Tag Archives: president

#437345 Moore’s Law Lives: Intel Says Chips ...

If you weren’t already convinced the digital world is taking over, you probably are now.

To keep the economy on life support as people stay home to stem the viral tide, we’ve been forced to digitize interactions at scale (for better and worse). Work, school, events, shopping, food, politics. The companies at the center of the digital universe are now powerhouses of the modern era—worth trillions and nearly impossible to avoid in daily life.

Six decades ago, this world didn’t exist.

A humble microchip in the early 1960s would have boasted a handful of transistors. Now, your laptop or smartphone runs on a chip with billions of transistors. As first described by Moore’s Law, this is possible because the number of transistors on a chip doubled with extreme predictability every two years for decades.

But now progress is faltering as the size of transistors approaches physical limits, and the money and time it takes to squeeze a few more onto a chip are growing. There’ve been many predictions that Moore’s Law is, finally, ending. But, perhaps also predictably, the company whose founder coined Moore’s Law begs to differ.

In a keynote presentation at this year’s Hot Chips conference, Intel’s chief architect, Raja Koduri, laid out a roadmap to increase transistor density—that is, the number of transistors you can fit on a chip—by a factor of 50.

“We firmly believe there is a lot more transistor density to come,” Koduri said. “The vision will play out over time—maybe a decade or more—but it will play out.”

Why the optimism?

Calling the end of Moore’s Law is a bit of a tradition. As Peter Lee, vice president at Microsoft Research, quipped to The Economist a few years ago, “The number of people predicting the death of Moore’s Law doubles every two years.” To date, prophets of doom have been premature, and though the pace is slowing, the industry continues to dodge death with creative engineering.

Koduri believes the trend will continue this decade and outlined the upcoming chip innovations Intel thinks can drive more gains in computing power.

Keeping It Traditional
First, engineers can further shrink today’s transistors. Fin field effect transistors (or FinFET) first hit the scene in the 2010s and have since pushed chip features past 14 and 10 nanometers (or nodes, as such size checkpoints are called). Korduri said FinFET will again triple chip density before it’s exhausted.

The Next Generation
FinFET will hand the torch off to nanowire transistors (also known as gate-all-around transistors).

Here’s how they’ll work. A transistor is made up of three basic components: the source, where current is introduced, the gate and channel, where current selectively flows, and the drain. The gate is like a light switch. It controls how much current flows through the channel. A transistor is “on” when the gate allows current to flow, and it’s off when no current flows. The smaller transistors get, the harder it is to control that current.

FinFET maintained fine control of current by surrounding the channel with a gate on three sides. Nanowire designs kick that up a notch by surrounding the channel with a gate on four sides (hence, gate-all-around). They’ve been in the works for years and are expected around 2025. Koduri said first-generation nanowire transistors will be followed by stacked nanowire transistors, and together, they’ll quadruple transistor density.

Building Up
Growing transistor density won’t only be about shrinking transistors, but also going 3D.

This is akin to how skyscrapers increase a city’s population density by adding more usable space on the same patch of land. Along those lines, Intel recently launched its Foveros chip design. Instead of laying a chip’s various “neighborhoods” next to each other in a 2D silicon sprawl, they’ve stacked them on top of each other like a layer cake. Chip stacking isn’t entirely new, but it’s advancing and being applied to general purpose CPUs, like the chips in your phone and laptop.

Koduri said 3D chip stacking will quadruple transistor density.

A Self-Fulfilling Prophecy
The technologies Koduri outlines are an evolution of the same general technology in use today. That is, we don’t need quantum computing or nanotube transistors to augment or replace silicon chips yet. Rather, as it’s done many times over the years, the chip industry will get creative with the design of its core product to realize gains for another decade.

Last year, veteran chip engineer Jim Keller, who at the time was Intel’s head of silicon engineering but has since left the company, told MIT Technology Review there are over a 100 variables driving Moore’s Law (including 3D architectures and new transistor designs). From the standpoint of pure performance, it’s also about how efficiently software uses all those transistors. Keller suggested that with some clever software tweaks “we could get chips that are a hundred times faster in 10 years.”

But whether Intel’s vision pans out as planned is far from certain.

Intel’s faced challenges recently, taking five years instead of two to move its chips from 14 nanometers to 10 nanometers. After a delay of six months for its 7-nanometer chips, it’s now a year behind schedule and lagging other makers who already offer 7-nanometer chips. This is a key point. Yes, chipmakers continue making progress, but it’s getting harder, more expensive, and timelines are stretching.

The question isn’t if Intel and competitors can cram more transistors onto a chip—which, Intel rival TSMC agrees is clearly possible—it’s how long will it take and at what cost?

That said, demand for more computing power isn’t going anywhere.

Amazon, Microsoft, Alphabet, Apple, and Facebook now make up a whopping 20 percent of the stock market’s total value. By that metric, tech is the most dominant industry in at least 70 years. And new technologies—from artificial intelligence and virtual reality to a proliferation of Internet of Things devices and self-driving cars—will demand better chips.

There’s ample motivation to push computing to its bitter limits and beyond. As is often said, Moore’s Law is a self-fulfilling prophecy, and likely whatever comes after it will be too.

Image credit: Laura Ockel / Unsplash Continue reading

Posted in Human Robots

#437171 Scientists Tap the World’s Most ...

In The Hitchhiker’s Guide to the Galaxy by Douglas Adams, the haughty supercomputer Deep Thought is asked whether it can find the answer to the ultimate question concerning life, the universe, and everything. It replies that, yes, it can do it, but it’s tricky and it’ll have to think about it. When asked how long it will take it replies, “Seven-and-a-half million years. I told you I’d have to think about it.”

Real-life supercomputers are being asked somewhat less expansive questions but tricky ones nonetheless: how to tackle the Covid-19 pandemic. They’re being used in many facets of responding to the disease, including to predict the spread of the virus, to optimize contact tracing, to allocate resources and provide decisions for physicians, to design vaccines and rapid testing tools, and to understand sneezes. And the answers are needed in a rather shorter time frame than Deep Thought was proposing.

The largest number of Covid-19 supercomputing projects involves designing drugs. It’s likely to take several effective drugs to treat the disease. Supercomputers allow researchers to take a rational approach and aim to selectively muzzle proteins that SARS-CoV-2, the virus that causes Covid-19, needs for its life cycle.

The viral genome encodes proteins needed by the virus to infect humans and to replicate. Among these are the infamous spike protein that sniffs out and penetrates its human cellular target, but there are also enzymes and molecular machines that the virus forces its human subjects to produce for it. Finding drugs that can bind to these proteins and stop them from working is a logical way to go.

The Summit supercomputer at Oak Ridge National Laboratory has a peak performance of 200,000 trillion calculations per second—equivalent to about a million laptops. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy, CC BY

I am a molecular biophysicist. My lab, at the Center for Molecular Biophysics at the University of Tennessee and Oak Ridge National Laboratory, uses a supercomputer to discover drugs. We build three-dimensional virtual models of biological molecules like the proteins used by cells and viruses, and simulate how various chemical compounds interact with those proteins. We test thousands of compounds to find the ones that “dock” with a target protein. Those compounds that fit, lock-and-key style, with the protein are potential therapies.

The top-ranked candidates are then tested experimentally to see if they indeed do bind to their targets and, in the case of Covid-19, stop the virus from infecting human cells. The compounds are first tested in cells, then animals, and finally humans. Computational drug discovery with high-performance computing has been important in finding antiviral drugs in the past, such as the anti-HIV drugs that revolutionized AIDS treatment in the 1990s.

World’s Most Powerful Computer
Since the 1990s the power of supercomputers has increased by a factor of a million or so. Summit at Oak Ridge National Laboratory is presently the world’s most powerful supercomputer, and has the combined power of roughly a million laptops. A laptop today has roughly the same power as a supercomputer had 20-30 years ago.

However, in order to gin up speed, supercomputer architectures have become more complicated. They used to consist of single, very powerful chips on which programs would simply run faster. Now they consist of thousands of processors performing massively parallel processing in which many calculations, such as testing the potential of drugs to dock with a pathogen or cell’s proteins, are performed at the same time. Persuading those processors to work together harmoniously is a pain in the neck but means we can quickly try out a lot of chemicals virtually.

Further, researchers use supercomputers to figure out by simulation the different shapes formed by the target binding sites and then virtually dock compounds to each shape. In my lab, that procedure has produced experimentally validated hits—chemicals that work—for each of 16 protein targets that physician-scientists and biochemists have discovered over the past few years. These targets were selected because finding compounds that dock with them could result in drugs for treating different diseases, including chronic kidney disease, prostate cancer, osteoporosis, diabetes, thrombosis and bacterial infections.

Scientists are using supercomputers to find ways to disable the various proteins—including the infamous spike protein (green protrusions)—produced by SARS-CoV-2, the virus responsible for Covid-19. Image credit: Thomas Splettstoesser scistyle.com, CC BY-ND

Billions of Possibilities
So which chemicals are being tested for Covid-19? A first approach is trying out drugs that already exist for other indications and that we have a pretty good idea are reasonably safe. That’s called “repurposing,” and if it works, regulatory approval will be quick.

But repurposing isn’t necessarily being done in the most rational way. One idea researchers are considering is that drugs that work against protein targets of some other virus, such as the flu, hepatitis or Ebola, will automatically work against Covid-19, even when the SARS-CoV-2 protein targets don’t have the same shape.

Our own work has now expanded to about 10 targets on SARS-CoV-2, and we’re also looking at human protein targets for disrupting the virus’s attack on human cells. Top-ranked compounds from our calculations are being tested experimentally for activity against the live virus. Several of these have already been found to be active.The best approach is to check if repurposed compounds will actually bind to their intended target. To that end, my lab published a preliminary report of a supercomputer-driven docking study of a repurposing compound database in mid-February. The study ranked 8,000 compounds in order of how well they bind to the viral spike protein. This paper triggered the establishment of a high-performance computing consortium against our viral enemy, announced by President Trump in March. Several of our top-ranked compounds are now in clinical trials.

Also, we and others are venturing out into the wild world of new drug discovery for Covid-19—looking for compounds that have never been tried as drugs before. Databases of billions of these compounds exist, all of which could probably be synthesized in principle but most of which have never been made. Billion-compound docking is a tailor-made task for massively parallel supercomputing.

Dawn of the Exascale Era
Work will be helped by the arrival of the next big machine at Oak Ridge, called Frontier, planned for next year. Frontier should be about 10 times more powerful than Summit. Frontier will herald the “exascale” supercomputing era, meaning machines capable of 1,000,000,000,000,000,000 calculations per second.

Although some fear supercomputers will take over the world, for the time being, at least, they are humanity’s servants, which means that they do what we tell them to. Different scientists have different ideas about how to calculate which drugs work best—some prefer artificial intelligence, for example—so there’s quite a lot of arguing going on.

Hopefully, scientists armed with the most powerful computers in the world will, sooner rather than later, find the drugs needed to tackle Covid-19. If they do, then their answers will be of more immediate benefit, if less philosophically tantalizing, than the answer to the ultimate question provided by Deep Thought, which was, maddeningly, simply 42.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image credit: NIH/NIAID Continue reading

Posted in Human Robots

#437145 3 Major Materials Science ...

Few recognize the vast implications of materials science.

To build today’s smartphone in the 1980s, it would cost about $110 million, require nearly 200 kilowatts of energy (compared to 2kW per year today), and the device would be 14 meters tall, according to Applied Materials CTO Omkaram Nalamasu.

That’s the power of materials advances. Materials science has democratized smartphones, bringing the technology to the pockets of over 3.5 billion people. But far beyond devices and circuitry, materials science stands at the center of innumerable breakthroughs across energy, future cities, transit, and medicine. And at the forefront of Covid-19, materials scientists are forging ahead with biomaterials, nanotechnology, and other materials research to accelerate a solution.

As the name suggests, materials science is the branch devoted to the discovery and development of new materials. It’s an outgrowth of both physics and chemistry, using the periodic table as its grocery store and the laws of physics as its cookbook.

And today, we are in the middle of a materials science revolution. In this article, we’ll unpack the most important materials advancements happening now.

Let’s dive in.

The Materials Genome Initiative
In June 2011 at Carnegie Mellon University, President Obama announced the Materials Genome Initiative, a nationwide effort to use open source methods and AI to double the pace of innovation in materials science. Obama felt this acceleration was critical to the US’s global competitiveness, and held the key to solving significant challenges in clean energy, national security, and human welfare. And it worked.

By using AI to map the hundreds of millions of different possible combinations of elements—hydrogen, boron, lithium, carbon, etc.—the initiative created an enormous database that allows scientists to play a kind of improv jazz with the periodic table.

This new map of the physical world lets scientists combine elements faster than ever before and is helping them create all sorts of novel elements. And an array of new fabrication tools are further amplifying this process, allowing us to work at altogether new scales and sizes, including the atomic scale, where we’re now building materials one atom at a time.

Biggest Materials Science Breakthroughs
These tools have helped create the metamaterials used in carbon fiber composites for lighter-weight vehicles, advanced alloys for more durable jet engines, and biomaterials to replace human joints. We’re also seeing breakthroughs in energy storage and quantum computing. In robotics, new materials are helping us create the artificial muscles needed for humanoid, soft robots—think Westworld in your world.

Let’s unpack some of the leading materials science breakthroughs of the past decade.

(1) Lithium-ion batteries

The lithium-ion battery, which today powers everything from our smartphones to our autonomous cars, was first proposed in the 1970s. It couldn’t make it to market until the 1990s, and didn’t begin to reach maturity until the past few years.

An exponential technology, these batteries have been dropping in price for three decades, plummeting 90 percent between 1990 and 2010, and 80 percent since. Concurrently, they’ve seen an eleven-fold increase in capacity.

But producing enough of them to meet demand has been an ongoing problem. Tesla has stepped up to the challenge: one of the company’s Gigafactories in Nevada churns out 20 gigawatts of energy storage per year, marking the first time we’ve seen lithium-ion batteries produced at scale.

Musk predicts 100 Gigafactories could store the energy needs of the entire globe. Other companies are moving quickly to integrate this technology as well: Renault is building a home energy storage based on their Zoe batteries, BMW’s 500 i3 battery packs are being integrated into the UK’s national energy grid, and Toyota, Nissan, and Audi have all announced pilot projects.

Lithium-ion batteries will continue to play a major role in renewable energy storage, helping bring down solar and wind energy prices to compete with those of coal and gasoline.

(2) Graphene

Derived from the same graphite found in everyday pencils, graphene is a sheet of carbon just one atom thick. It is nearly weightless, but 200 times stronger than steel. Conducting electricity and dissipating heat faster than any other known substance, this super-material has transformative applications.

Graphene enables sensors, high-performance transistors, and even gel that helps neurons communicate in the spinal cord. Many flexible device screens, drug delivery systems, 3D printers, solar panels, and protective fabric use graphene.

As manufacturing costs decrease, this material has the power to accelerate advancements of all kinds.

(3) Perovskite

Right now, the “conversion efficiency” of the average solar panel—a measure of how much captured sunlight can be turned into electricity—hovers around 16 percent, at a cost of roughly $3 per watt.

Perovskite, a light-sensitive crystal and one of our newer new materials, has the potential to get that up to 66 percent, which would double what silicon panels can muster.

Perovskite’s ingredients are widely available and inexpensive to combine. What do all these factors add up to? Affordable solar energy for everyone.

Materials of the Nano-World
Nanotechnology is the outer edge of materials science, the point where matter manipulation gets nano-small—that’s a million times smaller than an ant, 8,000 times smaller than a red blood cell, and 2.5 times smaller than a strand of DNA.

Nanobots are machines that can be directed to produce more of themselves, or more of whatever else you’d like. And because this takes place at an atomic scale, these nanobots can pull apart any kind of material—soil, water, air—atom by atom, and use these now raw materials to construct just about anything.

Progress has been surprisingly swift in the nano-world, with a bevy of nano-products now on the market. Never want to fold clothes again? Nanoscale additives to fabrics help them resist wrinkling and staining. Don’t do windows? Not a problem! Nano-films make windows self-cleaning, anti-reflective, and capable of conducting electricity. Want to add solar to your house? We’ve got nano-coatings that capture the sun’s energy.

Nanomaterials make lighter automobiles, airplanes, baseball bats, helmets, bicycles, luggage, power tools—the list goes on. Researchers at Harvard built a nanoscale 3D printer capable of producing miniature batteries less than one millimeter wide. And if you don’t like those bulky VR goggles, researchers are now using nanotech to create smart contact lenses with a resolution six times greater than that of today’s smartphones.

And even more is coming. Right now, in medicine, drug delivery nanobots are proving especially useful in fighting cancer. Computing is a stranger story, as a bioengineer at Harvard recently stored 700 terabytes of data in a single gram of DNA.

On the environmental front, scientists can take carbon dioxide from the atmosphere and convert it into super-strong carbon nanofibers for use in manufacturing. If we can do this at scale—powered by solar—a system one-tenth the size of the Sahara Desert could reduce CO2 in the atmosphere to pre-industrial levels in about a decade.

The applications are endless. And coming fast. Over the next decade, the impact of the very, very small is about to get very, very large.

Final Thoughts
With the help of artificial intelligence and quantum computing over the next decade, the discovery of new materials will accelerate exponentially.

And with these new discoveries, customized materials will grow commonplace. Future knee implants will be personalized to meet the exact needs of each body, both in terms of structure and composition.

Though invisible to the naked eye, nanoscale materials will integrate into our everyday lives, seamlessly improving medicine, energy, smartphones, and more.

Ultimately, the path to demonetization and democratization of advanced technologies starts with re-designing materials— the invisible enabler and catalyst. Our future depends on the materials we create.

(Note: This article is an excerpt from The Future Is Faster Than You Think—my new book, just released on January 28th! To get your own copy, click here!)

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2021 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Anand Kumar from Pixabay Continue reading

Posted in Human Robots

#436774 AI Is an Energy-Guzzler. We Need to ...

There is a saying that has emerged among the tech set in recent years: AI is the new electricity. The platitude refers to the disruptive power of artificial intelligence for driving advances in everything from transportation to predicting the weather.

Of course, the computers and data centers that support AI’s complex algorithms are very much dependent on electricity. While that may seem pretty obvious, it may be surprising to learn that AI can be extremely power-hungry, especially when it comes to training the models that enable machines to recognize your face in a photo or for Alexa to understand a voice command.

The scale of the problem is difficult to measure, but there have been some attempts to put hard numbers on the environmental cost.

For instance, one paper published on the open-access repository arXiv claimed that the carbon emissions for training a basic natural language processing (NLP) model—algorithms that process and understand language-based data—are equal to the CO2 produced by the average American lifestyle over two years. A more robust model required the equivalent of about 17 years’ worth of emissions.

The authors noted that about a decade ago, NLP models could do the job on a regular commercial laptop. Today, much more sophisticated AI models use specialized hardware like graphics processing units, or GPUs, a chip technology popularized by Nvidia for gaming that also proved capable of supporting computing tasks for AI.

OpenAI, a nonprofit research organization co-founded by tech prophet and profiteer Elon Musk, said that the computing power “used in the largest AI training runs has been increasing exponentially with a 3.4-month doubling time” since 2012. That’s about the time that GPUs started making their way into AI computing systems.

Getting Smarter About AI Chip Design
While GPUs from Nvidia remain the gold standard in AI hardware today, a number of startups have emerged to challenge the company’s industry dominance. Many are building chipsets designed to work more like the human brain, an area that’s been dubbed neuromorphic computing.

One of the leading companies in this arena is Graphcore, a UK startup that has raised more than $450 million and boasts a valuation of $1.95 billion. The company’s version of the GPU is an IPU, which stands for intelligence processing unit.

To build a computer brain more akin to a human one, the big brains at Graphcore are bypassing the precise but time-consuming number-crunching typical of a conventional microprocessor with one that’s content to get by on less precise arithmetic.

The results are essentially the same, but IPUs get the job done much quicker. Graphcore claimed it was able to train the popular BERT NLP model in just 56 hours, while tripling throughput and reducing latency by 20 percent.

An article in Bloomberg compared the approach to the “human brain shifting from calculating the exact GPS coordinates of a restaurant to just remembering its name and neighborhood.”

Graphcore’s hardware architecture also features more built-in memory processing, boosting efficiency because there’s less need to send as much data back and forth between chips. That’s similar to an approach adopted by a team of researchers in Italy that recently published a paper about a new computing circuit.

The novel circuit uses a device called a memristor that can execute a mathematical function known as a regression in just one operation. The approach attempts to mimic the human brain by processing data directly within the memory.

Daniele Ielmini at Politecnico di Milano, co-author of the Science Advances paper, told Singularity Hub that the main advantage of in-memory computing is the lack of any data movement, which is the main bottleneck of conventional digital computers, as well as the parallel processing of data that enables the intimate interactions among various currents and voltages within the memory array.

Ielmini explained that in-memory computing can have a “tremendous impact on energy efficiency of AI, as it can accelerate very advanced tasks by physical computation within the memory circuit.” He added that such “radical ideas” in hardware design will be needed in order to make a quantum leap in energy efficiency and time.

It’s Not Just a Hardware Problem
The emphasis on designing more efficient chip architecture might suggest that AI’s power hunger is essentially a hardware problem. That’s not the case, Ielmini noted.

“We believe that significant progress could be made by similar breakthroughs at the algorithm and dataset levels,” he said.

He’s not the only one.

One of the key research areas at Qualcomm’s AI research lab is energy efficiency. Max Welling, vice president of Qualcomm Technology R&D division, has written about the need for more power-efficient algorithms. He has gone so far as to suggest that AI algorithms will be measured by the amount of intelligence they provide per joule.

One emerging area being studied, Welling wrote, is the use of Bayesian deep learning for deep neural networks.

It’s all pretty heady stuff and easily the subject of a PhD thesis. The main thing to understand in this context is that Bayesian deep learning is another attempt to mimic how the brain processes information by introducing random values into the neural network. A benefit of Bayesian deep learning is that it compresses and quantifies data in order to reduce the complexity of a neural network. In turn, that reduces the number of “steps” required to recognize a dog as a dog—and the energy required to get the right result.

A team at Oak Ridge National Laboratory has previously demonstrated another way to improve AI energy efficiency by converting deep learning neural networks into what’s called a spiking neural network. The researchers spiked their deep spiking neural network (DSNN) by introducing a stochastic process that adds random values like Bayesian deep learning.

The DSNN actually imitates the way neurons interact with synapses, which send signals between brain cells. Individual “spikes” in the network indicate where to perform computations, lowering energy consumption because it disregards unnecessary computations.

The system is being used by cancer researchers to scan millions of clinical reports to unearth insights on causes and treatments of the disease.

Helping battle cancer is only one of many rewards we may reap from artificial intelligence in the future, as long as the benefits of those algorithms outweigh the costs of using them.

“Making AI more energy-efficient is an overarching objective that spans the fields of algorithms, systems, architecture, circuits, and devices,” Ielmini said.

Image Credit: analogicus from Pixabay Continue reading

Posted in Human Robots

#436209 Video Friday: Robotic Endoscope Travels ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, WA, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Kuka has just announced the results of its annual Innovation Award. From an initial batch of 30 applicants, five teams reached the finals (we were part of the judging committee). The five finalists worked for nearly a year on their applications, which they demonstrated this week at the Medica trade show in Düsseldorf, Germany. And the winner of the €20,000 prize is…Team RoboFORCE, led by the STORM Lab in the U.K., which developed a “robotic magnetic flexible endoscope for painless colorectal cancer screening, surveillance, and intervention.”

The system could improve colonoscopy procedures by reducing pain and discomfort as well as other risks such as bleeding and perforation, according to the STORM Lab researchers. It uses a magnetic field to control the endoscope, pulling rather than pushing it through the colon.

The other four finalists also presented some really interesting applications—you can see their videos below.

“Because we were so please with the high quality of the submissions, we will have next year’s finals again at the Medica fair, and the challenge will be named ‘Medical Robotics’,” says Rainer Bischoff, vice president for corporate research at Kuka. He adds that the selected teams will again use Kuka’s LBR Med robot arm, which is “already certified for integration into medical products and makes it particularly easy for startups to use a robot as the main component for a particular solution.”

Applications are now open for Kuka’s Innovation Award 2020. You can find more information on how to enter here. The deadline is 5 January 2020.

[ Kuka ]

Oh good, Aibo needs to be fed now.

You know what comes next, right?

[ Aibo ]

Your cat needs this robot.

It's about $200 on Kickstarter.

[ Kickstarter ]

Enjoy this tour of the Skydio offices courtesy Skydio 2, which runs into not even one single thing.

If any Skydio employees had important piles of papers on their desks, well, they don’t anymore.

[ Skydio ]

Artificial intelligence is everywhere nowadays, but what exactly does it mean? We asked a group MIT computer science grad students and post-docs how they personally define AI.

“When most people say AI, they actually mean machine learning, which is just pattern recognition.” Yup.

[ MIT ]

Using event-based cameras, this drone control system can track attitude at 1600 degrees per second (!).

[ UZH ]

Introduced at CES 2018, Walker is an intelligent humanoid service robot from UBTECH Robotics. Below are the latest features and technologies used during our latest round of development to make Walker even better.

[ Ubtech ]

Introducing the Alpha Prime by #VelodyneLidar, the most advanced lidar sensor on the market! Alpha Prime delivers an unrivaled combination of field-of-view, range, high-resolution, clarity and operational performance.

Performance looks good, but don’t expect it to be cheap.

[ Velodyne ]

Ghost Robotics’ Spirit 40 will start shipping to researchers in January of next year.

[ Ghost Robotics ]

Unitree is about to ship the first batch of their AlienGo quadrupeds as well:

[ Unitree ]

Mechanical engineering’s Sarah Bergbreiter discusses her work on micro robotics, how they draw inspiration from insects and animals, and how tiny robots can help humans in a variety of fields.

[ CMU ]

Learning contact-rich, robotic manipulation skills is a challenging problem due to the high-dimensionality of the state and action space as well as uncertainty from noisy sensors and inaccurate motor control. To combat these factors and achieve more robust manipulation, humans actively exploit contact constraints in the environment. By adopting a similar strategy, robots can also achieve more robust manipulation. In this paper, we enable a robot to autonomously modify its environment and thereby discover how to ease manipulation skill learning. Specifically, we provide the robot with fixtures that it can freely place within the environment. These fixtures provide hard constraints that limit the outcome of robot actions. Thereby, they funnel uncertainty from perception and motor control and scaffold manipulation skill learning.

[ Stanford ]

Since 2016, Verity's drones have completed more than 200,000 flights around the world. Completely autonomous, client-operated and designed for live events, Verity is making the magic real by turning drones into flying lights, characters, and props.

[ Verity ]

To monitor and stop the spread of wildfires, University of Michigan engineers developed UAVs that could find, map and report fires. One day UAVs like this could work with disaster response units, firefighters and other emergency teams to provide real-time accurate information to reduce damage and save lives. For their research, the University of Michigan graduate students won first place at a competition for using a swarm of UAVs to successfully map and report simulated wildfires.

[ University of Michigan ]

Here’s an important issue that I haven’t heard talked about all that much: How first responders should interact with self-driving cars.

“To put the car in manual mode, you must call Waymo.” Huh.

[ Waymo ]

Here’s what Gitai has been up to recently, from a Humanoids 2019 workshop talk.

[ Gitai ]

The latest CMU RI seminar comes from Girish Chowdhary at the University of Illinois at Urbana-Champaign on “Autonomous and Intelligent Robots in Unstructured Field Environments.”

What if a team of collaborative autonomous robots grew your food for you? In this talk, I will discuss some key advances in robotics, machine learning, and autonomy that will one day enable teams of small robots to grow food for you in your backyard in a fundamentally more sustainable way than modern mega-farms! Teams of small aerial and ground robots could be a potential solution to many of the serious problems that modern agriculture is facing. However, fully autonomous robots that operate without supervision for weeks, months, or entire growing season are not yet practical. I will discuss my group’s theoretical and practical work towards the underlying challenging problems in robotic systems, autonomy, sensing, and learning. I will begin with our lightweight, compact, and autonomous field robot TerraSentia and the recent successes of this type of undercanopy robots for high-throughput phenotyping with deep learning-based machine vision. I will also discuss how to make a team of autonomous robots learn to coordinate to weed large agricultural farms under partial observability. These direct applications will help me make the case for the type of reinforcement learning and adaptive control that are necessary to usher in the next generation of autonomous field robots that learn to solve complex problems in harsh, changing, and dynamic environments. I will then end with an overview of our new MURI, in which we are working towards developing AI and control that leverages neurodynamics inspired by the Octopus brain.

[ CMU RI ] Continue reading

Posted in Human Robots