Tag Archives: auto

#436252 After AI, Fashion and Shopping Will ...

AI and broadband are eating retail for breakfast. In the first half of 2019, we’ve seen 19 retailer bankruptcies. And the retail apocalypse is only accelerating.

What’s coming next is astounding. Why drive when you can speak? Revenue from products purchased via voice commands is expected to quadruple from today’s US$2 billion to US$8 billion by 2023.

Virtual reality, augmented reality, and 3D printing are converging with artificial intelligence, drones, and 5G to transform shopping on every dimension. And as a result, shopping is becoming dematerialized, demonetized, democratized, and delocalized… a top-to-bottom transformation of the retail world.

Welcome to Part 1 of our series on the future of retail, a deep-dive into AI and its far-reaching implications.

Let’s dive in.

A Day in the Life of 2029
Welcome to April 21, 2029, a sunny day in Dallas. You’ve got a fundraising luncheon tomorrow, but nothing to wear. The last thing you want to do is spend the day at the mall.

No sweat. Your body image data is still current, as you were scanned only a week ago. Put on your VR headset and have a conversation with your AI. “It’s time to buy a dress for tomorrow’s event” is all you have to say. In a moment, you’re teleported to a virtual clothing store. Zero travel time. No freeway traffic, parking hassles, or angry hordes wielding baby strollers.

Instead, you’ve entered your own personal clothing store. Everything is in your exact size…. And I mean everything. The store has access to nearly every designer and style on the planet. Ask your AI to show you what’s hot in Shanghai, and presto—instant fashion show. Every model strutting down the runway looks exactly like you, only dressed in Shanghai’s latest.

When you’re done selecting an outfit, your AI pays the bill. And as your new clothes are being 3D printed at a warehouse—before speeding your way via drone delivery—a digital version has been added to your personal inventory for use at future virtual events.

The cost? Thanks to an era of no middlemen, less than half of what you pay in stores today. Yet this future is not all that far off…

Digital Assistants
Let’s begin with the basics: the act of turning desire into purchase.

Most of us navigate shopping malls or online marketplaces alone, hoping to stumble across the right item and fit. But if you’re lucky enough to employ a personal assistant, you have the luxury of describing what you want to someone who knows you well enough to buy that exact right thing most of the time.

For most of us who don’t, enter the digital assistant.

Right now, the four horsemen of the retail apocalypse are waging war for our wallets. Amazon’s Alexa, Google’s Now, Apple’s Siri, and Alibaba’s Tmall Genie are going head-to-head in a battle to become the platform du jour for voice-activated, AI-assisted commerce.

For baby boomers who grew up watching Captain Kirk talk to the Enterprise’s computer on Star Trek, digital assistants seem a little like science fiction. But for millennials, it’s just the next logical step in a world that is auto-magical.

And as those millennials enter their consumer prime, revenue from products purchased via voice-driven commands is projected to leap from today’s US$2 billion to US$8 billion by 2023.

We are already seeing a major change in purchasing habits. On average, consumers using Amazon Echo spent more than standard Amazon Prime customers: US$1,700 versus US$1,300.

And as far as an AI fashion advisor goes, those too are here, courtesy of both Alibaba and Amazon. During its annual Singles’ Day (November 11) shopping festival, Alibaba’s FashionAI concept store uses deep learning to make suggestions based on advice from human fashion experts and store inventory, driving a significant portion of the day’s US$25 billion in sales.

Similarly, Amazon’s shopping algorithm makes personalized clothing recommendations based on user preferences and social media behavior.

Customer Service
But AI is disrupting more than just personalized fashion and e-commerce. Its next big break will take place in the customer service arena.

According to a recent Zendesk study, good customer service increases the possibility of a purchase by 42 percent, while bad customer service translates into a 52 percent chance of losing that sale forever. This means more than half of us will stop shopping at a store due to a single disappointing customer service interaction. These are significant financial stakes. They’re also problems perfectly suited for an AI solution.

During the 2018 Google I/O conference, CEO Sundar Pichai demoed the Google Duplex, their next generation digital assistant. Pichai played the audience a series of pre-recorded phone calls made by Google Duplex. The first call made a reservation at a restaurant, the second one booked a haircut appointment, amusing the audience with a long “hmmm” mid-call.

In neither case did the person on the other end of the phone have any idea they were talking to an AI. The system’s success speaks to how seamlessly AI can blend into our retail lives and how convenient it will continue to make them. The same technology Pichai demonstrated that can make phone calls for consumers can also answer phones for retailers—a development that’s unfolding in two different ways:

(1) Customer service coaches: First, for organizations interested in keeping humans involved, there’s Beyond Verbal, a Tel Aviv-based startup that has built an AI customer service coach. Simply by analyzing customer voice intonation, the system can tell whether the person on the phone is about to blow a gasket, is genuinely excited, or anything in between.

Based on research of over 70,000 subjects in more than 30 languages, Beyond Verbal’s app can detect 400 different markers of human moods, attitudes, and personality traits. Already it’s been integrated in call centers to help human sales agents understand and react to customer emotions, making those calls more pleasant, and also more profitable.

For example, by analyzing word choice and vocal style, Beyond Verbal’s system can tell what kind of shopper the person on the line actually is. If they’re an early adopter, the AI alerts the sales agent to offer them the latest and greatest. If they’re more conservative, it suggests items more tried-and-true.

(2) Replacing customer service agents: Second, companies like New Zealand’s Soul Machines are working to replace human customer service agents altogether. Powered by IBM’s Watson, Soul Machines builds lifelike customer service avatars designed for empathy, making them one of many helping to pioneer the field of emotionally intelligent computing.

With their technology, 40 percent of all customer service interactions are now resolved with a high degree of satisfaction, no human intervention needed. And because the system is built using neural nets, it’s continuously learning from every interaction—meaning that percentage will continue to improve.

The number of these interactions continues to grow as well. Software manufacturer Autodesk now includes a Soul Machine avatar named AVA (Autodesk Virtual Assistant) in all of its new offerings. She lives in a small window on the screen, ready to soothe tempers, troubleshoot problems, and forever banish those long tech support hold times.

For Daimler Financial Services, Soul Machines built an avatar named Sarah, who helps customers with arguably three of modernity’s most annoying tasks: financing, leasing, and insuring a car.

This isn’t just about AI—it’s about AI converging with additional exponentials. Add networks and sensors to the story and it raises the scale of disruption, upping the FQ—the frictionless quotient—in our frictionless shopping adventure.

Final Thoughts
AI makes retail cheaper, faster, and more efficient, touching everything from customer service to product delivery. It also redefines the shopping experience, making it frictionless and—once we allow AI to make purchases for us—ultimately invisible.

Prepare for a future in which shopping is dematerialized, demonetized, democratized, and delocalized—otherwise known as “the end of malls.”

Of course, if you wait a few more years, you’ll be able to take an autonomous flying taxi to Westfield’s Destination 2028—so perhaps today’s converging exponentials are not so much spelling the end of malls but rather the beginning of an experience economy far smarter, more immersive, and whimsically imaginative than today’s shopping centers.

Either way, it’s a top-to-bottom transformation of the retail world.

Over the coming blog series, we will continue our discussion of the future of retail. Stay tuned to learn new implications for your business and how to future-proof your company in an age of smart, ultra-efficient, experiential retail.

Want a copy of my next book? If you’ve enjoyed this blogified snippet of The Future is Faster Than You Think, sign up here to be eligible for an early copy and access up to $800 worth of pre-launch giveaways!

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2020 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University — your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Image by Pexels from Pixabay Continue reading

Posted in Human Robots

#435765 The Four Converging Technologies Giving ...

How each of us sees the world is about to change dramatically.

For all of human history, the experience of looking at the world was roughly the same for everyone. But boundaries between the digital and physical are beginning to fade.

The world around us is gaining layer upon layer of digitized, virtually overlaid information—making it rich, meaningful, and interactive. As a result, our respective experiences of the same environment are becoming vastly different, personalized to our goals, dreams, and desires.

Welcome to Web 3.0, or the Spatial Web. In version 1.0, static documents and read-only interactions limited the internet to one-way exchanges. Web 2.0 provided quite an upgrade, introducing multimedia content, interactive web pages, and participatory social media. Yet, all this was still mediated by two-dimensional screens.

Today, we are witnessing the rise of Web 3.0, riding the convergence of high-bandwidth 5G connectivity, rapidly evolving AR eyewear, an emerging trillion-sensor economy, and powerful artificial intelligence.

As a result, we will soon be able to superimpose digital information atop any physical surrounding—freeing our eyes from the tyranny of the screen, immersing us in smart environments, and making our world endlessly dynamic.

In the third post of our five-part series on augmented reality, we will explore the convergence of AR, AI, sensors, and blockchain and dive into the implications through a key use case in manufacturing.

A Tale of Convergence
Let’s deconstruct everything beneath the sleek AR display.

It all begins with graphics processing units (GPUs)—electric circuits that perform rapid calculations to render images. (GPUs can be found in mobile phones, game consoles, and computers.)

However, because AR requires such extensive computing power, single GPUs will not suffice. Instead, blockchain can now enable distributed GPU processing power, and blockchains specifically dedicated to AR holographic processing are on the rise.

Next up, cameras and sensors will aggregate real-time data from any environment to seamlessly integrate physical and virtual worlds. Meanwhile, body-tracking sensors are critical for aligning a user’s self-rendering in AR with a virtually enhanced environment. Depth sensors then provide data for 3D spatial maps, while cameras absorb more surface-level, detailed visual input. In some cases, sensors might even collect biometric data, such as heart rate and brain activity, to incorporate health-related feedback in our everyday AR interfaces and personal recommendation engines.

The next step in the pipeline involves none other than AI. Processing enormous volumes of data instantaneously, embedded AI algorithms will power customized AR experiences in everything from artistic virtual overlays to personalized dietary annotations.

In retail, AIs will use your purchasing history, current closet inventory, and possibly even mood indicators to display digitally rendered items most suitable for your wardrobe, tailored to your measurements.

In healthcare, smart AR glasses will provide physicians with immediately accessible and maximally relevant information (parsed from the entirety of a patient’s medical records and current research) to aid in accurate diagnoses and treatments, freeing doctors to engage in the more human-centric tasks of establishing trust, educating patients and demonstrating empathy.

Image Credit: PHD Ventures.
Convergence in Manufacturing
One of the nearest-term use cases of AR is manufacturing, as large producers begin dedicating capital to enterprise AR headsets. And over the next ten years, AR will converge with AI, sensors, and blockchain to multiply manufacturer productivity and employee experience.

(1) Convergence with AI
In initial application, digital guides superimposed on production tables will vastly improve employee accuracy and speed, while minimizing error rates.

Already, the International Air Transport Association (IATA) — whose airlines supply 82 percent of air travel — recently implemented industrial tech company Atheer’s AR headsets in cargo management. And with barely any delay, IATA reported a whopping 30 percent improvement in cargo handling speed and no less than a 90 percent reduction in errors.

With similar success rates, Boeing brought Skylight’s smart AR glasses to the runway, now used in the manufacturing of hundreds of airplanes. Sure enough—the aerospace giant has now seen a 25 percent drop in production time and near-zero error rates.

Beyond cargo management and air travel, however, smart AR headsets will also enable on-the-job training without reducing the productivity of other workers or sacrificing hardware. Jaguar Land Rover, for instance, implemented Bosch’s Re’flekt One AR solution to gear technicians with “x-ray” vision: allowing them to visualize the insides of Range Rover Sport vehicles without removing any dashboards.

And as enterprise capabilities continue to soar, AIs will soon become the go-to experts, offering support to manufacturers in need of assembly assistance. Instant guidance and real-time feedback will dramatically reduce production downtime, boost overall output, and even help customers struggling with DIY assembly at home.

Perhaps one of the most profitable business opportunities, AR guidance through centralized AI systems will also serve to mitigate supply chain inefficiencies at extraordinary scale. Coordinating moving parts, eliminating the need for manned scanners at each checkpoint, and directing traffic within warehouses, joint AI-AR systems will vastly improve workflow while overseeing quality assurance.

After its initial implementation of AR “vision picking” in 2015, leading courier company DHL recently announced it would continue to use Google’s newest smart lens in warehouses across the world. Motivated by the initial group’s reported 15 percent jump in productivity, DHL’s decision is part of the logistics giant’s $300 million investment in new technologies.

And as direct-to-consumer e-commerce fundamentally transforms the retail sector, supply chain optimization will only grow increasingly vital. AR could very well prove the definitive step for gaining a competitive edge in delivery speeds.

As explained by Vital Enterprises CEO Ash Eldritch, “All these technologies that are coming together around artificial intelligence are going to augment the capabilities of the worker and that’s very powerful. I call it Augmented Intelligence. The idea is that you can take someone of a certain skill level and by augmenting them with artificial intelligence via augmented reality and the Internet of Things, you can elevate the skill level of that worker.”

Already, large producers like Goodyear, thyssenkrupp, and Johnson Controls are using the Microsoft HoloLens 2—priced at $3,500 per headset—for manufacturing and design purposes.

Perhaps the most heartening outcome of the AI-AR convergence is that, rather than replacing humans in manufacturing, AR is an ideal interface for human collaboration with AI. And as AI merges with human capital, prepare to see exponential improvements in productivity, professional training, and product quality.

(2) Convergence with Sensors
On the hardware front, these AI-AR systems will require a mass proliferation of sensors to detect the external environment and apply computer vision in AI decision-making.

To measure depth, for instance, some scanning depth sensors project a structured pattern of infrared light dots onto a scene, detecting and analyzing reflected light to generate 3D maps of the environment. Stereoscopic imaging, using two lenses, has also been commonly used for depth measurements. But leading technology like Microsoft’s HoloLens 2 and Intel’s RealSense 400-series camera implement a new method called “phased time-of-flight” (ToF).

In ToF sensing, the HoloLens 2 uses numerous lasers, each with 100 milliwatts (mW) of power, in quick bursts. The distance between nearby objects and the headset wearer is then measured by the amount of light in the return beam that has shifted from the original signal. Finally, the phase difference reveals the location of each object within the field of view, which enables accurate hand-tracking and surface reconstruction.

With a far lower computing power requirement, the phased ToF sensor is also more durable than stereoscopic sensing, which relies on the precise alignment of two prisms. The phased ToF sensor’s silicon base also makes it easily mass-produced, rendering the HoloLens 2 a far better candidate for widespread consumer adoption.

To apply inertial measurement—typically used in airplanes and spacecraft—the HoloLens 2 additionally uses a built-in accelerometer, gyroscope, and magnetometer. Further equipped with four “environment understanding cameras” that track head movements, the headset also uses a 2.4MP HD photographic video camera and ambient light sensor that work in concert to enable advanced computer vision.

For natural viewing experiences, sensor-supplied gaze tracking increasingly creates depth in digital displays. Nvidia’s work on Foveated AR Display, for instance, brings the primary foveal area into focus, while peripheral regions fall into a softer background— mimicking natural visual perception and concentrating computing power on the area that needs it most.

Gaze tracking sensors are also slated to grant users control over their (now immersive) screens without any hand gestures. Conducting simple visual cues, even staring at an object for more than three seconds, will activate commands instantaneously.

And our manufacturing example above is not the only one. Stacked convergence of blockchain, sensors, AI and AR will disrupt almost every major industry.

Take healthcare, for example, wherein biometric sensors will soon customize users’ AR experiences. Already, MIT Media Lab’s Deep Reality group has created an underwater VR relaxation experience that responds to real-time brain activity detected by a modified version of the Muse EEG. The experience even adapts to users’ biometric data, from heart rate to electro dermal activity (inputted from an Empatica E4 wristband).

Now rapidly dematerializing, sensors will converge with AR to improve physical-digital surface integration, intuitive hand and eye controls, and an increasingly personalized augmented world. Keep an eye on companies like MicroVision, now making tremendous leaps in sensor technology.

While I’ll be doing a deep dive into sensor applications across each industry in our next blog, it’s critical to first discuss how we might power sensor- and AI-driven augmented worlds.

(3) Convergence with Blockchain
Because AR requires much more compute power than typical 2D experiences, centralized GPUs and cloud computing systems are hard at work to provide the necessary infrastructure. Nonetheless, the workload is taxing and blockchain may prove the best solution.

A major player in this pursuit, Otoy aims to create the largest distributed GPU network in the world, called the Render Network RNDR. Built specifically on the Ethereum blockchain for holographic media, and undergoing Beta testing, this network is set to revolutionize AR deployment accessibility.

Alphabet Chairman Eric Schmidt (an investor in Otoy’s network), has even said, “I predicted that 90% of computing would eventually reside in the web based cloud… Otoy has created a remarkable technology which moves that last 10%—high-end graphics processing—entirely to the cloud. This is a disruptive and important achievement. In my view, it marks the tipping point where the web replaces the PC as the dominant computing platform of the future.”

Leveraging the crowd, RNDR allows anyone with a GPU to contribute their power to the network for a commission of up to $300 a month in RNDR tokens. These can then be redeemed in cash or used to create users’ own AR content.

In a double win, Otoy’s blockchain network and similar iterations not only allow designers to profit when not using their GPUs, but also democratize the experience for newer artists in the field.

And beyond these networks’ power suppliers, distributing GPU processing power will allow more manufacturing companies to access AR design tools and customize learning experiences. By further dispersing content creation across a broad network of individuals, blockchain also has the valuable potential to boost AR hardware investment across a number of industry beneficiaries.

On the consumer side, startups like Scanetchain are also entering the blockchain-AR space for a different reason. Allowing users to scan items with their smartphone, Scanetchain’s app provides access to a trove of information, from manufacturer and price, to origin and shipping details.

Based on NEM (a peer-to-peer cryptocurrency that implements a blockchain consensus algorithm), the app aims to make information far more accessible and, in the process, create a social network of purchasing behavior. Users earn tokens by watching ads, and all transactions are hashed into blocks and securely recorded.

The writing is on the wall—our future of brick-and-mortar retail will largely lean on blockchain to create the necessary digital links.

Final Thoughts
Integrating AI into AR creates an “auto-magical” manufacturing pipeline that will fundamentally transform the industry, cutting down on marginal costs, reducing inefficiencies and waste, and maximizing employee productivity.

Bolstering the AI-AR convergence, sensor technology is already blurring the boundaries between our augmented and physical worlds, soon to be near-undetectable. While intuitive hand and eye motions dictate commands in a hands-free interface, biometric data is poised to customize each AR experience to be far more in touch with our mental and physical health.

And underpinning it all, distributed computing power with blockchain networks like RNDR will democratize AR, boosting global consumer adoption at plummeting price points.

As AR soars in importance—whether in retail, manufacturing, entertainment, or beyond—the stacked convergence discussed above merits significant investment over the next decade. The augmented world is only just getting started.

Join Me
(1) A360 Executive Mastermind: Want even more context about how converging exponential technologies will transform your business and industry? Consider joining Abundance 360, a highly selective community of 360 exponentially minded CEOs, who are on a 25-year journey with me—or as I call it, a “countdown to the Singularity.” If you’d like to learn more and consider joining our 2020 membership, apply here.

Share this with your friends, especially if they are interested in any of the areas outlined above.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

This article originally appeared on Diamandis.com

Image Credit: Funky Focus / Pixabay Continue reading

Posted in Human Robots

#435707 AI Agents Startle Researchers With ...

After 25 million games, the AI agents playing hide-and-seek with each other had mastered four basic game strategies. The researchers expected that part.

After a total of 380 million games, the AI players developed strategies that the researchers didn’t know were possible in the game environment—which the researchers had themselves created. That was the part that surprised the team at OpenAI, a research company based in San Francisco.

The AI players learned everything via a machine learning technique known as reinforcement learning. In this learning method, AI agents start out by taking random actions. Sometimes those random actions produce desired results, which earn them rewards. Via trial-and-error on a massive scale, they can learn sophisticated strategies.

In the context of games, this process can be abetted by having the AI play against another version of itself, ensuring that the opponents will be evenly matched. It also locks the AI into a process of one-upmanship, where any new strategy that emerges forces the opponent to search for a countermeasure. Over time, this “self-play” amounted to what the researchers call an “auto-curriculum.”

According to OpenAI researcher Igor Mordatch, this experiment shows that self-play “is enough for the agents to learn surprising behaviors on their own—it’s like children playing with each other.”

Reinforcement is a hot field of AI research right now. OpenAI’s researchers used the technique when they trained a team of bots to play the video game Dota 2, which squashed a world-champion human team last April. The Alphabet subsidiary DeepMind has used it to triumph in the ancient board game Go and the video game StarCraft.

Aniruddha Kembhavi, a researcher at the Allen Institute for Artificial Intelligence (AI2) in Seattle, says games such as hide-and-seek offer a good way for AI agents to learn “foundational skills.” He worked on a team that taught their AllenAI to play Pictionary with humans, viewing the gameplay as a way for the AI to work on common sense reasoning and communication. “We are, however, quite far away from being able to translate these preliminary findings in highly simplified environments into the real world,” says Kembhavi.

Illustration: OpenAI

AI agents construct a fort during a hide-and-seek game developed by OpenAI.

In OpenAI’s game of hide-and-seek, both the hiders and the seekers received a reward only if they won the game, leaving the AI players to develop their own strategies. Within a simple 3D environment containing walls, blocks, and ramps, the players first learned to run around and chase each other (strategy 1). The hiders next learned to move the blocks around to build forts (2), and then the seekers learned to move the ramps (3), enabling them to jump inside the forts. Then the hiders learned to move all the ramps into their forts before the seekers could use them (4).

The two strategies that surprised the researchers came next. First the seekers learned that they could jump onto a box and “surf” it over to a fort (5), allowing them to jump in—a maneuver that the researchers hadn’t realized was physically possible in the game environment. So as a final countermeasure, the hiders learned to lock all the boxes into place (6) so they weren’t available for use as surfboards.

Illustration: OpenAI

An AI agent uses a nearby box to surf its way into a competitor’s fort.

In this circumstance, having AI agents behave in an unexpected way wasn’t a problem: They found different paths to their rewards, but didn’t cause any trouble. However, you can imagine situations in which the outcome would be rather serious. Robots acting in the real world could do real damage. And then there’s Nick Bostrom’s famous example of a paper clip factory run by an AI, whose goal is to make as many paper clips as possible. As Bostrom told IEEE Spectrum back in 2014, the AI might realize that “human bodies consist of atoms, and those atoms could be used to make some very nice paper clips.”

Bowen Baker, another member of the OpenAI research team, notes that it’s hard to predict all the ways an AI agent will act inside an environment—even a simple one. “Building these environments is hard,” he says. “The agents will come up with these unexpected behaviors, which will be a safety problem down the road when you put them in more complex environments.”

AI researcher Katja Hofmann at Microsoft Research Cambridge, in England, has seen a lot of gameplay by AI agents: She started a competition that uses Minecraft as the playing field. She says the emergent behavior seen in this game, and in prior experiments by other researchers, shows that games can be a useful for studies of safe and responsible AI.

“I find demonstrations like this, in games and game-like settings, a great way to explore the capabilities and limitations of existing approaches in a safe environment,” says Hofmann. “Results like these will help us develop a better understanding on how to validate and debug reinforcement learning systems–a crucial step on the path towards real-world applications.”

Baker says there’s also a hopeful takeaway from the surprises in the hide-and-seek experiment. “If you put these agents into a rich enough environment they will find strategies that we never knew were possible,” he says. “Maybe they can solve problems that we can’t imagine solutions to.” Continue reading

Posted in Human Robots

#435646 Video Friday: Kiki Is a New Social Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

The DARPA Subterranean Challenge tunnel circuit takes place in just a few weeks, and we’ll be there!

[ DARPA SubT ]

Time lapse video of robotic arm on NASA’s Mars 2020 rover handily maneuvers 88-pounds (40 kilograms) worth of sensor-laden turret as it moves from a deployed to stowed configuration.

If you haven’t read our interview with Matt Robinson, now would be a great time, since he’s one of the folks at JPL who designed this arm.

[ Mars 2020 ]

Kiki is a small, white, stationary social robot with an evolving personality who promises to be your friend and costs $800 and is currently on Kickstarter.

The Kickstarter page is filled with the same type of overpromising that we’ve seen with other (now very dead) social robots: Kiki is “conscious,” “understands your feelings,” and “loves you back.” Oof. That said, we’re happy to see more startups trying to succeed in this space, which is certainly one of the toughest in consumer electronics, and hopefully they’ve been learning from the recent string of failures. And we have to say Kiki is a cute robot. Its overall design, especially the body mechanics and expressive face, look neat. And kudos to the team—the company was founded by two ex-Googlers, Mita Yun and Jitu Das—for including the “unedited prototype videos,” which help counterbalance the hype.

Another thing that Kiki has going for it is that everything runs on the robot itself. This simplifies privacy and means that the robot won’t partially die on you if the company behind it goes under, but also limits how clever the robot will be able to be. The Kickstarter campaign is already over a third funded, so…We’ll see.

[ Kickstarter ]

When your UAV isn’t enough UAV, so you put a UAV on your UAV.

[ CanberraUAV ]

ABB’s YuMi is testing ATMs because a human trying to do this task would go broke almost immediately.

[ ABB ]

DJI has a fancy new FPV system that features easy setup, digital HD streaming at up to 120 FPS, and <30ms latency.

If it looks expensive, that’s because it costs $930 with the remote included.

[ DJI ]

Honeybee Robotics has recently developed a regolith excavation and rock cleaning system for NASA JPL’s PUFFER rovers. This system, called POCCET (PUFFER-Oriented Compact Cleaning and Excavation Tool), uses compressed gas to perform all excavation and cleaning tasks. Weighing less than 300 grams with potential for further mass reduction, POCCET can be used not just on the Moon, but on other Solar System bodies such as asteroids, comets, and even Mars.

[ Honeybee Robotics ]

DJI’s 2019 RoboMaster tournament, which takes place this month in Shenzen, looks like it’ll be fun to watch, with a plenty of action and rules that are easy to understand.

[ RoboMaster ]

Robots and baked goods are an automatic Video Friday inclusion.

Wow I want a cupcake right now.

[ Soft Robotics ]

The ICRA 2019 Best Paper Award went to Michelle A. Lee at Stanford, for “Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks.”

The ICRA video is here, and you can find the paper at the link below.

[ Paper ] via [ RoboHub ]

Cobalt Robotics put out a bunch of marketing-y videos this week, but this one reasonably interesting, even if you’re familiar with what they’re doing over there.

[ Cobalt Robotics ]

RightHand Robotics launched RightPick2 with a gala event which looked like fun as long as you were really, really in to robots.

[ RightHand Robotics ]

Thanks Jeff!

This video presents a framework for whole-body control applied to the assistive robotic system EDAN. We show how the proposed method can be used for a task like open, pass through and close a door. Also, we show the efficiency of the whole-body coordination with controlling the end-effector with respect to a fixed reference. Additionally, showing how easy the system can be manually manoeuvred by direct interaction with the end-effector, without the need for an extra input device.

[ DLR ]

You’ll probably need to turn on auto-translated subtitles for most of this, but it’s worth it for the adorable little single-seat robotic car designed to help people get around airports.

[ ZMP ]

In this week’s episode of Robots in Depth, Per speaks with Gonzalo Rey from Moog about their fancy 3D printed integrated hydraulic actuators.

Gonzalo talks about how Moog got started with hydraulic control,taking part in the space program and early robotics development. He shares how Moog’s technology is used in fly-by-wire systems in aircraft and in flow control in deep space probes. They have even reached Mars.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435640 Video Friday: This Wearable Robotic Tail ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Lakshmi Nair from Georgia Tech describes some fascinating research towards robots that can create their own tools, as presented at ICRA this year:

Using a novel capability to reason about shape, function, and attachment of unrelated parts, researchers have for the first time successfully trained an intelligent agent to create basic tools by combining objects.

The breakthrough comes from Georgia Tech’s Robot Autonomy and Interactive Learning (RAIL) research lab and is a significant step toward enabling intelligent agents to devise more advanced tools that could prove useful in hazardous – and potentially life-threatening – environments.

[ Lakshmi Nair ]

Victor Barasuol, from the Dynamic Legged Systems Lab at IIT, wrote in to share some new research on their HyQ quadruped that enables sensorless shin collision detection. This helps the robot navigate unstructured environments, and also mitigates all those painful shin strikes, because ouch.

This will be presented later this month at the International Conference on Climbing and Walking Robots (CLAWAR) in Kuala Lumpur, Malaysia.

[ IIT ]

Thanks Victor!

You used to have a tail, you know—as an embryo, about a month in to your development. All mammals used to have tails, and now we just have useless tailbones, which don’t help us with balancing even a little bit. BRING BACK THE TAIL!

The tail, created by Junichi Nabeshima, Kouta Minamizawa, and MHD Yamen Saraiji from Keio University’s Graduate School of Media Design, was presented at SIGGRAPH 2019 Emerging Technologies.

[ Paper ] via [ Gizmodo ]

The noises in this video are fantastic.

[ ESA ]

Apparently the industrial revolution wasn’t a thorough enough beatdown of human knitting, because the robots are at it again.

[ MIT CSAIL ]

Skydio’s drones just keep getting more and more impressive. Now if only they’d make one that I can afford…

[ Skydio ]

The only thing more fun than watching robots is watching people react to robots.

[ SEER ]

There aren’t any robots in this video, but it’s robotics-related research, and very soothing to watch.

[ Stanford ]

#autonomousicecreamtricycle

In case it wasn’t clear, which it wasn’t, this is a Roboy project. And if you didn’t understand that first video, you definitely won’t understand this second one:

Whatever that t-shirt is at the end (Roboy in sunglasses puking rainbows…?) I need one.

[ Roboy ]

By adding electronics and computation technology to a simple cane that has been around since ancient times, a team of researchers at Columbia Engineering have transformed it into a 21st century robotic device that can provide light-touch assistance in walking to the aged and others with impaired mobility.

The light-touch robotic cane, called CANINE, acts as a cane-like mobile assistant. The device improves the individual’s proprioception, or self-awareness in space, during walking, which in turn improves stability and balance.

[ ROAR Lab ]

During the second field experiment for DARPA’s OFFensive Swarm-Enabled Tactics (OFFSET) program, which took place at Fort Benning, Georgia, teams of autonomous air and ground robots tested tactics on a mission to isolate an urban objective. Similar to the way a firefighting crew establishes a boundary around a burning building, they first identified locations of interest and then created a perimeter around the focal point.

[ DARPA ]

I think there’s a bit of new footage here of Ghost Robotics’ Vision 60 quadruped walking around without sensors on unstructured terrain.

[ Ghost Robotics ]

If you’re as tired of passenger drone hype as I am, there’s absolutely no need to watch this video of NEC’s latest hover test.

[ AP ]

As researchers teach robots to perform more and more complex tasks, the need for realistic simulation environments is growing. Existing techniques for closing the reality gap by approximating real-world physics often require extensive real world data and/or thousands of simulation samples. This paper presents TuneNet, a new machine learning-based method to directly tune the parameters of one model to match another using an iterative residual tuning technique. TuneNet estimates the parameter difference between two models using a single observation from the target and minimal simulation, allowing rapid, accurate and sample-efficient parameter estimation.

The system can be trained via supervised learning over an auto-generated simulated dataset. We show that TuneNet can perform system identification, even when the true parameter values lie well outside the distribution seen during training, and demonstrate that simulators tuned with TuneNet outperform existing techniques for predicting rigid body motion. Finally, we show that our method can estimate real-world parameter values, allowing a robot to perform sim-to-real task transfer on a dynamic manipulation task unseen during training. We are also making a baseline implementation of our code available online.

[ Paper ]

Here’s an update on what GITAI has been up to with their telepresence astronaut-replacement robot.

[ GITAI ]

Curiosity captured this 360-degree panorama of a location on Mars called “Teal Ridge” on June 18, 2019. This location is part of a larger region the rover has been exploring called the “clay-bearing unit” on the side of Mount Sharp, which is inside Gale Crater. The scene is presented with a color adjustment that approximates white balancing to resemble how the rocks and sand would appear under daytime lighting conditions on Earth.

[ MSL ]

Some updates (in English) on ROS from ROSCon France. The first is a keynote from Brian Gerkey:

And this second video is from Omri Ben-Bassat, about how to keep your Anki Vector alive using ROS:

All of the ROSCon FR talks are available on Vimeo.

[ ROSCon FR ] Continue reading

Posted in Human Robots