Tag Archives: united

#437745 Video Friday: Japan’s Giant Gundam ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Co., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

It’s coming together—literally! Japan’s giant Gundam appears nearly finished and ready for its first steps. In a recent video, Gundam Factory Yokohama, which is constructing the 18-meter-tall, 25-ton walking robot, provided an update on the project. The video shows the Gundam getting its head attached—after being blessed by Shinto priests.

In the video update, they say the project is “steadily progressing” and further details will be announced around the end of September.

[ Gundam Factory Yokohama ]

Creating robots with emotional personalities will transform the usability of robots in the real-world. As previous emotive social robots are mostly based on statically stable robots whose mobility is limited, this work develops an animation to real-world pipeline that enables dynamic bipedal robots that can twist, wiggle, and walk to behave with emotions.

So that’s where Cassie’s eyes go.

[ Berkeley ]

Now that the DARPA SubT Cave Circuit is all virtual, here’s a good reminder of how it’ll work.

[ SubT ]

Since July 20, anyone 11+ years of age must wear a mask in closed public places in France. This measure also is highly recommended in many European, African and Persian Gulf countries. To support businesses and public places, SoftBank Robotics Europe unveils a new feature with Pepper: AI Face Mask Detection.

[ Softbank ]

University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.

[ University of Michigan ]

Suzumori Endo Lab, Tokyo Tech has created various types of IPMC robots. Those robots are fabricated by novel 3D fabrication methods.

[ Suzimori Endo Lab ]

The most explode-y of drones manages not to explode this time.

[ SpaceX ]

At Amazon, we’re constantly innovating to support our employees, customers, and communities as effectively as possible. As our fulfillment and delivery teams have been hard at work supplying customers with items during the pandemic, Amazon’s robotics team has been working behind the scenes to re-engineer bots and processes to increase safety in our fulfillment centers.

While some folks are able to do their jobs at home with just a laptop and internet connection, it’s not that simple for other employees at Amazon, including those who spend their days building and testing robots. Some engineers have turned their homes into R&D labs to continue building these new technologies to better serve our customers and employees. Their creativity and resourcefulness to keep our important programs going is inspiring.

[ Amazon ]

Australian Army soldiers from 2nd/14th Light Horse Regiment (Queensland Mounted Infantry) demonstrated the PD-100 Black Hornet Nano unmanned aircraft vehicle during a training exercise at Shoalwater Bay Training Area, Queensland, on 4 May 2018.

This robot has been around for a long time—maybe 10 years or more? It makes you wonder what the next generation will look like, and if they can manage to make it even smaller.

[ FLIR ]

Event-based cameras are bio-inspired vision sensors whose pixels work independently from each other and respond asynchronously to brightness changes, with microsecond resolution. Their advantages make it possible to tackle challenging scenarios in robotics, such as high-speed and high dynamic range scenes. We present a solution to the problem of visual odometry from the data acquired by a stereo event-based camera rig.

[ Paper ] via [ HKUST ]

Emys can help keep kindergarteners sitting still for a long time, which is not small feat!

[ Emys ]

Introducing the RoboMaster EP Core, an advanced educational robot that was built to take learning to the next level and provides an all-in-one solution for STEAM-based classrooms everywhere, offering AI and programming projects for students of all ages and experience levels.

[ DJI ]

This Dutch food company Heemskerk uses ABB robots to automate their order picking. Their new solution reduces the amount of time the fresh produce spends in the supply chain, extending its shelf life, minimizing wastage, and creating a more sustainable solution for the fresh food industry.

[ ABB ]

This week’s episode of Pass the Torque features NASA’s Satellite Servicing Projects Division (NExIS) Robotics Engineer, Zakiya Tomlinson.

[ NASA ]

Massachusetts has been challenging Silicon Valley as the robotics capital of the United States. They’re not winning, yet. But they’re catching up.

[ MassTech ]

San Francisco-based Formant is letting anyone remotely take its Spot robot for a walk. Watch The Robot Report editors, based in Boston, take Spot for a walk around Golden Gate Park.

You can apply for this experience through Formant at the link below.

[ Formant ] via [ TRR ]

Thanks Steve!

An Institute for Advanced Study Seminar on “Theoretical Machine Learning,” featuring Peter Stone from UT Austin.

For autonomous robots to operate in the open, dynamically changing world, they will need to be able to learn a robust set of skills from relatively little experience. This talk begins by introducing Grounded Simulation Learning as a way to bridge the so-called reality gap between simulators and the real world in order to enable transfer learning from simulation to a real robot. It then introduces two new algorithms for imitation learning from observation that enable a robot to mimic demonstrated skills from state-only trajectories, without any knowledge of the actions selected by the demonstrator. Connections to theoretical advances in off-policy reinforcement learning will be highlighted throughout.

[ IAS ] Continue reading

Posted in Human Robots

#437645 How Robots Became Essential Workers in ...

Photo: Sivaram V/Reuters

A robot, developed by Asimov Robotics to spread awareness about the coronavirus, holds a tray with face masks and sanitizer.

As the coronavirus emergency exploded into a full-blown pandemic in early 2020, forcing countless businesses to shutter, robot-making companies found themselves in an unusual situation: Many saw a surge in orders. Robots don’t need masks, can be easily disinfected, and, of course, they don’t get sick.

An army of automatons has since been deployed all over the world to help with the crisis: They are monitoring patients, sanitizing hospitals, making deliveries, and helping frontline medical workers reduce their exposure to the virus. Not all robots operate autonomously—many, in fact, require direct human supervision, and most are limited to simple, repetitive tasks. But robot makers say the experience they’ve gained during this trial-by-fire deployment will make their future machines smarter and more capable. These photos illustrate how robots are helping us fight this pandemic—and how they might be able to assist with the next one.

DROID TEAM

Photo: Clement Uwiringiyimana/Reuters

A squad of robots serves as the first line of defense against person-to-person transmission at a medical center in Kigali, Rwanda. Patients walking into the facility get their temperature checked by the machines, which are equipped with thermal cameras atop their heads. Developed by UBTech Robotics, in China, the robots also use their distinctive appearance—they resemble characters out of a Star Wars movie—to get people’s attention and remind them to wash their hands and wear masks.

Photo: Clement Uwiringiyimana/Reuters

SAY “AAH”
To speed up COVID-19 testing, a team of Danish doctors and engineers at the University of Southern Denmark and at Lifeline Robotics is developing a fully automated swab robot. It uses computer vision and machine learning to identify the perfect target spot inside the person’s throat; then a robotic arm with a long swab reaches in to collect the sample—all done with a swiftness and consistency that humans can’t match. In this photo, one of the creators, Esben Østergaard, puts his neck on the line to demonstrate that the robot is safe.

Photo: University of Southern Denmark

GERM ZAPPER
After six of its doctors became infected with the coronavirus, the Sassarese hospital in Sardinia, Italy, tightened its safety measures. It also brought in the robots. The machines, developed by UVD Robots, use lidar to navigate autonomously. Each bot carries an array of powerful short-wavelength ultraviolet-C lights that destroy the genetic material of viruses and other pathogens after a few minutes of exposure. Now there is a spike in demand for UV-disinfection robots as hospitals worldwide deploy them to sterilize intensive care units and operating theaters.

Photo: UVD Robots

RUNNING ERRANDS

In medical facilities, an ideal role for robots is taking over repetitive chores so that nurses and physicians can spend their time doing more important tasks. At Shenzhen Third People’s Hospital, in China, a robot called Aimbot drives down the hallways, enforcing face-mask and social-distancing rules and spraying disinfectant. At a hospital near Austin, Texas, a humanoid robot developed by Diligent Robotics fetches supplies and brings them to patients’ rooms. It repeats this task day and night, tirelessly, allowing the hospital staff to spend more time interacting with patients.

Photos, left: Diligent Robotics; Right: UBTech Robotics

THE DOCTOR IS IN
Nurses and doctors at Circolo Hospital in Varese, in northern Italy—the country’s hardest-hit region—use robots as their avatars, enabling them to check on their patients around the clock while minimizing exposure and conserving protective equipment. The robots, developed by Chinese firm Sanbot, are equipped with cameras and microphones and can also access patient data like blood oxygen levels. Telepresence robots, originally designed for offices, are becoming an invaluable tool for medical workers treating highly infectious diseases like COVID-19, reducing the risk that they’ll contract the pathogen they’re fighting against.

Photo: Miguel Medina/AFP/Getty Images

HELP FROM ABOVE

Photo: Zipline

Authorities in several countries attempted to use drones to enforce lockdowns and social-distancing rules, but the effectiveness of such measures remains unclear. A better use of drones was for making deliveries. In the United States, startup Zipline deployed its fixed-wing autonomous aircraft to connect two medical facilities 17 kilometers apart. For the staff at the Huntersville Medical Center, in North Carolina, masks, gowns, and gloves literally fell from the skies. The hope is that drones like Zipline’s will one day be able to deliver other kinds of critical materials, transport test samples, and distribute drugs and vaccines.

Photos: Zipline

SPECIAL DELIVERY
It’s not quite a robot takeover, but the streets and sidewalks of dozens of cities around the world have seen a proliferation of hurrying wheeled machines. Delivery robots are now in high demand as online orders continue to skyrocket.

In Hamburg, the six-wheeled robots developed by Starship Technologies navigate using cameras, GPS, and radar to bring groceries to customers.

Photo: Christian Charisius/Picture Alliance/Getty Images

In Medellín, Colombia, a startup called Rappi deployed a fleet of robots, built by Kiwibot, to deliver takeout to people in lockdown.

Photo: Joaquin Sarmiento/AFP/Getty Images

China’s JD.com, one of the country’s largest e-commerce companies, is using 20 robots to transport goods in Changsha, Hunan province; each vehicle has 22 separate compartments, which customers unlock using face authentication.

Photos: TPG/Getty Images

LIFE THROUGH ROBOTS
Robots can’t replace real human interaction, of course, but they can help people feel more connected at a time when meetings and other social activities are mostly on hold.

In Ostend, Belgium, ZoraBots brought one of its waist-high robots, equipped with cameras, microphones, and a screen, to a nursing home, allowing residents like Jozef Gouwy to virtually communicate with loved ones despite a ban on in-person visits.

Photo: Yves Herman/Reuters

In Manila, nearly 200 high school students took turns “teleporting” into a tall wheeled robot, developed by the school’s robotics club, to walk on stage during their graduation ceremony.

Photo: Ezra Acayan/Getty Images

And while Japan’s Chiba Zoological Park was temporarily closed due to the pandemic, the zoo used an autonomous robotic vehicle called RakuRo, equipped with 360-degree cameras, to offer virtual tours to children quarantined at home.

Photo: Tomohiro Ohsumi/Getty Images

SENTRY ROBOTS
Offices, stores, and medical centers are adopting robots as enforcers of a new coronavirus code.

At Fortis Hospital in Bangalore, India, a robot called Mitra uses a thermal camera to perform a preliminary screening of patients.

Photo: Manjunath Kiran/AFP/Getty Images

In Tunisia, the police use a tanklike robot to patrol the streets of its capital city, Tunis, verifying that citizens have permission to go out during curfew hours.

Photo: Khaled Nasraoui/Picture Alliance/Getty Images

And in Singapore, the Bishan-Ang Moh Kio Park unleashed a Spot robot dog, developed by Boston Dynamics, to search for social-distancing violators. Spot won’t bark at them but will rather play a recorded message reminding park-goers to keep their distance.

Photo: Roslan Rahman/AFP/Getty Images

This article appears in the October 2020 print issue as “How Robots Became Essential Workers.” Continue reading

Posted in Human Robots

#437554 Ending the COVID-19 Pandemic

Photo: F.J. Jimenez/Getty Images

The approach of a new year is always a time to take stock and be hopeful. This year, though, reflection and hope are more than de rigueur—they’re rejuvenating. We’re coming off a year in which doctors, engineers, and scientists took on the most dire public threat in decades, and in the new year we’ll see the greatest results of those global efforts. COVID-19 vaccines are just months away, and biomedical testing is being revolutionized.

At IEEE Spectrum we focus on the high-tech solutions: Can artificial intelligence (AI) be used to diagnose COVID-19 using cough recordings? Can mathematical modeling determine whether preventive measures against COVID-19 work? Can big data and AI provide accurate pandemic forecasting?

Consider our story “AI Recognizes COVID-19 in the Sound of a Cough,” reported by Megan Scudellari in our Human OS blog. Using a cellphone-recorded cough, machine-learning models can now detect coronavirus with 90 percent accuracy, even in people with no symptoms. It’s a remarkable research milestone. This AI model sifts through hundreds of factors to distinguish the COVID-19 cough from those of bronchitis, whooping cough, and asthma.

But while such high-tech triumphs give us hope, the no-tech solutions are mostly what we have to work with. Soon, as our Numbers Don’t Lie columnist, Vaclav Smil, pointed out in a recent email, we will have near-instantaneous home testing, and we will have an ability to use big data to crunch every move and every outbreak. But we are nowhere near that yet. So let’s use, as he says, some old-fashioned kindergarten epidemiology, the no-tech measures, while we work to get there:

Masks: Wear them. If we all did so, we could cut transmission by two-thirds, perhaps even 80 percent.

Hands: Wash them.

Social distancing: If we could all stay home for two weeks, we could see enormous declines in COVID-19 transmission.

These are all time-tested solutions, proven effective ages ago in countless outbreaks of diseases including typhoid and cholera. They’re inexpensive and easy to prescribe, and the regimens are easy to follow.

The conflict between public health and individual rights and privacy, however, is less easy to resolve. Even during the pandemic of 1918–19, there was widespread resistance to mask wearing and social distancing. Fifty million people died—675,000 in the United States alone. Today, we are up to 240,000 deaths in the United States, and the end is not in sight. Antiflu measures were framed in 1918 as a way to protect the troops fighting in World War I, and people who refused to wear masks were called out as “dangerous slackers.” There was a world war, and yet it was still hard to convince people of the need for even such simple measures.

Personally, I have found the resistance to these easy fixes startling. I wouldn’t want maskless, gloveless doctors taking me through a surgical procedure. Or waltzing in from lunch without washing their hands. I’m sure you wouldn’t, either.

Science-based medicine has been one of the world’s greatest and most fundamental advances. In recent years, it has been turbocharged by breakthroughs in genetics technologies, advanced materials, high-tech diagnostics, and implants and other electronics-based interventions. Such leaps have already saved untold lives, but there’s much more to be done. And there will be many more pandemics ahead for humanity.

< Back to IEEE COVID-19 Resources Continue reading

Posted in Human Robots

#437460 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
A Radical New Technique Lets AI Learn With Practically No Data
Karen Hao | MIT Technology Review
“Shown photos of a horse and a rhino, and told a unicorn is something in between, [children] can recognize the mythical creature in a picture book the first time they see it. …Now a new paper from the University of Waterloo in Ontario suggests that AI models should also be able to do this—a process the researchers call ‘less than one’-shot, or LO-shot, learning.”

FUTURE
Artificial General Intelligence: Are We Close, and Does It Even Make Sense to Try?
Will Douglas Heaven | MIT Technology Review
“A machine that could think like a person has been the guiding vision of AI research since the earliest days—and remains its most divisive idea. …So why is AGI controversial? Why does it matter? And is it a reckless, misleading dream—or the ultimate goal?”

HEALTH
The Race for a Super-Antibody Against the Coronavirus
Apoorva Mandavilli | The New York Times
“Dozens of companies and academic groups are racing to develop antibody therapies. …But some scientists are betting on a dark horse: Prometheus, a ragtag group of scientists who are months behind in the competition—and yet may ultimately deliver the most powerful antibody.”

SPACE
How to Build a Spacecraft to Save the World
Daniel Oberhaus | Wired
“The goal of the Double Asteroid Redirection Test, or DART, is to slam the [spacecraft] into a small asteroid orbiting a larger asteroid 7 million miles from Earth. …It should be able to change the asteroid’s orbit just enough to be detectable from Earth, demonstrating that this kind of strike could nudge an oncoming threat out of Earth’s way. Beyond that, everything is just an educated guess, which is exactly why NASA needs to punch an asteroid with a robot.”

TRANSPORTATION
Inside Gravity’s Daring Mission to Make Jetpacks a Reality
Oliver Franklin-Wallis | Wired
“The first time someone flies a jetpack, a curious thing happens: just as their body leaves the ground, their legs start to flail. …It’s as if the vestibular system can’t quite believe what’s happening. This isn’t natural. Then suddenly, thrust exceeds weight, and—they’re aloft. …It’s that moment, lift-off, that has given jetpacks an enduring appeal for over a century.”

FUTURE OF FOOD
Inside Singapore’s Huge Bet on Vertical Farming
Megan Tatum | MIT Technology Review
“…to cram all [of Singapore’s] gleaming towers and nearly 6 million people into a land mass half the size of Los Angeles, it has sacrificed many things, including food production. Farms make up no more than 1% of its total land (in the United States it’s 40%), forcing the small city-state to shell out around $10 billion each year importing 90% of its food. Here was an example of technology that could change all that.”

COMPUTING
The Effort to Build the Mathematical Library of the Future
Kevin Hartnett | Quanta
“Digitizing mathematics is a longtime dream. The expected benefits range from the mundane—computers grading students’ homework—to the transcendent: using artificial intelligence to discover new mathematics and find new solutions to old problems.”

Image credit: Kevin Mueller / Unsplash Continue reading

Posted in Human Robots

#437303 The Deck Is Not Rigged: Poker and the ...

Tuomas Sandholm, a computer scientist at Carnegie Mellon University, is not a poker player—or much of a poker fan, in fact—but he is fascinated by the game for much the same reason as the great game theorist John von Neumann before him. Von Neumann, who died in 1957, viewed poker as the perfect model for human decision making, for finding the balance between skill and chance that accompanies our every choice. He saw poker as the ultimate strategic challenge, combining as it does not just the mathematical elements of a game like chess but the uniquely human, psychological angles that are more difficult to model precisely—a view shared years later by Sandholm in his research with artificial intelligence.

“Poker is the main benchmark and challenge program for games of imperfect information,” Sandholm told me on a warm spring afternoon in 2018, when we met in his offices in Pittsburgh. The game, it turns out, has become the gold standard for developing artificial intelligence.

Tall and thin, with wire-frame glasses and neat brow hair framing a friendly face, Sandholm is behind the creation of three computer programs designed to test their mettle against human poker players: Claudico, Libratus, and most recently, Pluribus. (When we met, Libratus was still a toddler and Pluribus didn’t yet exist.) The goal isn’t to solve poker, as such, but to create algorithms whose decision making prowess in poker’s world of imperfect information and stochastic situations—situations that are randomly determined and unable to be predicted—can then be applied to other stochastic realms, like the military, business, government, cybersecurity, even health care.

While the first program, Claudico, was summarily beaten by human poker players—“one broke-ass robot,” an observer called it—Libratus has triumphed in a series of one-on-one, or heads-up, matches against some of the best online players in the United States.

Libratus relies on three main modules. The first involves a basic blueprint strategy for the whole game, allowing it to reach a much faster equilibrium than its predecessor. It includes an algorithm called the Monte Carlo Counterfactual Regret Minimization, which evaluates all future actions to figure out which one would cause the least amount of regret. Regret, of course, is a human emotion. Regret for a computer simply means realizing that an action that wasn’t chosen would have yielded a better outcome than one that was. “Intuitively, regret represents how much the AI regrets having not chosen that action in the past,” says Sandholm. The higher the regret, the higher the chance of choosing that action next time.

It’s a useful way of thinking—but one that is incredibly difficult for the human mind to implement. We are notoriously bad at anticipating our future emotions. How much will we regret doing something? How much will we regret not doing something else? For us, it’s an emotionally laden calculus, and we typically fail to apply it in quite the right way. For a computer, it’s all about the computation of values. What does it regret not doing the most, the thing that would have yielded the highest possible expected value?

The second module is a sub-game solver that takes into account the mistakes the opponent has made so far and accounts for every hand she could possibly have. And finally, there is a self-improver. This is the area where data and machine learning come into play. It’s dangerous to try to exploit your opponent—it opens you up to the risk that you’ll get exploited right back, especially if you’re a computer program and your opponent is human. So instead of attempting to do that, the self-improver lets the opponent’s actions inform the areas where the program should focus. “That lets the opponent’s actions tell us where [they] think they’ve found holes in our strategy,” Sandholm explained. This allows the algorithm to develop a blueprint strategy to patch those holes.

It’s a very human-like adaptation, if you think about it. I’m not going to try to outmaneuver you head on. Instead, I’m going to see how you’re trying to outmaneuver me and respond accordingly. Sun-Tzu would surely approve. Watch how you’re perceived, not how you perceive yourself—because in the end, you’re playing against those who are doing the perceiving, and their opinion, right or not, is the only one that matters when you craft your strategy. Overnight, the algorithm patches up its overall approach according to the resulting analysis.

There’s one final thing Libratus is able to do: play in situations with unknown probabilities. There’s a concept in game theory known as the trembling hand: There are branches of the game tree that, under an optimal strategy, one should theoretically never get to; but with some probability, your all-too-human opponent’s hand trembles, they take a wrong action, and you’re suddenly in a totally unmapped part of the game. Before, that would spell disaster for the computer: An unmapped part of the tree means the program no longer knows how to respond. Now, there’s a contingency plan.

Of course, no algorithm is perfect. When Libratus is playing poker, it’s essentially working in a zero-sum environment. It wins, the opponent loses. The opponent wins, it loses. But while some real-life interactions really are zero-sum—cyber warfare comes to mind—many others are not nearly as straightforward: My win does not necessarily mean your loss. The pie is not fixed, and our interactions may be more positive-sum than not.

What’s more, real-life applications have to contend with something that a poker algorithm does not: the weights that are assigned to different elements of a decision. In poker, this is a simple value-maximizing process. But what is value in the human realm? Sandholm had to contend with this before, when he helped craft the world’s first kidney exchange. Do you want to be more efficient, giving the maximum number of kidneys as quickly as possible—or more fair, which may come at a cost to efficiency? Do you want as many lives as possible saved—or do some take priority at the cost of reaching more? Is there a preference for the length of the wait until a transplant? Do kids get preference? And on and on. It’s essential, Sandholm says, to separate means and the ends. To figure out the ends, a human has to decide what the goal is.

“The world will ultimately become a lot safer with the help of algorithms like Libratus,” Sandholm told me. I wasn’t sure what he meant. The last thing that most people would do is call poker, with its competition, its winners and losers, its quest to gain the maximum edge over your opponent, a haven of safety.

“Logic is good, and the AI is much better at strategic reasoning than humans can ever be,” he explained. “It’s taking out irrationality, emotionality. And it’s fairer. If you have an AI on your side, it can lift non-experts to the level of experts. Naïve negotiators will suddenly have a better weapon. We can start to close off the digital divide.”

It was an optimistic note to end on—a zero-sum, competitive game yielding a more ultimately fair and rational world.

I wanted to learn more, to see if it was really possible that mathematics and algorithms could ultimately be the future of more human, more psychological interactions. And so, later that day, I accompanied Nick Nystrom, the chief scientist of the Pittsburgh Supercomputing Center—the place that runs all of Sandholm’s poker-AI programs—to the actual processing center that make undertakings like Libratus possible.

A half-hour drive found us in a parking lot by a large glass building. I’d expected something more futuristic, not the same square, corporate glass squares I’ve seen countless times before. The inside, however, was more promising. First the security checkpoint. Then the ride in the elevator — down, not up, to roughly three stories below ground, where we found ourselves in a maze of corridors with card readers at every juncture to make sure you don’t slip through undetected. A red-lit panel formed the final barrier, leading to a small sliver of space between two sets of doors. I could hear a loud hum coming from the far side.

“Let me tell you what you’re going to see before we walk in,” Nystrom told me. “Once we get inside, it will be too loud to hear.”

I was about to witness the heart of the supercomputing center: 27 large containers, in neat rows, each housing multiple processors with speeds and abilities too great for my mind to wrap around. Inside, the temperature is by turns arctic and tropic, so-called “cold” rows alternating with “hot”—fans operate around the clock to cool the processors as they churn through millions of giga, mega, tera, peta and other ever-increasing scales of data bytes. In the cool rows, robotic-looking lights blink green and blue in orderly progression. In the hot rows, a jumble of multicolored wires crisscrosses in tangled skeins.

In the corners stood machines that had outlived their heyday. There was Sherlock, an old Cray model, that warmed my heart. There was a sad nameless computer, whose anonymity was partially compensated for by the Warhol soup cans adorning its cage (an homage to Warhol’s Pittsburghian origins).

And where does Libratus live, I asked? Which of these computers is Bridges, the computer that runs the AI Sandholm and I had been discussing?

Bridges, it turned out, isn’t a single computer. It’s a system with processing power beyond comprehension. It takes over two and a half petabytes to run Libratus. A single petabyte is a million gigabytes: You could watch over 13 years of HD video, store 10 billion photos, catalog the contents of the entire Library of Congress word for word. That’s a whole lot of computing power. And that’s only to succeed at heads-up poker, in limited circumstances.

Yet despite the breathtaking computing power at its disposal, Libratus is still severely limited. Yes, it beat its opponents where Claudico failed. But the poker professionals weren’t allowed to use many of the tools of their trade, including the opponent analysis software that they depend on in actual online games. And humans tire. Libratus can churn for a two-week marathon, where the human mind falters.

But there’s still much it can’t do: play more opponents, play live, or win every time. There’s more humanity in poker than Libratus has yet conquered. “There’s this belief that it’s all about statistics and correlations. And we actually don’t believe that,” Nystrom explained as we left Bridges behind. “Once in a while correlations are good, but in general, they can also be really misleading.”

Two years later, the Sandholm lab will produce Pluribus. Pluribus will be able to play against five players—and will run on a single computer. Much of the human edge will have evaporated in a short, very short time. The algorithms have improved, as have the computers. AI, it seems, has gained by leaps and bounds.

So does that mean that, ultimately, the algorithmic can indeed beat out the human, that computation can untangle the web of human interaction by discerning “the little tactics of deception, of asking yourself what is the other man going to think I mean to do,” as von Neumann put it?

Long before I’d spoken to Sandholm, I’d met Kevin Slavin, a polymath of sorts whose past careers have including founding a game design company and an interactive art space and launching the Playful Systems group at MIT’s Media Lab. Slavin has a decidedly different view from the creators of Pluribus. “On the one hand, [von Neumann] was a genius,” Kevin Slavin reflects. “But the presumptuousness of it.”

Slavin is firmly on the side of the gambler, who recognizes uncertainty for what it is and thus is able to take calculated risks when necessary, all the while tampering confidence at the outcome. The most you can do is put yourself in the path of luck—but to think you can guess with certainty the actual outcome is a presumptuousness the true poker player foregoes. For Slavin, the wonder of computers is “That they can generate this fabulous, complex randomness.” His opinion of the algorithmic assaults on chance? “This is their moment,” he said. “But it’s the exact opposite of what’s really beautiful about a computer, which is that it can do something that’s actually unpredictable. That, to me, is the magic.”

Will they actually succeed in making the unpredictable predictable, though? That’s what I want to know. Because everything I’ve seen tells me that absolute success is impossible. The deck is not rigged.

“It’s an unbelievable amount of work to get there. What do you get at the end? Let’s say they’re successful. Then we live in a world where there’s no God, agency, or luck,” Slavin responded.

“I don’t want to live there,’’ he added “I just don’t want to live there.”

Luckily, it seems that for now, he won’t have to. There are more things in life than are yet written in the algorithms. We have no reliable lie detection software—whether in the face, the skin, or the brain. In a recent test of bluffing in poker, computer face recognition failed miserably. We can get at discomfort, but we can’t get at the reasons for that discomfort: lying, fatigue, stress—they all look much the same. And humans, of course, can also mimic stress where none exists, complicating the picture even further.

Pluribus may turn out to be powerful, but von Neumann’s challenge still stands: The true nature of games, the most human of the human, remains to be conquered.

This article was originally published on Undark. Read the original article.

Image Credit: José Pablo Iglesias / Unsplash Continue reading

Posted in Human Robots