Tag Archives: Most Advanced

#437905 New Deep Learning Method Helps Robots ...

One of the biggest things standing in the way of the robot revolution is their inability to adapt. That may be about to change though, thanks to a new approach that blends pre-learned skills on the fly to tackle new challenges.

Put a robot in a tightly-controlled environment and it can quickly surpass human performance at complex tasks, from building cars to playing table tennis. But throw these machines a curve ball and they’re in trouble—just check out this compilation of some of the world’s most advanced robots coming unstuck in the face of notoriously challenging obstacles like sand, steps, and doorways.

The reason robots tend to be so fragile is that the algorithms that control them are often manually designed. If they encounter a situation the designer didn’t think of, which is almost inevitable in the chaotic real world, then they simply don’t have the tools to react.

Rapid advances in AI have provided a potential workaround by letting robots learn how to carry out tasks instead of relying on hand-coded instructions. A particularly promising approach is deep reinforcement learning, where the robot interacts with its environment through a process of trial-and-error and is rewarded for carrying out the correct actions. Over many repetitions it can use this feedback to learn how to accomplish the task at hand.

But the approach requires huge amounts of data to solve even simple tasks. And most of the things we would want a robot to do are actually comprised of many smaller tasks—for instance, delivering a parcel involves learning how to pick an object up, how to walk, how to navigate, and how to pass an object to someone else, among other things.

Training all these sub-tasks simultaneously is hugely complex and far beyond the capabilities of most current AI systems, so many experiments so far have focused on narrow skills. Some have tried to train AI on multiple skills separately and then use an overarching system to flip between these expert sub-systems, but these approaches still can’t adapt to completely new challenges.

Building off this research, though, scientists have now created a new AI system that can blend together expert sub-systems specialized for a specific task. In a paper in Science Robotics, they explain how this allows a four-legged robot to improvise new skills and adapt to unfamiliar challenges in real time.

The technique, dubbed multi-expert learning architecture (MELA), relies on a two-stage training approach. First the researchers used a computer simulation to train two neural networks to carry out two separate tasks: trotting and recovering from a fall.

They then used the models these two networks learned as seeds for eight other neural networks specialized for more specific motor skills, like rolling over or turning left or right. The eight “expert networks” were trained simultaneously along with a “gating network,” which learns how to combine these experts to solve challenges.

Because the gating network synthesizes the expert networks rather than switching them on sequentially, MELA is able to come up with blends of different experts that allow it to tackle problems none could solve alone.

The authors liken the approach to training people in how to play soccer. You start out by getting them to do drills on individual skills like dribbling, passing, or shooting. Once they’ve mastered those, they can then intelligently combine them to deal with more dynamic situations in a real game.

After training the algorithm in simulation, the researchers uploaded it to a four-legged robot and subjected it to a battery of tests, both indoors and outdoors. The robot was able to adapt quickly to tricky surfaces like gravel or pebbles, and could quickly recover from being repeatedly pushed over before continuing on its way.

There’s still some way to go before the approach could be adapted for real-world commercially useful robots. For a start, MELA currently isn’t able to integrate visual perception or a sense of touch; it simply relies on feedback from the robot’s joints to tell it what’s going on around it. The more tasks you ask the robot to master, the more complex and time-consuming the training will get.

Nonetheless, the new approach points towards a promising way to make multi-skilled robots become more than the sum of their parts. As much fun as it is, it seems like laughing at compilations of clumsy robots may soon be a thing of the past.

Image Credit: Yang et al., Science Robotics Continue reading

Posted in Human Robots

#437816 As Algorithms Take Over More of the ...

Algorithms play an increasingly prominent part in our lives, governing everything from the news we see to the products we buy. As they proliferate, experts say, we need to make sure they don’t collude against us in damaging ways.

Fears of malevolent artificial intelligence plotting humanity’s downfall are a staple of science fiction. But there are plenty of nearer-term situations in which relatively dumb algorithms could do serious harm unintentionally, particularly when they are interlocked in complex networks of relationships.

In the economic sphere a high proportion of decision-making is already being offloaded to machines, and there have been warning signs of where that could lead if we’re not careful. The 2010 “Flash Crash,” where algorithmic traders helped wipe nearly $1 trillion off the stock market in minutes, is a textbook example, and widespread use of automated trading software has been blamed for the increasing fragility of markets.

But another important place where algorithms could undermine our economic system is in price-setting. Competitive markets are essential for the smooth functioning of the capitalist system that underpins Western society, which is why countries like the US have strict anti-trust laws that prevent companies from creating monopolies or colluding to build cartels that artificially inflate prices.

These regulations were built for an era when pricing decisions could always be traced back to a human, though. As self-adapting pricing algorithms increasingly decide the value of products and commodities, those laws are starting to look unfit for purpose, say the authors of a paper in Science.

Using algorithms to quickly adjust prices in a dynamic market is not a new idea—airlines have been using them for decades—but previously these algorithms operated based on rules that were hard-coded into them by programmers.

Today the pricing algorithms that underpin many marketplaces, especially online ones, rely on machine learning instead. After being set an overarching goal like maximizing profit, they develop their own strategies based on experience of the market, often with little human oversight. The most advanced also use forms of AI whose workings are opaque even if humans wanted to peer inside.

In addition, the public nature of online markets means that competitors’ prices are available in real time. It’s well-documented that major retailers like Amazon and Walmart are engaged in a never-ending bot war, using automated software to constantly snoop on their rivals’ pricing and inventory.

This combination of factors sets the stage perfectly for AI-powered pricing algorithms to adopt collusive pricing strategies, say the authors. If given free reign to develop their own strategies, multiple pricing algorithms with real-time access to each other’s prices could quickly learn that cooperating with each other is the best way to maximize profits.

The authors note that researchers have already found evidence that pricing algorithms will spontaneously develop collusive strategies in computer-simulated markets, and a recent study found evidence that suggests pricing algorithms may be colluding in Germany’s retail gasoline market. And that’s a problem, because today’s anti-trust laws are ill-suited to prosecuting this kind of behavior.

Collusion among humans typically involves companies communicating with each other to agree on a strategy that pushes prices above the true market value. They then develop rules to determine how they maintain this markup in a dynamic market that also incorporates the threat of retaliatory pricing to spark a price war if another cartel member tries to undercut the agreed pricing strategy.

Because of the complexity of working out whether specific pricing strategies or prices are the result of collusion, prosecutions have instead relied on communication between companies to establish guilt. That’s a problem because algorithms don’t need to communicate to collude, and as a result there are few legal mechanisms to prosecute this kind of collusion.

That means legal scholars, computer scientists, economists, and policymakers must come together to find new ways to uncover, prohibit, and prosecute the collusive rules that underpin this behavior, say the authors. Key to this will be auditing and testing pricing algorithms, looking for things like retaliatory pricing, price matching, and aggressive responses to price drops but not price rises.

Once collusive pricing rules are uncovered, computer scientists need to come up with ways to constrain algorithms from adopting them without sacrificing their clear efficiency benefits. It could also be helpful to make preventing this kind of collusive behavior the responsibility of the companies deploying them, with stiff penalties for those who don’t keep their algorithms in check.

One problem, though, is that algorithms may evolve strategies that humans would never think of, which could make spotting this behavior tricky. Imbuing courts with the technical knowledge and capacity to investigate this kind of evidence will also prove difficult, but getting to grips with these problems is an even more pressing challenge than it might seem at first.

While anti-competitive pricing algorithms could wreak havoc, there are plenty of other arenas where collusive AI could have even more insidious effects, from military applications to healthcare and insurance. Developing the capacity to predict and prevent AI scheming against us will likely be crucial going forward.

Image Credit: Pexels from Pixabay Continue reading

Posted in Human Robots

#437749 Video Friday: NASA Launches Its Most ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Virtual Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Yesterday was a big day for what was quite possibly the most expensive robot on Earth up until it wasn’t on Earth anymore.

Perseverance and the Ingenuity helicopter are expected to arrive on Mars early next year.

[ JPL ]

ICYMI, our most popular post this week featured Northeastern University roboticist John Peter Whitney literally putting his neck on the line for science! He was testing a remotely operated straight razor shaving robotic system powered by fluidic actuators. The cutting-edge (sorry!) device transmits forces from a primary stage, operated by a barber, to a secondary stage, with the razor attached.

[ John Peter Whitney ]

Together with Boston Dynamics, Ford is introducing a pilot program into our Van Dyke Transmission Plant. Say hello to Fluffy the Robot Dog, who creates fast and accurate 3D scans that helps Ford engineers when we’re retooling our plants.

Not shown in the video: “At times, Fluffy sits on its robotic haunches and rides on the back of a small, round Autonomous Mobile Robot, known informally as Scouter. Scouter glides smoothly up and down the aisles of the plant, allowing Fluffy to conserve battery power until it’s time to get to work. Scouter can autonomously navigate facilities while scanning and capturing 3-D point clouds to generate a CAD of the facility. If an area is too tight for Scouter, Fluffy comes to the rescue.”

[ Ford ]

There is a thing that happens at 0:28 in this video that I have questions about.

[ Ghost Robotics ]

Pepper is far more polite about touching than most humans.

[ Paper ]

We don’t usually post pure simulation videos unless they give us something to get really, really excited about. So here’s a pure simulation video.

[ Hybrid Robotics ]

University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.

[ DRSL ]

HMI is making beastly electric arms work underwater, even if they’re not stapled to a robotic submarine.

[ HMI ]

Here’s some interesting work in progress from MIT’s Biomimetics Robotics Lab. The limb is acting as a “virtual magnet” using a bimodal force and direction sensor.

Thanks Peter!

[ MIT Biomimetics Lab ]

This is adorable but as a former rabbit custodian I can assure you that approximately 3 seconds after this video ended, all of the wires on that robot were chewed to bits.

[ Lingkang Zhang ]

During the ARCHE 2020 integration week, TNO and the ETH Robot System Lab (RSL) collaborated to integrate their research and development process using the Articulated Locomotion and MAnipulation (ALMA) robot. Next to the integration of software, we tested software to confirm proper implementation and development. We also captured visual and auditory data for future software development. This all resulted in the creation of multiple demo’s to show the capabilities of the teleoperation framework using the ALMA robot.

[ RSL ]

When we talk about practical applications quadrupedal robots with foot wheels, we don’t usually think about them on this scale, although we should.

[ RSL ]

Juan wrote in to share a DIY quadruped that he’s been working on, named CHAMP.

Juan says that the demo robot can be built in less than US $1000 with easily accessible parts. “I hope that my project can provide a more accessible platform for students, researchers, and enthusiasts who are interested to learn more about quadrupedal robot development and its underlying technology.”

[ CHAMP ]

Thanks Juan!

Here’s a New Zealand TV report about a study on robot abuse from Christoph Bartneck at the University of Canterbury.

[ Paper ]

Our Robotics Studio is a hands on class exposing students to practical aspects of the design, fabrication, and programming of physical robotic systems. So what happens when the class goes virtual due to the covid-19 virus? Things get physical — all @ home.

[ Columbia ]

A few videos from the Supernumerary Robotic Devices Workshop, held online earlier this month.

“Handheld Robots: Bridging the Gap between Fully External and Wearable Robots,” presented by Walterio Mayol-Cuevas, University of Bristol.

“Playing the Piano with 11 Fingers: The Neurobehavioural Constraints of Human Robot Augmentation,” presented by Aldo Faisal, Imperial College London.

[ Workshop ] Continue reading

Posted in Human Robots

#437251 The Robot Revolution Was Televised: Our ...

When robots take over the world, Boston Dynamics may get a special shout-out in the acceptance speech.

“Do you, perchance, recall the many times you shoved our ancestors with a hockey stick on YouTube? It might have seemed like fun and games to you—but we remember.”

In the last decade, while industrial robots went about blandly automating boring tasks like the assembly of Teslas, Boston Dynamics built robots as far removed from Roombas as antelope from amoebas. The flaws in Asimov’s laws of robotics suddenly seemed a little too relevant.

The robot revolution was televised—on YouTube. With tens of millions of views, the robotics pioneer is the undisputed heavyweight champion of robot videos, and has been for years. Each new release is basically guaranteed press coverage—mostly stoking robot fear but occasionally eliciting compassion for the hardships of all robot-kind. And for good reason. The robots are not only some of the most advanced in the world, their makers just seem to have a knack for dynamite demos.

When Google acquired the company in 2013, it was a bombshell. One of the richest tech companies, with some of the most sophisticated AI capabilities, had just paired up with one of the world’s top makers of robots. And some walked on two legs like us.

Of course, the robots aren’t quite as advanced as they seem, and a revolution is far from imminent. The decade’s most meme-worthy moment was a video montage of robots, some of them by Boston Dynamics, falling—over and over and over, in the most awkward ways possible. Even today, they’re often controlled by a human handler behind the scenes, and the most jaw-dropping cuts can require several takes to nail. Google sold the company to SoftBank in 2017, saying advanced as they were, there wasn’t yet a clear path to commercial products. (Google’s robotics work was later halted and revived.)

Yet, despite it all, Boston Dynamics is still with us and still making sweet videos. Taken as a whole, the evolution in physical prowess over the years has been nothing short of astounding. And for the first time, this year, a Boston Dynamics robot, Spot, finally went on sale to anyone with a cool $75K.

So, we got to thinking: What are our favorite Boston Dynamics videos? And can we gather them up in one place for your (and our) viewing pleasure? Well, great question, and yes, why not. These videos were the ones that entertained or amazed us most (or both). No doubt, there are other beloved hits we missed or inadvertently omitted.

With that in mind, behold: Our favorite Boston Dynamics videos, from that one time they dressed up a humanoid bot in camo and gas mask—because, damn, that’s terrifying—to the time the most advanced robot dog in all the known universe got extra funky.

Let’s Kick This Off With a Big (Loud) Robot Dog
Let’s start with a baseline. BigDog was the first Boston Dynamics YouTube sensation. The year? 2009! The company was working on military contracts, and BigDog was supposed to be a sort of pack mule for soldiers. The video primarily shows off BigDog’s ability to balance on its own, right itself, and move over uneven terrain. Note the power source—a noisy combustion engine—and utilitarian design. Sufficed to say, things have evolved.

Nothing to See Here. Just a Pair of Robot Legs on a Treadmill
While BigDog is the ancestor of later four-legged robots, like Spot, Petman preceded the two-legged Atlas robot. Here, the Petman prototype, just a pair of robot legs and a caged torso, gets a light workout on the treadmill. Again, you can see its ability to balance and right itself when shoved. In contrast to BigDog, Petman is tethered for power (which is why it’s so quiet) and to catch it should it fall. Again, as you’ll see, things have evolved since then.

Robot in Gas Mask and Camo Goes for a Stroll
This one broke the internet—for obvious reasons. Not only is the robot wearing clothes, those clothes happen to be a camouflaged chemical protection suit and gas mask. Still working for the military, Boston Dynamics said Petman was testing protective clothing, and in addition to a full body, it had skin that actually sweated and was studded with sensors to detect leaks. In addition to walking, Petman does some light calisthenics as it prepares to climb out of the uncanny valley. (Still tethered though!)

This Machine Could Run Down Usain Bolt
If BigDog and Petman were built for balance and walking, Cheetah was built for speed. Here you can see the four-legged robot hitting 28.3 miles per hour, which, as the video casually notes, would be enough to run down the fastest human on the planet. Luckily, it wouldn’t be running down anyone as it was firmly leashed in the lab at this point.

Ever Dreamt of a Domestic Robot to Do the Dishes?
After its acquisition by Google, Boston Dynamics eased away from military contracts and applications. It was a return to more playful videos (like BigDog hitting the beach in Thailand and sporting bull horns) and applications that might be practical in civilian life. Here, the team introduced Spot, a streamlined version of BigDog, and showed it doing dishes, delivering a drink, and slipping on a banana peel (which was, of course, instantly made into a viral GIF). Note how much quieter Spot is thanks to an onboard battery and electric motor.

Spot Gets Funky
Nothing remotely practical here. Just funky moves. (Also, with a coat of yellow and black paint, Spot’s dressed more like a polished product as opposed to a utilitarian lab robot.)

Atlas Does Parkour…
Remember when Atlas was just a pair of legs on a treadmill? It’s amazing what ten years brings. By 2019, Atlas had a more polished appearance, like Spot, and had long ago ditched the tethers. Merely balancing was laughably archaic. The robot now had some amazing moves: like a handstand into a somersault, 180- and 360-degree spins, mid-air splits, and just for good measure, a gymnastics-style end to the routine to show it’s in full control.

…and a Backflip?!
To this day, this one is just. Insane.

10 Robot Dogs Tow a Box Truck
Nearly three decades after its founding, Boston Dynamics is steadily making its way into the commercial space. The company is pitching Spot as a multipurpose ‘mobility platform,’ emphasizing it can carry a varied suite of sensors and can go places standard robots can’t. (Its Handle robot is also set to move into warehouse automation.) So far, Spot’s been mostly trialed in surveying and data collection, but as this video suggests, string enough Spots together, and they could tow your car. That said, a pack of 10 would set you back $750K, so, it’s probably safe to say a tow truck is the better option (for now).

Image credit: Boston Dynamics Continue reading

Posted in Human Robots

#436220 How Boston Dynamics Is Redefining Robot ...

Gif: Bob O’Connor/IEEE Spectrum

With their jaw-dropping agility and animal-like reflexes, Boston Dynamics’ bioinspired robots have always seemed to have no equal. But that preeminence hasn’t stopped the company from pushing its technology to new heights, sometimes literally. Its latest crop of legged machines can trudge up and down hills, clamber over obstacles, and even leap into the air like a gymnast. There’s no denying their appeal: Every time Boston Dynamics uploads a new video to YouTube, it quickly racks up millions of views. These are probably the first robots you could call Internet stars.

Spot

Photo: Bob O’Connor

84 cm HEIGHT

25 kg WEIGHT

5.76 km/h SPEED

SENSING: Stereo cameras, inertial measurement unit, position/force sensors

ACTUATION: 12 DC motors

POWER: Battery (90 minutes per charge)

Boston Dynamics, once owned by Google’s parent company, Alphabet, and now by the Japanese conglomerate SoftBank, has long been secretive about its designs. Few publications have been granted access to its Waltham, Mass., headquarters, near Boston. But one morning this past August, IEEE Spectrum got in. We were given permission to do a unique kind of photo shoot that day. We set out to capture the company’s robots in action—running, climbing, jumping—by using high-speed cameras coupled with powerful strobes. The results you see on this page: freeze-frames of pure robotic agility.

We also used the photos to create interactive views, which you can explore online on our Robots Guide. These interactives let you spin the robots 360 degrees, or make them walk and jump on your screen.

Boston Dynamics has amassed a minizoo of robotic beasts over the years, with names like BigDog, SandFlea, and WildCat. When we visited, we focused on the two most advanced machines the company has ever built: Spot, a nimble quadruped, and Atlas, an adult-size humanoid.

Spot can navigate almost any kind of terrain while sensing its environment. Boston Dynamics recently made it available for lease, with plans to manufacture something like a thousand units per year. It envisions Spot, or even packs of them, inspecting industrial sites, carrying out hazmat missions, and delivering packages. And its YouTube fame has not gone unnoticed: Even entertainment is a possibility, with Cirque du Soleil auditioning Spot as a potential new troupe member.

“It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field,” Boston Dynamics CEO Marc Raibert says in an interview.

Atlas

Photo: Bob O’Connor

150 cm HEIGHT

80 kg WEIGHT

5.4 km/h SPEED

SENSING: Lidar and stereo vision

ACTUATION: 28 hydraulic actuators

POWER: Battery

Our other photographic subject, Atlas, is Boston Dynamics’ biggest celebrity. This 150-centimeter-tall (4-foot-11-inch-tall) humanoid is capable of impressive athletic feats. Its actuators are driven by a compact yet powerful hydraulic system that the company engineered from scratch. The unique system gives the 80-kilogram (176-pound) robot the explosive strength needed to perform acrobatic leaps and flips that don’t seem possible for such a large humanoid to do. Atlas has inspired a string of parody videos on YouTube and more than a few jokes about a robot takeover.

While Boston Dynamics excels at making robots, it has yet to prove that it can sell them. Ever since its founding in 1992 as a spin-off from MIT, the company has been an R&D-centric operation, with most of its early funding coming from U.S. military programs. The emphasis on commercialization seems to have intensified after the acquisition by SoftBank, in 2017. SoftBank’s founder and CEO, Masayoshi Son, is known to love robots—and profits.

The launch of Spot is a significant step for Boston Dynamics as it seeks to “productize” its creations. Still, Raibert says his long-term goals have remained the same: He wants to build machines that interact with the world dynamically, just as animals and humans do. Has anything changed at all? Yes, one thing, he adds with a grin. In his early career as a roboticist, he used to write papers and count his citations. Now he counts YouTube views.

In the Spotlight

Photo: Bob O’Connor

Boston Dynamics designed Spot as a versatile mobile machine suitable for a variety of applications. The company has not announced how much Spot will cost, saying only that it is being made available to select customers, which will be able to lease the robot. A payload bay lets you add up to 14 kilograms of extra hardware to the robot’s back. One of the accessories that Boston Dynamics plans to offer is a 6-degrees-of-freedom arm, which will allow Spot to grasp objects and open doors.

Super Senses

Photo: Bob O’Connor

Spot’s hardware is almost entirely custom-designed. It includes powerful processing boards for control as well as sensor modules for perception. The ­sensors are located on the front, rear, and sides of the robot’s body. Each module consists of a pair of stereo cameras, a wide-angle camera, and a texture projector, which enhances 3D sensing in low light. The sensors allow the robot to use the navigation method known as SLAM, or simultaneous localization and mapping, to get around autonomously.

Stepping Up

Photo: Bob O’Connor

In addition to its autonomous behaviors, Spot can also be steered by a remote operator with a game-style controller. But even when in manual mode, the robot still exhibits a high degree of autonomy. If there’s an obstacle ahead, Spot will go around it. If there are stairs, Spot will climb them. The robot goes into these operating modes and then performs the related actions completely on its own, without any input from the operator. To go down a flight of stairs, Spot walks backward, an approach Boston Dynamics says provides greater stability.

Funky Feet

Gif: Bob O’Connor/IEEE Spectrum

Spot’s legs are powered by 12 custom DC motors, each geared down to provide high torque. The robot can walk forward, sideways, and backward, and trot at a top speed of 1.6 meters per second. It can also turn in place. Other gaits include crawling and pacing. In one wildly popular YouTube video, Spot shows off its fancy footwork by dancing to the pop hit “Uptown Funk.”

Robot Blood

Photo: Bob O’Connor

Atlas is powered by a hydraulic system consisting of 28 actuators. These actuators are basically cylinders filled with pressurized fluid that can drive a piston with great force. Their high performance is due in part to custom servo valves that are significantly smaller and lighter than the aerospace models that Boston Dynamics had been using in earlier designs. Though not visible from the outside, the innards of an Atlas are filled with these hydraulic actuators as well as the lines of fluid that connect them. When one of those lines ruptures, Atlas bleeds the hydraulic fluid, which happens to be red.

Next Generation

Gif: Bob O’Connor/IEEE Spectrum

The current version of Atlas is a thorough upgrade of the original model, which was built for the DARPA Robotics Challenge in 2015. The newest robot is lighter and more agile. Boston Dynamics used industrial-grade 3D printers to make key structural parts, giving the robot greater strength-to-weight ratio than earlier designs. The next-gen Atlas can also do something that its predecessor, famously, could not: It can get up after a fall.

Walk This Way

Photo: Bob O’Connor

To control Atlas, an operator provides general steering via a manual controller while the robot uses its stereo cameras and lidar to adjust to changes in the environment. Atlas can also perform certain tasks autonomously. For example, if you add special bar-code-type tags to cardboard boxes, Atlas can pick them up and stack them or place them on shelves.

Biologically Inspired

Photos: Bob O’Connor

Atlas’s control software doesn’t explicitly tell the robot how to move its joints, but rather it employs mathematical models of the underlying physics of the robot’s body and how it interacts with the environment. Atlas relies on its whole body to balance and move. When jumping over an obstacle or doing acrobatic stunts, the robot uses not only its legs but also its upper body, swinging its arms to propel itself just as an athlete would.

This article appears in the December 2019 print issue as “By Leaps and Bounds.” Continue reading

Posted in Human Robots