But it’s so much more than that. A truly artificially intelligent system is one that learns on its own, one that’s capable of crunching copious amounts of data in order to create associations and intelligently mimic actual human behavior.
It’s what powers the technology anticipating our next online purchase (Amazon), or the virtual assistant that deciphers our voice commands with incredible accuracy (Siri), or even the hipster-friendly recommendation engine that helps you discover new music before your friends do (Pandora). But AI is moving past these consumer-pleasing “nice-to-haves” and getting down to serious business: saving our butts.
Much in the same way robotics entered manufacturing, AI is making its mark in healthcare by automating mundane, repetitive tasks. This is especially true in the case of detecting cancer. By leveraging the power of deep learning, algorithms can now be trained to distinguish between sets of pixels in an image that represents cancer versus sets that don’t—not unlike how Facebook’s image recognition software tags pictures of our friends without us having to type in their names first. This software can then go ahead and scour millions of medical images (MRIs, CT scans, etc.) in a single day to detect anomalies on a scope that humans just aren’t capable of. That’s huge.
As if that wasn’t enough, these algorithms are constantly learning and evolving, getting better at making these associations with each new data set that gets fed to them. Radiology, dermatology, and pathology will experience a giant upheaval as tech giants and startups alike jump in to bring these deep learning algorithms to a hospital near you.
In fact, some already are: the FDA recently gave their seal of approval for an AI-powered medical imaging platform that helps doctors analyze and diagnose heart anomalies. This is the first time the FDA has approved a machine learning application for use in a clinical setting.
But how efficient is AI compared to humans, really? Well, aside from the obvious fact that software programs don’t get bored or distracted or have to check Facebook every twenty minutes, AI is exponentially better than us at analyzing data.
Take, for example, IBM’s Watson. Watson analyzed genomic data from both tumor cells and healthy cells and was ultimately able to glean actionable insights in a mere 10 minutes. Compare that to the 160 hours it would have taken a human to analyze that same data. Diagnoses aside, AI is also being leveraged in pharmaceuticals to aid in the very time-consuming grunt work of discovering new drugs, and all the big players are getting involved.
But AI is far from being just a behind-the-scenes player. Gartner recently predicted that by 2025, 50 percent of the population will rely on AI-powered “virtual personal health assistants” for their routine primary care needs. What this means is that consumer-facing voice and chat-operated “assistants” (think Siri or Cortana) would, in effect, serve as a central hub of interaction for all our connected health devices and the algorithms crunching all our real-time biometric data. These assistants would keep us apprised of our current state of well-being, acting as a sort of digital facilitator for our personal health objectives and an always-on health alert system that would notify us when we actually need to see a physician.
Slowly, and thanks to the tsunami of data and advancements in self-learning algorithms, healthcare is transitioning from a reactive model to more of a preventative model—and it’s completely upending the way care is delivered. Whether Elon Musk’s dystopian outlook on AI holds any weight or not is yet to be determined. But one thing’s certain: for the time being, artificial intelligence is saving our lives.
Image Credit: Jolygon / Shutterstock.com Continue reading

Posted in Human Robots