Tag Archives: serious

#439100 Video Friday: Robotic Eyeball Camera

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
RoboCup 2021 – June 22-28, 2021 – [Online Event]
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

What if seeing devices looked like us? Eyecam is a prototype exploring the potential future design of sensing devices. Eyecam is a webcam shaped like a human eye that can see, blink, look around and observe us.

And it's open source, so you can build your own!

[ Eyecam ]

Looks like Festo will be turning some of its bionic robots into educational kits, which is a pretty cool idea.

[ Bionics4Education ]

Underwater soft robots are challenging to model and control because of their high degrees of freedom and their intricate coupling with water. In this paper, we present a method that leverages the recent development in differentiable simulation coupled with a differentiable, analytical hydrodynamic model to assist with the modeling and control of an underwater soft robot. We apply this method to Starfish, a customized soft robot design that is easy to fabricate and intuitive to manipulate.

[ MIT CSAIL ]

Rainbow Robotics, the company who made HUBO, has a new collaborative robot arm.

[ Rainbow Robotics ]

Thanks Fan!

We develop an integrated robotic platform for advanced collaborative robots and demonstrates an application of multiple robots collaboratively transporting an object to different positions in a factory environment. The proposed platform integrates a drone, a mobile manipulator robot, and a dual-arm robot to work autonomously, while also collaborating with a human worker. The platform also demonstrates the potential of a novel manufacturing process, which incorporates adaptive and collaborative intelligence to improve the efficiency of mass customization for the factory of the future.

[ Paper ]

Thanks Poramate!

In Sevastopol State University the team of the Laboratory of Underwater Robotics and Control Systems and Research and Production Association “Android Technika” performed tests of an underwater anropomorphic manipulator robot.

[ Sevastopol State ]

Thanks Fan!

Taiwanese company TCI Gene created a COVID test system based on their fully automated and enclosed gene testing machine QVS-96S. The system includes two ABB robots and carries out 1800 tests per day, operating 24/7. Every hour 96 virus samples tests are made with an accuracy of 99.99%.

[ ABB ]

A short video showing how a Halodi Robotics can be used in a commercial guarding application.

[ Halodi ]

During the past five years, under the NASA Early Space Innovations program, we have been developing new design optimization methods for underactuated robot hands, aiming to achieve versatile manipulation in highly constrained environments. We have prototyped hands for NASA’s Astrobee robot, an in-orbit assistive free flyer for the International Space Station.

[ ROAM Lab ]

The new, improved OTTO 1500 is a workhorse AMR designed to move heavy payloads through demanding environments faster than any other AMR on the market, with zero compromise to safety.

[ ROAM Lab ]

Very, very high performance sensing and actuation to pull this off.

[ Ishikawa Group ]

We introduce a conversational social robot designed for long-term in-home use to help with loneliness. We present a novel robot behavior design to have simple self-reflection conversations with people to improve wellness, while still being feasible, deployable, and safe.

[ HCI Lab ]

We are one of the 5 winners of the Start-up Challenge. This video illustrates what we achieved during the Swisscom 5G exploration week. Our proof-of-concept tele-excavation system is composed of a Menzi Muck M545 walking excavator automated & customized by Robotic Systems Lab and IBEX motion platform as the operator station. The operator and remote machine are connected for the first time via a 5G network infrastructure which was brought to our test field by Swisscom.

[ RSL ]

This video shows LOLA balancing on different terrain when being pushed in different directions. The robot is technically blind, not using any camera-based or prior information on the terrain (hard ground is assumed).

[ TUM ]

Autonomous driving when you cannot see the road at all because it's buried in snow is some serious autonomous driving.

[ Norlab ]

A hierarchical and robust framework for learning bipedal locomotion is presented and successfully implemented on the 3D biped robot Digit. The feasibility of the method is demonstrated by successfully transferring the learned policy in simulation to the Digit robot hardware, realizing sustained walking gaits under external force disturbances and challenging terrains not included during the training process.

[ OSU ]

This is a video summary of the Center for Robot-Assisted Search and Rescue's deployments under the direction of emergency response agencies to more than 30 disasters in five countries from 2001 (9/11 World Trade Center) to 2018 (Hurricane Michael). It includes the first use of ground robots for a disaster (WTC, 2001), the first use of small unmanned aerial systems (Hurricane Katrina 2005), and the first use of water surface vehicles (Hurricane Wilma, 2005).

[ CRASAR ]

In March, a team from the Oxford Robotics Institute collected a week of epic off-road driving data, as part of the Sense-Assess-eXplain (SAX) project.

[ Oxford Robotics ]

As a part of the AAAI 2021 Spring Symposium Series, HEBI Robotics was invited to present an Industry Talk on the symposium's topic: Machine Learning for Mobile Robot Navigation in the Wild. Included in this presentation was a short case study on one of our upcoming mobile robots that is being designed to successfully navigate unstructured environments where today's robots struggle.

[ HEBI Robotics ]

Thanks Hardik!

This Lockheed Martin Robotics Seminar is from Chad Jenkins at the University of Michigan, on “Semantic Robot Programming… and Maybe Making the World a Better Place.”

I will present our efforts towards accessible and general methods of robot programming from the demonstrations of human users. Our recent work has focused on Semantic Robot Programming (SRP), a declarative paradigm for robot programming by demonstration that builds on semantic mapping. In contrast to procedural methods for motion imitation in configuration space, SRP is suited to generalize user demonstrations of goal scenes in workspace, such as for manipulation in cluttered environments. SRP extends our efforts to crowdsource robot learning from demonstration at scale through messaging protocols suited to web/cloud robotics. With such scaling of robotics in mind, prospects for cultivating both equal opportunity and technological excellence will be discussed in the context of broadening and strengthening Title IX and Title VI.

[ UMD ] Continue reading

Posted in Human Robots

#438606 Hyundai Motor Group Introduces Two New ...

Over the past few weeks, we’ve seen a couple of new robots from Hyundai Motor Group. This is a couple more robots than I think I’ve seen from Hyundai Motor Group, like, ever. We’re particularly interested in them right now mostly because Hyundai Motor Group are the new owners of Boston Dynamics, and so far, these robots represent one of the most explicit indications we’ve got about exactly what Hyundai Motor Group wants their robots to be doing.

We know it would be a mistake to read too much into these new announcements, but we can’t help reading something into them, right? So let’s take a look at what Hyundai Motor Group has been up to recently. This first robot is DAL-e, what HMG is calling an “Advanced Humanoid Robot.”

According to Hyundai, DAL-e is “designed to pioneer the future of automated customer services,” and is equipped with “state-of-the-art artificial intelligence technology for facial recognition as well as an automatic communication system based on a language-comprehension platform.” You’ll find it in car showrooms, but only in Seoul, for now.

We don’t normally write about robots like these because they tend not to represent much that’s especially new or interesting in terms of robotic technology, capabilities, or commercial potential. There’s certainly nothing wrong with DAL-e—it’s moderately cute and appears to be moderately functional. We’ve seen other platforms (like Pepper) take on similar roles, and our impression is that the long-term cost effectiveness of these greeter robots tends to be somewhat limited. And unless there’s some hidden functionality that we’re not aware of, this robot doesn’t really seem to be pushing the envelope, but we’d love to be wrong about that.

The other new robot, announced yesterday, is TIGER (Transforming Intelligent Ground Excursion Robot). It’s a bit more interesting, although you’ll have to skip ahead about 1:30 in the video to get to it.

We’ve talked about how adding wheels can make legged robots faster and more efficient, but I’m honestly not sure that it works all that well going the other way (adding legs to wheeled robots) because rather than adding a little complexity to get a multi-modal system that you can use much of the time, you’re instead adding a lot of complexity to get a multi-modal system that you’re going to use sometimes.

You could argue, as perhaps Hyundai would, that the multi-modal system is critical to get TIGER to do what they want it to do, which seems to be primarily remote delivery. They mention operating in urban areas as well, where TIGER could use its legs to climb stairs, but I think it would be beat by more traditional wheeled platforms, or even whegged platforms, that are almost as capable while being much simpler and cheaper. For remote delivery, though, legs might be a necessary feature.

That is, if you assume that using a ground-based system is really the best way to go.

The TIGER concept can be integrated with a drone to transport it from place to place, so why not just use the drone to make the remote delivery instead? I guess maybe if you’re dealing with a thick tree canopy, the drone could drop TIGER off in a clearing and the robot could drive to its destination, but now we’re talking about developing a very complex system for a very specific use case. Even though Hyundai has said that they’re going to attempt to commercialize TIGER over the next five years, I think it’ll be tricky for them to successfully do so.

The best part about these robots from Hyundai is that between the two of them, they suggest that the company is serious about developing commercial robots as well as willing to invest in something that seems a little crazy. And you know who else is both of those things? Boston Dynamics. To be clear, it’s almost certain that both of Hyundai’s robots were developed well before the company was even thinking about acquiring Boston Dynamics, so the real question is: Where do these two companies go from here? Continue reading

Posted in Human Robots

#438012 Video Friday: These Robots Have Made 1 ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
Let us know if you have suggestions for next week, and enjoy today's videos.

We're proud to announce Starship Delivery Robots have now completed 1,000,000 autonomous deliveries around the world. We were unsure where the one millionth delivery was going to take place, as there are around 15-20 service areas open globally, all with robots doing deliveries every minute. In the end it took place at Bowling Green, Ohio, to a student called Annika Keeton who is a freshman studying pre-health Biology at BGSU. Annika is now part of Starship’s history!

[ Starship ]

I adore this little DIY walking robot- with modular feet and little dials to let you easily adjust the walking parameters, it's an affordable kit that's way more nuanced than most.

It's called Bakiwi, and it costs €95. A squee cover made from feathers or fur is an extra €17. Here's a more serious look at what it can do:

[ Bakiwi ]

Thanks Oswald!

Savva Morozov, an AeroAstro junior, works on autonomous navigation for the MIT mini cheetah robot and reflects on the value of a crowded Infinite Corridor.

[ MIT ]

The world's most advanced haptic feedback gloves just got a huge upgrade! HaptX Gloves DK2 achieves a level of realism that other haptic devices can't match. Whether you’re training your workforce, designing a new product, or controlling robots from a distance, HaptX Gloves make it feel real.

They're the only gloves with true-contact haptics, with patented technology that displace your skin the same way a real object would. With 133 points of tactile feedback per hand, for full palm and fingertip coverage. HaptX Gloves DK2 feature the industry's most powerful force feedback, ~2X the strength of other force feedback gloves. They're also the most accurate motion tracking gloves, with 30 tracked degrees of freedom, sub-millimeter precision, no perceivable latency, and no occlusion.

[ HaptX ]

Yardroid is an outdoor robot “guided by computer vision and artificial intelligence” that seems like it can do almost everything.

These are a lot of autonomous capabilities, but so far, we've only seen the video. So, best not to get too excited until we know more about how it works.

[ Yardroid ]

Thanks Dan!

Since as far as we know, Pepper can't spread COVID, it had a busy year.

I somehow missed seeing that chimpanzee magic show, but here it is:

[ Simon Pierro ] via [ SoftBank Robotics ]

In spite of the pandemic, Professor Hod Lipson’s Robotics Studio persevered and even thrived— learning to work on global teams, to develop protocols for sharing blueprints and code, and to test, evaluate, and refine their designs remotely. Equipped with a 3D printer and a kit of electronics prototyping equipment, our students engineered bipedal robots that were conceptualized, fabricated, programmed, and endlessly iterated around the globe in bedrooms, kitchens, backyards, and any other makeshift laboratory you can imagine.

[ Hod Lipson ]

Thanks Fan!

We all know how much quadrupeds love ice!

[ Ghost Robotics ]

We took the opportunity of the last storm to put the Warthog in the snow of Université Laval. Enjoy!

[ Norlab ]

They've got a long way to go, but autonomous indoor firefighting drones seem like a fantastic idea.

[ CTU ]

Individual manipulators are limited by their vertical total load capacity. This places a fundamental limit on the weight of loads that a single manipulator can move. Cooperative manipulation with two arms has the potential to increase the net weight capacity of the overall system. However, it is critical that proper load sharing takes place between the two arms. In this work, we outline a method that utilizes mechanical intelligence in the form of a whiffletree.

And your word of the day is whiffletree, which is “a mechanism to distribute force evenly through linkages.”

[ DART Lab ]

Thanks Raymond!

Some highlights of robotic projects at FZI in 2020, all using ROS.

[ FZI ]

Thanks Fan!

iRobot CEO Colin Angle threatens my job by sharing some cool robots.

[ iRobot ]

A fascinating new talk from Henry Evans on robotic caregivers.

[ HRL ]

The ANA Avatar XPRIZE semifinals selection submission for Team AVATRINA. The setting is a mock clinic, with the patient sitting on a wheelchair and nurse having completed an initial intake. Avatar enters the room controlled by operator (Doctor). A rolling tray table with medical supplies (stethoscope, pulse oximeter, digital thermometer, oxygen mask, oxygen tube) is by the patient’s side. Demonstrates head tracking, stereo vision, fine manipulation, bimanual manipulation, safe impedance control, and navigation.

[ Team AVATRINA ]

This five year old talk from Mikell Taylor, who wrote for us a while back and is now at Amazon Robotics, is entitled “Nobody Cares About Your Robot.” For better or worse, it really doesn't sound like it was written five years ago.

Robotics for the consumer market – Mikell Taylor from Scott Handsaker on Vimeo.

[ Mikell Taylor ]

Fall River Community Media presents this wonderful guy talking about his love of antique robot toys.

If you enjoy this kind of slow media, Fall River also has weekly Hot Dogs Cool Cats adoption profiles that are super relaxing to watch.

[ YouTube ] Continue reading

Posted in Human Robots

#437974 China Wants to Be the World’s AI ...

China’s star has been steadily rising for decades. Besides slashing extreme poverty rates from 88 percent to under 2 percent in just 30 years, the country has become a global powerhouse in manufacturing and technology. Its pace of growth may slow due to an aging population, but China is nonetheless one of the world’s biggest players in multiple cutting-edge tech fields.

One of these fields, and perhaps the most significant, is artificial intelligence. The Chinese government announced a plan in 2017 to become the world leader in AI by 2030, and has since poured billions of dollars into AI projects and research across academia, government, and private industry. The government’s venture capital fund is investing over $30 billion in AI; the northeastern city of Tianjin budgeted $16 billion for advancing AI; and a $2 billion AI research park is being built in Beijing.

On top of these huge investments, the government and private companies in China have access to an unprecedented quantity of data, on everything from citizens’ health to their smartphone use. WeChat, a multi-functional app where people can chat, date, send payments, hail rides, read news, and more, gives the CCP full access to user data upon request; as one BBC journalist put it, WeChat “was ahead of the game on the global stage and it has found its way into all corners of people’s existence. It could deliver to the Communist Party a life map of pretty much everybody in this country, citizens and foreigners alike.” And that’s just one (albeit big) source of data.

Many believe these factors are giving China a serious leg up in AI development, even providing enough of a boost that its progress will surpass that of the US.

But there’s more to AI than data, and there’s more to progress than investing billions of dollars. Analyzing China’s potential to become a world leader in AI—or in any technology that requires consistent innovation—from multiple angles provides a more nuanced picture of its strengths and limitations. In a June 2020 article in Foreign Affairs, Oxford fellows Carl Benedikt Frey and Michael Osborne argued that China’s big advantages may not actually be that advantageous in the long run—and its limitations may be very limiting.

Moving the AI Needle
To get an idea of who’s likely to take the lead in AI, it could help to first consider how the technology will advance beyond its current state.

To put it plainly, AI is somewhat stuck at the moment. Algorithms and neural networks continue to achieve new and impressive feats—like DeepMind’s AlphaFold accurately predicting protein structures or OpenAI’s GPT-3 writing convincing articles based on short prompts—but for the most part these systems’ capabilities are still defined as narrow intelligence: completing a specific task for which the system was painstakingly trained on loads of data.

(It’s worth noting here that some have speculated OpenAI’s GPT-3 may be an exception, the first example of machine intelligence that, while not “general,” has surpassed the definition of “narrow”; the algorithm was trained to write text, but ended up being able to translate between languages, write code, autocomplete images, do math, and perform other language-related tasks it wasn’t specifically trained for. However, all of GPT-3’s capabilities are limited to skills it learned in the language domain, whether spoken, written, or programming language).

Both AlphaFold’s and GPT-3’s success was due largely to the massive datasets they were trained on; no revolutionary new training methods or architectures were involved. If all it was going to take to advance AI was a continuation or scaling-up of this paradigm—more input data yields increased capability—China could well have an advantage.

But one of the biggest hurdles AI needs to clear to advance in leaps and bounds rather than baby steps is precisely this reliance on extensive, task-specific data. Other significant challenges include the technology’s fast approach to the limits of current computing power and its immense energy consumption.

Thus, while China’s trove of data may give it an advantage now, it may not be much of a long-term foothold on the climb to AI dominance. It’s useful for building products that incorporate or rely on today’s AI, but not for pushing the needle on how artificially intelligent systems learn. WeChat data on users’ spending habits, for example, would be valuable in building an AI that helps people save money or suggests items they might want to purchase. It will enable (and already has enabled) highly tailored products that will earn their creators and the companies that use them a lot of money.

But data quantity isn’t what’s going to advance AI. As Frey and Osborne put it, “Data efficiency is the holy grail of further progress in artificial intelligence.”

To that end, research teams in academia and private industry are working on ways to make AI less data-hungry. New training methods like one-shot learning and less-than-one-shot learning have begun to emerge, along with myriad efforts to make AI that learns more like the human brain.

While not insignificant, these advancements still fall into the “baby steps” category. No one knows how AI is going to progress beyond these small steps—and that uncertainty, in Frey and Osborne’s opinion, is a major speed bump on China’s fast-track to AI dominance.

How Innovation Happens
A lot of great inventions have happened by accident, and some of the world’s most successful companies started in garages, dorm rooms, or similarly low-budget, nondescript circumstances (including Google, Facebook, Amazon, and Apple, to name a few). Innovation, the authors point out, often happens “through serendipity and recombination, as inventors and entrepreneurs interact and exchange ideas.”

Frey and Osborne argue that although China has great reserves of talent and a history of building on technologies conceived elsewhere, it doesn’t yet have a glowing track record in terms of innovation. They note that of the 100 most-cited patents from 2003 to present, none came from China. Giants Tencent, Alibaba, and Baidu are all wildly successful in the Chinese market, but they’re rooted in technologies or business models that came out of the US and were tweaked for the Chinese population.

“The most innovative societies have always been those that allowed people to pursue controversial ideas,” Frey and Osborne write. China’s heavy censorship of the internet and surveillance of citizens don’t quite encourage the pursuit of controversial ideas. The country’s social credit system rewards people who follow the rules and punishes those who step out of line. Frey adds that top-down execution of problem-solving is effective when the problem at hand is clearly defined—and the next big leaps in AI are not.

It’s debatable how strongly a culture of social conformism can impact technological innovation, and of course there can be exceptions. But a relevant historical example is the Soviet Union, which, despite heavy investment in science and technology that briefly rivaled the US in fields like nuclear energy and space exploration, ended up lagging far behind primarily due to political and cultural factors.

Similarly, China’s focus on computer science in its education system could give it an edge—but, as Frey told me in an email, “The best students are not necessarily the best researchers. Being a good researcher also requires coming up with new ideas.”

Winner Take All?
Beyond the question of whether China will achieve AI dominance is the issue of how it will use the powerful technology. Several of the ways China has already implemented AI could be considered morally questionable, from facial recognition systems used aggressively against ethnic minorities to smart glasses for policemen that can pull up information about whoever the wearer looks at.

This isn’t to say the US would use AI for purely ethical purposes. The military’s Project Maven, for example, used artificially intelligent algorithms to identify insurgent targets in Iraq and Syria, and American law enforcement agencies are also using (mostly unregulated) facial recognition systems.

It’s conceivable that “dominance” in AI won’t go to one country; each nation could meet milestones in different ways, or meet different milestones. Researchers from both countries, at least in the academic sphere, could (and likely will) continue to collaborate and share their work, as they’ve done on many projects to date.

If one country does take the lead, it will certainly see some major advantages as a result. Brookings Institute fellow Indermit Gill goes so far as to say that whoever leads in AI in 2030 will “rule the world” until 2100. But Gill points out that in addition to considering each country’s strengths, we should consider how willing they are to improve upon their weaknesses.

While China leads in investment and the US in innovation, both nations are grappling with huge economic inequalities that could negatively impact technological uptake. “Attitudes toward the social change that accompanies new technologies matter as much as the technologies, pointing to the need for complementary policies that shape the economy and society,” Gill writes.

Will China’s leadership be willing to relax its grip to foster innovation? Will the US business environment be enough to compete with China’s data, investment, and education advantages? And can both countries find a way to distribute technology’s economic benefits more equitably?

Time will tell, but it seems we’ve got our work cut out for us—and China does too.

Image Credit: Adam Birkett on Unsplash Continue reading

Posted in Human Robots

#437892 This Week’s Awesome Tech Stories From ...

ENVIRONMENT
Human-Made Stuff Now Outweighs All Life on Earth
Stephanie Pappas | Scientific American
“Humanity has reached a new milestone in its dominance of the planet: human-made objects may now outweigh all of the living beings on Earth. Roads, houses, shopping malls, fishing vessels, printer paper, coffee mugs, smartphones and all the other infrastructure of daily life now weigh in at approximately 1.1 trillion metric tons—equal to the combined dry weight of all plants, animals, fungi, bacteria, archaea and protists on the planet.”

SPACE
So, It Turns Out SpaceX Is Pretty Good at Rocketing
Eric Berger | Ars Technica
“As the Sun sank toward the South Texas horizon, a fantastical-looking spaceship rose into the reddening sky. It was, in a word, epic. …This was one heck of a test-flight that addressed a number of unknowns about Starship, which is the upper stage of SpaceX’s new launch system and may one day land humans on the Moon, Mars, and beyond.”

ARTIFICIAL INTELLIGENCE
Tiny Four-Bit Computers Are All You Need to Train AI
Karen Hao | MIT Technology Review
“The work…could increase the speed and cut the energy costs needed to train deep learning by more than sevenfold. It could also make training powerful AI models possible on smartphones and other small devices, which would improve privacy by helping to keep personal data on a local device. And it would make the process more accessible to researchers outside big, resource-rich tech companies.”

ENERGY
Did Quantum Scape Just Solve a 40-Year-Old Battery Problem?
Daniel Oberhaus | Wired
“[The properties of solid state batteries] would send…energy density through the roof, enable ultra-fast charging, and would eliminate the risk of battery fires. But for the past 40 years, no one has been able to make a solid-state battery that delivers on this promise—until earlier this year, when a secretive startup called QuantumScape claimed to have solved the problem. Now it has the data to prove it.”

ROBOTICS
Hyundai Buys Boston Dynamics for Nearly $1 Billion. Now What?
Evan Ackerman | IEEE Spectrum
“I hope that Boston Dynamics is unique enough that the kinds of rules that normally apply to robotics companies (or companies in general) can be set aside, at least somewhat, but I also worry that what made Boston Dynamics great was the explicit funding for the kinds of radical ideas that eventually resulted in robots like Atlas and Spot. Can Hyundai continue giving Boston Dynamics the support and freedom that they need to keep doing the kinds of things that have made them legendary? I certainly hope so.”

BIOTECH
CRISPR and Another Genetic Strategy Fix Cell Defects in Two Common Blood Disorders
Jocelyn Kaiser | Science
“It is a double milestone: new evidence that cures are possible for many people born with sickle cell disease and another serious blood disorder, beta-thalassemia, and a first for the genome editor CRISPR. Today, in The New England Journal of Medicine (NEJM) and tomorrow at the American Society of Hematology (ASH) meeting, teams report that two strategies for directly fixing malfunctioning blood cells have dramatically improved the health of a handful of people with these genetic diseases.”

ETHICS
The Dark Side of Big Tech’s Funding for AI Research
Tom Simonite | Wired
“Timnit Gebru’s exit from Google is a powerful reminder of how thoroughly companies dominate the field, with the biggest computers and the most resources. …[Meredith] Whittaker of AI Now says properly probing the societal effects of AI is fundamentally incompatible with corporate labs. ‘That kind of research that looks at the power and politics of AI is and must be inherently adversarial to the firms that are profiting from this technology.’i”

Image credit: Karsten Winegeart / Unsplash Continue reading

Posted in Human Robots