Tag Archives: microsoft

#436167 Is it Time for Tech to Stop Moving Fast ...

On Monday, I attended the 2019 Fall Conference of Stanford’s Institute for Human Centered Artificial Intelligence (HAI). That same night I watched the Season 6 opener for the HBO TV show Silicon Valley. And the debates featured in both surrounded the responsibility of tech companies for the societal effects of the technologies they produce. The two events have jumbled together in my mind, perhaps because I was in a bit of a brain fog, thanks to the nasty combination of a head cold and the smoke that descended on Silicon Valley from the northern California wildfires. But perhaps that mixture turned out to be a good thing.

What is clear, in spite of the smoke, is that this issue is something a lot of people are talking about, inside and outside of Silicon Valley (witness the viral video of Rep. Alexandria Ocasio-Cortez (D-NY) grilling Facebook CEO Mark Zuckerberg).

So, to add to that conversation, here’s my HBO Silicon Valley/Stanford HAI conference mashup.

Silicon Valley’s fictional CEO Richard Hendriks, in the opening scene of the episode, tells Congress that Facebook, Google, and Amazon only care about exploiting personal data for profit. He states:

“These companies are kings, and they rule over kingdoms far larger than any nation in history.”

Meanwhile Marietje Schaake, former member of the European Parliament and a fellow at HAI, told the conference audience of 900:

“There is a lot of power in the hands of few actors—Facebook decides who is a news source, Microsoft will run the defense department’s cloud…. I believe we need a deeper debate about which tasks need to stay in the hands of the public.”

Eric Schmidt, former CEO and executive chairman of Google, agreed. He says:

“It is important that we debate now the ethics of what we are doing, and the impact of the technology that we are building.”

Stanford Associate Professor Ge Wang, also speaking at the HAI conference, pointed out:

“‘Doing no harm’ is a vital goal, and it is not easy. But it is different from a proactive goal, to ‘do good.’”

Had Silicon Valley’s Hendricks been there, he would have agreed. He said in the episode:

“Just because it’s successful, doesn’t mean it’s good. Hiroshima was a successful implementation.”

The speakers at the HAI conference discussed the implications of moving fast and breaking things, of putting untested and unregulated technology into the world now that we know that things like public trust and even democracy can be broken.

Google’s Schmidt told the HAI audience:

“I don’t think that everything that is possible should be put into the wild in society, we should answer the question, collectively, how much risk are we willing to take.

And Silicon Valley denizens real and fictional no longer think it’s OK to just say sorry afterwards. Says Schmidt:

“When you ask Facebook about various scandals, how can they still say ‘We are very sorry; we have a lot of learning to do.’ This kind of naiveté stands out of proportion to the power tech companies have. With great power should come great responsibility, or at least modesty.”

Schaake argued:

“We need more guarantees, institutions, and policies than stated good intentions. It’s about more than promises.”

Fictional CEO Hendricks thinks saying sorry is a cop-out as well. In the episode, a developer admits that his app collected user data in spite of Hendricks assuring Congress that his company doesn’t do that:

“You didn’t know at the time,” the developer says. “Don’t beat yourself up about it. But in the future, stop saying it. Or don’t; I don’t care. Maybe it will be like Google saying ‘Don’t be evil,’ or Facebook saying ‘I’m sorry, we’ll do better.’”

Hendricks doesn’t buy it:

“This stops now. I’m the boss, and this is over.”

(Well, he is fictional.)

How can government, the tech world, and the general public address this in a more comprehensive way? Out in the real world, the “what to do” discussion at Stanford HAI surrounded regulation—how much, what kind, and when.

Says the European Parliament’s Schaake:

“An often-heard argument is that government should refrain from regulating tech because [regulation] will stifle innovation. [That argument] implies that innovation is more important than democracy or the rule of law. Our problems don’t stem from over regulation, but under regulation of technologies.”

But when should that regulation happen. Stanford provost emeritus John Etchemendy, speaking from the audience at the HAI conference, said:

“I’ve been an advocate of not trying to regulate before you understand it. Like San Francisco banning of use of facial recognition is not a good example of regulation; there are uses of facial recognition that we should allow. We want regulations that are just right, that prevent the bad things and allow the good things. So we are going to get it wrong either way, if we regulate to soon or hold off, we will get some things wrong.”

Schaake would opt for regulating sooner rather than later. She says that she often hears the argument that it is too early to regulate artificial intelligence—as well as the argument that it is too late to regulate ad-based political advertising, or online privacy. Neither, to her, makes sense. She told the HAI attendees:

“We need more than guarantees than stated good intentions.”

U.S. Chief Technology Officer Michael Kratsios would go with later rather than sooner. (And, yes, the country has a CTO. President Barack Obama created the position in 2009; Kratsios is the fourth to hold the office and the first under President Donald Trump. He was confirmed in August.) Also speaking at the HAI conference, Kratsios argued:

“I don’t think we should be running to regulate anything. We are a leader [in technology] not because we had great regulations, but we have taken a free market approach. We have done great in driving innovation in technologies that are born free, like the Internet. Technologies born in captivity, like autonomous vehicles, lag behind.”

In the fictional world of HBO’s Silicon Valley, startup founder Hendricks has a solution—a technical one of course: the decentralized Internet. He tells Congress:

“The way we win is by creating a new, decentralized Internet, one where the behavior of companies like this will be impossible, forever. Where it is the users, not the kings, who have sovereign control over their data. I will help you build an Internet that is of the people, by the people, and for the people.”

(This is not a fictional concept, though it is a long way from wide use. Also called the decentralized Web, the concept takes the content on today’s Web and fragments it, and then replicates and scatters those fragments to hosts around the world, increasing privacy and reducing the ability of governments to restrict access.)

If neither regulation nor technology comes to make the world safe from the unforeseen effects of new technologies, there is one more hope, according to Schaake: the millennials and subsequent generations.

Tech companies can no longer pursue growth at all costs, not if they want to keep attracting the talent they need, says Schaake. She noted that, “the young generation looks at the environment, at homeless on the streets,” and they expect their companies to tackle those and other issues and make the world a better place. Continue reading

Posted in Human Robots

#435824 A Q&A with Cruise’s head of AI, ...

In 2016, Cruise, an autonomous vehicle startup acquired by General Motors, had about 50 employees. At the beginning of 2019, the headcount at its San Francisco headquarters—mostly software engineers, mostly working on projects connected to machine learning and artificial intelligence—hit around 1000. Now that number is up to 1500, and by the end of this year it’s expected to reach about 2000, sprawling into a recently purchased building that had housed Dropbox. And that’s not counting the 200 or so tech workers that Cruise is aiming to install in a Seattle, Wash., satellite development center and a handful of others in Phoenix, Ariz., and Pasadena, Calif.

Cruise’s recent hires aren’t all engineers—it takes more than engineering talent to manage operations. And there are hundreds of so-called safety drivers that are required to sit in the 180 or so autonomous test vehicles whenever they roam the San Francisco streets. But that’s still a lot of AI experts to be hiring in a time of AI engineer shortages.

Hussein Mehanna, head of AI/ML at Cruise, says the company’s hiring efforts are on track, due to the appeal of the challenge of autonomous vehicles in drawing in AI experts from other fields. Mehanna himself joined Cruise in May from Google, where he was director of engineering at Google Cloud AI. Mehanna had been there about a year and a half, a relatively quick career stop after a short stint at Snap following four years working in machine learning at Facebook.

Mehanna has been immersed in AI and machine learning research since his graduate studies in speech recognition and natural language processing at the University of Cambridge. I sat down with Mehanna to talk about his career, the challenges of recruiting AI experts and autonomous vehicle development in general—and some of the challenges specific to San Francisco. We were joined by Michael Thomas, Cruise’s manager of AI/ML recruiting, who had also spent time recruiting AI engineers at Google and then Facebook.

IEEE Spectrum: When you were at Cambridge, did you think AI was going to take off like a rocket?

Mehanna: Did I imagine that AI was going to be as dominant and prevailing and sometimes hyped as it is now? No. I do recall in 2003 that my supervisor and I were wondering if neural networks could help at all in speech recognition. I remember my supervisor saying if anyone could figure out how use a neural net for speech he would give them a grant immediately. So he was on the right path. Now neural networks have dominated vision, speech, and language [processing]. But that boom started in 2012.

“In the early days, Facebook wasn’t that open to PhDs, it actually had a negative sentiment about researchers, and then Facebook shifted”

I didn’t [expect it], but I certainly aimed for it when [I was at] Microsoft, where I deliberately pushed my career towards machine learning instead of big data, which was more popular at the time. And [I aimed for it] when I joined Facebook.

In the early days, Facebook wasn’t that open to PhDs, or researchers. It actually had a negative sentiment about researchers. And then Facebook shifted to becoming one of the key places where PhD students wanted to do internships or join after they graduated. It was a mindset shift, they were [once] at a point in time where they thought what was needed for success wasn’t research, but now it’s different.

There was definitely an element of risk [in taking a machine learning career path], but I was very lucky, things developed very fast.

IEEE Spectrum: Is it getting harder or easier to find AI engineers to hire, given the reported shortages?

Mehanna: There is a mismatch [between job openings and qualified engineers], though it is hard to quantify it with numbers. There is good news as well: I see a lot more students diving deep into machine learning and data in their [undergraduate] computer science studies, so it’s not as bleak as it seems. But there is massive demand in the market.

Here at Cruise, demand for AI talent is just growing and growing. It might be is saturating or slowing down at other kinds of companies, though, [which] are leveraging more traditional applications—ad prediction, recommendations—that have been out there in the market for a while. These are more mature, better understood problems.

I believe autonomous vehicle technologies is the most difficult AI problem out there. The magnitude of the challenge of these problems is 1000 times more than other problems. They aren’t as well understood yet, and they require far deeper technology. And also the quality at which they are expected to operate is off the roof.

The autonomous vehicle problem is the engineering challenge of our generation. There’s a lot of code to write, and if we think we are going to hire armies of people to write it line by line, it’s not going to work. Machine learning can accelerate the process of generating the code, but that doesn’t mean we aren’t going to have engineers; we actually need a lot more engineers.

Sometimes people worry that AI is taking jobs. It is taking some developer jobs, but it is actually generating other developer jobs as well, protecting developers from the mundane and helping them build software faster and faster.

IEEE Spectrum: Are you concerned that the demand for AI in industry is drawing out the people in academia who are needed to educate future engineers, that is, the “eating the seed corn” problem?

Mehanna: There are some negative examples in the industry, but that’s not our style. We are looking for collaborations with professors, we want to cultivate a very deep and respectful relationship with universities.

And there’s another angle to this: Universities require a thriving industry for them to thrive. It is going to be extremely beneficial for academia to have this flourishing industry in AI, because it attracts more students to academia. I think we are doing them a fantastic favor by building these career opportunities. This is not the same as in my early days, [when] people told me “don’t go to AI; go to networking, work in the mobile industry; mobile is flourishing.”

IEEE Spectrum: Where are you looking as you try to find a thousand or so engineers to hire this year?

Thomas: We look for people who want to use machine learning to solve problems. They can be in many different industries—in the financial markets, in social media, in advertising. The autonomous vehicle industry is in its infancy. You can compare it to mobile in the early days: When the iPhone first came out, everyone was looking for developers with mobile experience, but you weren’t going to find them unless you went to straight to Apple, [so you had to hire other kinds of engineers]. This is the same type of thing: it is so new that you aren’t going to find experts in this area, because we are all still learning.

“You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move…now would be a great time for AI experts working on other problems to shift their attention to autonomous vehicles.”

Mehanna: Because autonomous vehicle technology is the new frontier for AI experts, [the number of] people with both AI and autonomous vehicle experience is quite limited. So we are acquiring AI experts wherever they are, and helping them grow into the autonomous vehicle area. You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move; even though there is a lot of great tech developed, there’s even more innovation ahead, so now would be a great time for AI experts working on other problems or applications to shift their attention to autonomous vehicles.

It feels like the Internet in 1980. It’s about to happen, but there are endless applications [to be developed over] the next few decades. Even if we can get a car to drive safely, there is the question of how can we tune the ride comfort, and then applying it all to different cities, different vehicles, different driving situations, and who knows to what other applications.

I can see how I can spend a lifetime career trying to solve this problem.

IEEE Spectrum: Why are you doing most of your development in San Francisco?

Mehanna: I think the best talent of the world is in Silicon Valley, and solving the autonomous vehicle problem is going to require the best of the best. It’s not just the engineering talent that is here, but [also] the entrepreneurial spirit. Solving the problem just as a technology is not going to be successful, you need to solve the product and the technology together. And the entrepreneurial spirit is one of the key reasons Cruise secured 7.5 billion in funding [besides GM, the company has a number of outside investors, including Honda, Softbank, and T. Rowe Price]. That [funding] is another reason Cruise is ahead of many others, because this problem requires deep resources.

“If you can do an autonomous vehicle in San Francisco you can do it almost anywhere.”

[And then there is the driving environment.] When I speak to my peers in the industry, they have a lot of respect for us, because the problems to solve in San Francisco technically are an order of magnitude harder. It is a tight environment, with a lot of pedestrians, and driving patterns that, let’s put it this way, are not necessarily the best in the nation. Which means we are seeing more problems ahead of our competitors, which gets us to better [software]. I think if you can do an autonomous vehicle in San Francisco you can do it almost anywhere.

A version of this post appears in the September 2019 print magazine as “AI Engineers: The Autonomous-Vehicle Industry Wants You.” Continue reading

Posted in Human Robots

#435769 The Ultimate Optimization Problem: How ...

Lucas Joppa thinks big. Even while gazing down into his cup of tea in his modest office on Microsoft’s campus in Redmond, Washington, he seems to see the entire planet bobbing in there like a spherical tea bag.

As Microsoft’s first chief environmental officer, Joppa came up with the company’s AI for Earth program, a five-year effort that’s spending US $50 million on AI-powered solutions to global environmental challenges.

The program is not just about specific deliverables, though. It’s also about mindset, Joppa told IEEE Spectrum in an interview in July. “It’s a plea for people to think about the Earth in the same way they think about the technologies they’re developing,” he says. “You start with an objective. So what’s our objective function for Earth?” (In computer science, an objective function describes the parameter or parameters you are trying to maximize or minimize for optimal results.)

Photo: Microsoft

Lucas Joppa

AI for Earth launched in December 2017, and Joppa’s team has since given grants to more than 400 organizations around the world. In addition to receiving funding, some grantees get help from Microsoft’s data scientists and access to the company’s computing resources.

In a wide-ranging interview about the program, Joppa described his vision of the “ultimate optimization problem”—figuring out which parts of the planet should be used for farming, cities, wilderness reserves, energy production, and so on.

Every square meter of land and water on Earth has an infinite number of possible utility functions. It’s the job of Homo sapiens to describe our overall objective for the Earth. Then it’s the job of computers to produce optimization results that are aligned with the human-defined objective.

I don’t think we’re close at all to being able to do this. I think we’re closer from a technology perspective—being able to run the model—than we are from a social perspective—being able to make decisions about what the objective should be. What do we want to do with the Earth’s surface?

Such questions are increasingly urgent, as climate change has already begun reshaping our planet and our societies. Global sea and air surface temperatures have already risen by an average of 1 degree Celsius above preindustrial levels, according to the Intergovernmental Panel on Climate Change.

Today, people all around the world participated in a “climate strike,” with young people leading the charge and demanding a global transition to renewable energy. On Monday, world leaders will gather in New York for the United Nations Climate Action Summit, where they’re expected to present plans to limit warming to 1.5 degrees Celsius.

Joppa says such summit discussions should aim for a truly holistic solution.

We talk about how to solve climate change. There’s a higher-order question for society: What climate do we want? What output from nature do we want and desire? If we could agree on those things, we could put systems in place for optimizing our environment accordingly. Instead we have this scattered approach, where we try for local optimization. But the sum of local optimizations is never a global optimization.

There’s increasing interest in using artificial intelligence to tackle global environmental problems. New sensing technologies enable scientists to collect unprecedented amounts of data about the planet and its denizens, and AI tools are becoming vital for interpreting all that data.

The 2018 report “Harnessing AI for the Earth,” produced by the World Economic Forum and the consulting company PwC, discusses ways that AI can be used to address six of the world’s most pressing environmental challenges (climate change, biodiversity, and healthy oceans, water security, clean air, and disaster resilience).

Many of the proposed applications involve better monitoring of human and natural systems, as well as modeling applications that would enable better predictions and more efficient use of natural resources.

Joppa says that AI for Earth is taking a two-pronged approach, funding efforts to collect and interpret vast amounts of data alongside efforts that use that data to help humans make better decisions. And that’s where the global optimization engine would really come in handy.

For any location on earth, you should be able to go and ask: What’s there, how much is there, and how is it changing? And more importantly: What should be there?

On land, the data is really only interesting for the first few hundred feet. Whereas in the ocean, the depth dimension is really important.

We need a planet with sensors, with roving agents, with remote sensing. Otherwise our decisions aren’t going to be any good.

AI for Earth isn’t going to create such an online portal within five years, Joppa stresses. But he hopes the projects that he’s funding will contribute to making such a portal possible—eventually.

We’re asking ourselves: What are the fundamental missing layers in the tech stack that would allow people to build a global optimization engine? Some of them are clear, some are still opaque to me.

By the end of five years, I’d like to have identified these missing layers, and have at least one example of each of the components.

Some of the projects that AI for Earth has funded seem to fit that desire. Examples include SilviaTerra, which used satellite imagery and AI to create a map of the 92 billion trees in forested areas across the United States. There’s also OceanMind, a non-profit that detects illegal fishing and helps marine authorities enforce compliance. Platforms like Wildbook and iNaturalist enable citizen scientists to upload pictures of animals and plants, aiding conservation efforts and research on biodiversity. And FarmBeats aims to enable data-driven agriculture with low-cost sensors, drones, and cloud services.

It’s not impossible to imagine putting such services together into an optimization engine that knows everything about the land, the water, and the creatures who live on planet Earth. Then we’ll just have to tell that engine what we want to do about it.

Editor’s note: This story is published in cooperation with more than 250 media organizations and independent journalists that have focused their coverage on climate change ahead of the UN Climate Action Summit. IEEE Spectrum’s participation in the Covering Climate Now partnership builds on our past reporting about this global issue. Continue reading

Posted in Human Robots

#435765 The Four Converging Technologies Giving ...

How each of us sees the world is about to change dramatically.

For all of human history, the experience of looking at the world was roughly the same for everyone. But boundaries between the digital and physical are beginning to fade.

The world around us is gaining layer upon layer of digitized, virtually overlaid information—making it rich, meaningful, and interactive. As a result, our respective experiences of the same environment are becoming vastly different, personalized to our goals, dreams, and desires.

Welcome to Web 3.0, or the Spatial Web. In version 1.0, static documents and read-only interactions limited the internet to one-way exchanges. Web 2.0 provided quite an upgrade, introducing multimedia content, interactive web pages, and participatory social media. Yet, all this was still mediated by two-dimensional screens.

Today, we are witnessing the rise of Web 3.0, riding the convergence of high-bandwidth 5G connectivity, rapidly evolving AR eyewear, an emerging trillion-sensor economy, and powerful artificial intelligence.

As a result, we will soon be able to superimpose digital information atop any physical surrounding—freeing our eyes from the tyranny of the screen, immersing us in smart environments, and making our world endlessly dynamic.

In the third post of our five-part series on augmented reality, we will explore the convergence of AR, AI, sensors, and blockchain and dive into the implications through a key use case in manufacturing.

A Tale of Convergence
Let’s deconstruct everything beneath the sleek AR display.

It all begins with graphics processing units (GPUs)—electric circuits that perform rapid calculations to render images. (GPUs can be found in mobile phones, game consoles, and computers.)

However, because AR requires such extensive computing power, single GPUs will not suffice. Instead, blockchain can now enable distributed GPU processing power, and blockchains specifically dedicated to AR holographic processing are on the rise.

Next up, cameras and sensors will aggregate real-time data from any environment to seamlessly integrate physical and virtual worlds. Meanwhile, body-tracking sensors are critical for aligning a user’s self-rendering in AR with a virtually enhanced environment. Depth sensors then provide data for 3D spatial maps, while cameras absorb more surface-level, detailed visual input. In some cases, sensors might even collect biometric data, such as heart rate and brain activity, to incorporate health-related feedback in our everyday AR interfaces and personal recommendation engines.

The next step in the pipeline involves none other than AI. Processing enormous volumes of data instantaneously, embedded AI algorithms will power customized AR experiences in everything from artistic virtual overlays to personalized dietary annotations.

In retail, AIs will use your purchasing history, current closet inventory, and possibly even mood indicators to display digitally rendered items most suitable for your wardrobe, tailored to your measurements.

In healthcare, smart AR glasses will provide physicians with immediately accessible and maximally relevant information (parsed from the entirety of a patient’s medical records and current research) to aid in accurate diagnoses and treatments, freeing doctors to engage in the more human-centric tasks of establishing trust, educating patients and demonstrating empathy.

Image Credit: PHD Ventures.
Convergence in Manufacturing
One of the nearest-term use cases of AR is manufacturing, as large producers begin dedicating capital to enterprise AR headsets. And over the next ten years, AR will converge with AI, sensors, and blockchain to multiply manufacturer productivity and employee experience.

(1) Convergence with AI
In initial application, digital guides superimposed on production tables will vastly improve employee accuracy and speed, while minimizing error rates.

Already, the International Air Transport Association (IATA) — whose airlines supply 82 percent of air travel — recently implemented industrial tech company Atheer’s AR headsets in cargo management. And with barely any delay, IATA reported a whopping 30 percent improvement in cargo handling speed and no less than a 90 percent reduction in errors.

With similar success rates, Boeing brought Skylight’s smart AR glasses to the runway, now used in the manufacturing of hundreds of airplanes. Sure enough—the aerospace giant has now seen a 25 percent drop in production time and near-zero error rates.

Beyond cargo management and air travel, however, smart AR headsets will also enable on-the-job training without reducing the productivity of other workers or sacrificing hardware. Jaguar Land Rover, for instance, implemented Bosch’s Re’flekt One AR solution to gear technicians with “x-ray” vision: allowing them to visualize the insides of Range Rover Sport vehicles without removing any dashboards.

And as enterprise capabilities continue to soar, AIs will soon become the go-to experts, offering support to manufacturers in need of assembly assistance. Instant guidance and real-time feedback will dramatically reduce production downtime, boost overall output, and even help customers struggling with DIY assembly at home.

Perhaps one of the most profitable business opportunities, AR guidance through centralized AI systems will also serve to mitigate supply chain inefficiencies at extraordinary scale. Coordinating moving parts, eliminating the need for manned scanners at each checkpoint, and directing traffic within warehouses, joint AI-AR systems will vastly improve workflow while overseeing quality assurance.

After its initial implementation of AR “vision picking” in 2015, leading courier company DHL recently announced it would continue to use Google’s newest smart lens in warehouses across the world. Motivated by the initial group’s reported 15 percent jump in productivity, DHL’s decision is part of the logistics giant’s $300 million investment in new technologies.

And as direct-to-consumer e-commerce fundamentally transforms the retail sector, supply chain optimization will only grow increasingly vital. AR could very well prove the definitive step for gaining a competitive edge in delivery speeds.

As explained by Vital Enterprises CEO Ash Eldritch, “All these technologies that are coming together around artificial intelligence are going to augment the capabilities of the worker and that’s very powerful. I call it Augmented Intelligence. The idea is that you can take someone of a certain skill level and by augmenting them with artificial intelligence via augmented reality and the Internet of Things, you can elevate the skill level of that worker.”

Already, large producers like Goodyear, thyssenkrupp, and Johnson Controls are using the Microsoft HoloLens 2—priced at $3,500 per headset—for manufacturing and design purposes.

Perhaps the most heartening outcome of the AI-AR convergence is that, rather than replacing humans in manufacturing, AR is an ideal interface for human collaboration with AI. And as AI merges with human capital, prepare to see exponential improvements in productivity, professional training, and product quality.

(2) Convergence with Sensors
On the hardware front, these AI-AR systems will require a mass proliferation of sensors to detect the external environment and apply computer vision in AI decision-making.

To measure depth, for instance, some scanning depth sensors project a structured pattern of infrared light dots onto a scene, detecting and analyzing reflected light to generate 3D maps of the environment. Stereoscopic imaging, using two lenses, has also been commonly used for depth measurements. But leading technology like Microsoft’s HoloLens 2 and Intel’s RealSense 400-series camera implement a new method called “phased time-of-flight” (ToF).

In ToF sensing, the HoloLens 2 uses numerous lasers, each with 100 milliwatts (mW) of power, in quick bursts. The distance between nearby objects and the headset wearer is then measured by the amount of light in the return beam that has shifted from the original signal. Finally, the phase difference reveals the location of each object within the field of view, which enables accurate hand-tracking and surface reconstruction.

With a far lower computing power requirement, the phased ToF sensor is also more durable than stereoscopic sensing, which relies on the precise alignment of two prisms. The phased ToF sensor’s silicon base also makes it easily mass-produced, rendering the HoloLens 2 a far better candidate for widespread consumer adoption.

To apply inertial measurement—typically used in airplanes and spacecraft—the HoloLens 2 additionally uses a built-in accelerometer, gyroscope, and magnetometer. Further equipped with four “environment understanding cameras” that track head movements, the headset also uses a 2.4MP HD photographic video camera and ambient light sensor that work in concert to enable advanced computer vision.

For natural viewing experiences, sensor-supplied gaze tracking increasingly creates depth in digital displays. Nvidia’s work on Foveated AR Display, for instance, brings the primary foveal area into focus, while peripheral regions fall into a softer background— mimicking natural visual perception and concentrating computing power on the area that needs it most.

Gaze tracking sensors are also slated to grant users control over their (now immersive) screens without any hand gestures. Conducting simple visual cues, even staring at an object for more than three seconds, will activate commands instantaneously.

And our manufacturing example above is not the only one. Stacked convergence of blockchain, sensors, AI and AR will disrupt almost every major industry.

Take healthcare, for example, wherein biometric sensors will soon customize users’ AR experiences. Already, MIT Media Lab’s Deep Reality group has created an underwater VR relaxation experience that responds to real-time brain activity detected by a modified version of the Muse EEG. The experience even adapts to users’ biometric data, from heart rate to electro dermal activity (inputted from an Empatica E4 wristband).

Now rapidly dematerializing, sensors will converge with AR to improve physical-digital surface integration, intuitive hand and eye controls, and an increasingly personalized augmented world. Keep an eye on companies like MicroVision, now making tremendous leaps in sensor technology.

While I’ll be doing a deep dive into sensor applications across each industry in our next blog, it’s critical to first discuss how we might power sensor- and AI-driven augmented worlds.

(3) Convergence with Blockchain
Because AR requires much more compute power than typical 2D experiences, centralized GPUs and cloud computing systems are hard at work to provide the necessary infrastructure. Nonetheless, the workload is taxing and blockchain may prove the best solution.

A major player in this pursuit, Otoy aims to create the largest distributed GPU network in the world, called the Render Network RNDR. Built specifically on the Ethereum blockchain for holographic media, and undergoing Beta testing, this network is set to revolutionize AR deployment accessibility.

Alphabet Chairman Eric Schmidt (an investor in Otoy’s network), has even said, “I predicted that 90% of computing would eventually reside in the web based cloud… Otoy has created a remarkable technology which moves that last 10%—high-end graphics processing—entirely to the cloud. This is a disruptive and important achievement. In my view, it marks the tipping point where the web replaces the PC as the dominant computing platform of the future.”

Leveraging the crowd, RNDR allows anyone with a GPU to contribute their power to the network for a commission of up to $300 a month in RNDR tokens. These can then be redeemed in cash or used to create users’ own AR content.

In a double win, Otoy’s blockchain network and similar iterations not only allow designers to profit when not using their GPUs, but also democratize the experience for newer artists in the field.

And beyond these networks’ power suppliers, distributing GPU processing power will allow more manufacturing companies to access AR design tools and customize learning experiences. By further dispersing content creation across a broad network of individuals, blockchain also has the valuable potential to boost AR hardware investment across a number of industry beneficiaries.

On the consumer side, startups like Scanetchain are also entering the blockchain-AR space for a different reason. Allowing users to scan items with their smartphone, Scanetchain’s app provides access to a trove of information, from manufacturer and price, to origin and shipping details.

Based on NEM (a peer-to-peer cryptocurrency that implements a blockchain consensus algorithm), the app aims to make information far more accessible and, in the process, create a social network of purchasing behavior. Users earn tokens by watching ads, and all transactions are hashed into blocks and securely recorded.

The writing is on the wall—our future of brick-and-mortar retail will largely lean on blockchain to create the necessary digital links.

Final Thoughts
Integrating AI into AR creates an “auto-magical” manufacturing pipeline that will fundamentally transform the industry, cutting down on marginal costs, reducing inefficiencies and waste, and maximizing employee productivity.

Bolstering the AI-AR convergence, sensor technology is already blurring the boundaries between our augmented and physical worlds, soon to be near-undetectable. While intuitive hand and eye motions dictate commands in a hands-free interface, biometric data is poised to customize each AR experience to be far more in touch with our mental and physical health.

And underpinning it all, distributed computing power with blockchain networks like RNDR will democratize AR, boosting global consumer adoption at plummeting price points.

As AR soars in importance—whether in retail, manufacturing, entertainment, or beyond—the stacked convergence discussed above merits significant investment over the next decade. The augmented world is only just getting started.

Join Me
(1) A360 Executive Mastermind: Want even more context about how converging exponential technologies will transform your business and industry? Consider joining Abundance 360, a highly selective community of 360 exponentially minded CEOs, who are on a 25-year journey with me—or as I call it, a “countdown to the Singularity.” If you’d like to learn more and consider joining our 2020 membership, apply here.

Share this with your friends, especially if they are interested in any of the areas outlined above.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

This article originally appeared on Diamandis.com

Image Credit: Funky Focus / Pixabay Continue reading

Posted in Human Robots

#435707 AI Agents Startle Researchers With ...

After 25 million games, the AI agents playing hide-and-seek with each other had mastered four basic game strategies. The researchers expected that part.

After a total of 380 million games, the AI players developed strategies that the researchers didn’t know were possible in the game environment—which the researchers had themselves created. That was the part that surprised the team at OpenAI, a research company based in San Francisco.

The AI players learned everything via a machine learning technique known as reinforcement learning. In this learning method, AI agents start out by taking random actions. Sometimes those random actions produce desired results, which earn them rewards. Via trial-and-error on a massive scale, they can learn sophisticated strategies.

In the context of games, this process can be abetted by having the AI play against another version of itself, ensuring that the opponents will be evenly matched. It also locks the AI into a process of one-upmanship, where any new strategy that emerges forces the opponent to search for a countermeasure. Over time, this “self-play” amounted to what the researchers call an “auto-curriculum.”

According to OpenAI researcher Igor Mordatch, this experiment shows that self-play “is enough for the agents to learn surprising behaviors on their own—it’s like children playing with each other.”

Reinforcement is a hot field of AI research right now. OpenAI’s researchers used the technique when they trained a team of bots to play the video game Dota 2, which squashed a world-champion human team last April. The Alphabet subsidiary DeepMind has used it to triumph in the ancient board game Go and the video game StarCraft.

Aniruddha Kembhavi, a researcher at the Allen Institute for Artificial Intelligence (AI2) in Seattle, says games such as hide-and-seek offer a good way for AI agents to learn “foundational skills.” He worked on a team that taught their AllenAI to play Pictionary with humans, viewing the gameplay as a way for the AI to work on common sense reasoning and communication. “We are, however, quite far away from being able to translate these preliminary findings in highly simplified environments into the real world,” says Kembhavi.

Illustration: OpenAI

AI agents construct a fort during a hide-and-seek game developed by OpenAI.

In OpenAI’s game of hide-and-seek, both the hiders and the seekers received a reward only if they won the game, leaving the AI players to develop their own strategies. Within a simple 3D environment containing walls, blocks, and ramps, the players first learned to run around and chase each other (strategy 1). The hiders next learned to move the blocks around to build forts (2), and then the seekers learned to move the ramps (3), enabling them to jump inside the forts. Then the hiders learned to move all the ramps into their forts before the seekers could use them (4).

The two strategies that surprised the researchers came next. First the seekers learned that they could jump onto a box and “surf” it over to a fort (5), allowing them to jump in—a maneuver that the researchers hadn’t realized was physically possible in the game environment. So as a final countermeasure, the hiders learned to lock all the boxes into place (6) so they weren’t available for use as surfboards.

Illustration: OpenAI

An AI agent uses a nearby box to surf its way into a competitor’s fort.

In this circumstance, having AI agents behave in an unexpected way wasn’t a problem: They found different paths to their rewards, but didn’t cause any trouble. However, you can imagine situations in which the outcome would be rather serious. Robots acting in the real world could do real damage. And then there’s Nick Bostrom’s famous example of a paper clip factory run by an AI, whose goal is to make as many paper clips as possible. As Bostrom told IEEE Spectrum back in 2014, the AI might realize that “human bodies consist of atoms, and those atoms could be used to make some very nice paper clips.”

Bowen Baker, another member of the OpenAI research team, notes that it’s hard to predict all the ways an AI agent will act inside an environment—even a simple one. “Building these environments is hard,” he says. “The agents will come up with these unexpected behaviors, which will be a safety problem down the road when you put them in more complex environments.”

AI researcher Katja Hofmann at Microsoft Research Cambridge, in England, has seen a lot of gameplay by AI agents: She started a competition that uses Minecraft as the playing field. She says the emergent behavior seen in this game, and in prior experiments by other researchers, shows that games can be a useful for studies of safe and responsible AI.

“I find demonstrations like this, in games and game-like settings, a great way to explore the capabilities and limitations of existing approaches in a safe environment,” says Hofmann. “Results like these will help us develop a better understanding on how to validate and debug reinforcement learning systems–a crucial step on the path towards real-world applications.”

Baker says there’s also a hopeful takeaway from the surprises in the hide-and-seek experiment. “If you put these agents into a rich enough environment they will find strategies that we never knew were possible,” he says. “Maybe they can solve problems that we can’t imagine solutions to.” Continue reading

Posted in Human Robots