Tag Archives: london

#439105 This Robot Taught Itself to Walk in a ...

Recently, in a Berkeley lab, a robot called Cassie taught itself to walk, a little like a toddler might. Through trial and error, it learned to move in a simulated world. Then its handlers sent it strolling through a minefield of real-world tests to see how it’d fare.

And, as it turns out, it fared pretty damn well. With no further fine-tuning, the robot—which is basically just a pair of legs—was able to walk in all directions, squat down while walking, right itself when pushed off balance, and adjust to different kinds of surfaces.

It’s the first time a machine learning approach known as reinforcement learning has been so successfully applied in two-legged robots.

This likely isn’t the first robot video you’ve seen, nor the most polished.

For years, the internet has been enthralled by videos of robots doing far more than walking and regaining their balance. All that is table stakes these days. Boston Dynamics, the heavyweight champ of robot videos, regularly releases mind-blowing footage of robots doing parkour, back flips, and complex dance routines. At times, it can seem the world of iRobot is just around the corner.

This sense of awe is well-earned. Boston Dynamics is one of the world’s top makers of advanced robots.

But they still have to meticulously hand program and choreograph the movements of the robots in their videos. This is a powerful approach, and the Boston Dynamics team has done incredible things with it.

In real-world situations, however, robots need to be robust and resilient. They need to regularly deal with the unexpected, and no amount of choreography will do. Which is how, it’s hoped, machine learning can help.

Reinforcement learning has been most famously exploited by Alphabet’s DeepMind to train algorithms that thrash humans at some the most difficult games. Simplistically, it’s modeled on the way we learn. Touch the stove, get burned, don’t touch the damn thing again; say please, get a jelly bean, politely ask for another.

In Cassie’s case, the Berkeley team used reinforcement learning to train an algorithm to walk in a simulation. It’s not the first AI to learn to walk in this manner. But going from simulation to the real world doesn’t always translate.

Subtle differences between the two can (literally) trip up a fledgling robot as it tries out its sim skills for the first time.

To overcome this challenge, the researchers used two simulations instead of one. The first simulation, an open source training environment called MuJoCo, was where the algorithm drew upon a large library of possible movements and, through trial and error, learned to apply them. The second simulation, called Matlab SimMechanics, served as a low-stakes testing ground that more precisely matched real-world conditions.

Once the algorithm was good enough, it graduated to Cassie.

And amazingly, it didn’t need further polishing. Said another way, when it was born into the physical world—it knew how to walk just fine. In addition, it was also quite robust. The researchers write that two motors in Cassie’s knee malfunctioned during the experiment, but the robot was able to adjust and keep on trucking.

Other labs have been hard at work applying machine learning to robotics.

Last year Google used reinforcement learning to train a (simpler) four-legged robot. And OpenAI has used it with robotic arms. Boston Dynamics, too, will likely explore ways to augment their robots with machine learning. New approaches—like this one aimed at training multi-skilled robots or this one offering continuous learning beyond training—may also move the dial. It’s early yet, however, and there’s no telling when machine learning will exceed more traditional methods.

And in the meantime, Boston Dynamics bots are testing the commercial waters.

Still, robotics researchers, who were not part of the Berkeley team, think the approach is promising. Edward Johns, head of Imperial College London’s Robot Learning Lab, told MIT Technology Review, “This is one of the most successful examples I have seen.”

The Berkeley team hopes to build on that success by trying out “more dynamic and agile behaviors.” So, might a self-taught parkour-Cassie be headed our way? We’ll see.

Image Credit: University of California Berkeley Hybrid Robotics via YouTube Continue reading

Posted in Human Robots

#437800 Malleable Structure Makes Robot Arm More ...

The majority of robot arms are built out of some combination of long straight tubes and actuated joints. This isn’t surprising, since our limbs are built the same way, which was a clever and efficient bit of design. By adding more tubes and joints (or degrees of freedom), you can increase the versatility of your robot arm, but the tradeoff is that complexity, weight, and cost will increase, too.

At ICRA, researchers from Imperial College London’s REDS Lab, headed by Nicolas Rojas, introduced a design for a robot that’s built around a malleable structure rather than a rigid one, allowing you to improve how versatile the arm is without having to add extra degrees of freedom. The idea is that you’re no longer constrained to static tubes and joints but can instead reconfigure your robot to set it up exactly the way you want and easily change it whenever you feel like.

Inside of that bendable section of arm are layers and layers of mylar sheets, cut into flaps and stacked on top of one another so that each flap is overlapping or overlapped by at least 11 other flaps. The mylar is slippery enough that under most circumstances, the flaps can move smoothly against each other, letting you adjust the shape of the arm. The flaps are sealed up between latex membranes, and when air is pumped out from between the membranes, they press down on each other and turn the whole structure rigid, locking itself in whatever shape you’ve put it in.

Image: Imperial College London

The malleable part of the robot consists of layers of mylar sheets, cut into flaps that can move smoothly against each other, letting you adjust the shape of the arm. The flaps are sealed up between latex membranes, and when air is pumped out from between the membranes, they press down on each other and turn the whole structure rigid, locking itself in whatever shape you’ve put it in.

The nice thing about this system is that it’s a sort of combination of a soft robot and a rigid robot—you get the flexibility (both physical and metaphorical) of a soft system, without necessarily having to deal with all of the control problems. It’s more mechanically complex than either (as hybrid systems tend to be), but you save on cost, size, and weight, and reduce the number of actuators you need, which tend to be points of failure. You do need to deal with creating and maintaining a vacuum, and the fact that the malleable arm is not totally rigid, but depending on your application, those tradeoffs could easily be worth it.

For more details, we spoke with first author Angus B. Clark via email.

IEEE Spectrum: Where did this idea come from?

Angus Clark: The idea of malleable robots came from the realization that the majority of serial robot arms have 6 or more degrees of freedom (DoF)—usually rotary joints—yet are typically performing tasks that only require 2 or 3 DoF. The idea of a robot arm that achieves flexibility and adaptation to tasks but maintains the simplicity of a low DoF system, along with the rapid development of variable stiffness continuum robots for medical applications, inspired us to develop the malleable robot concept.

What are some ways in which a malleable robot arm could provide unique advantages, and what are some potential applications that could leverage these advantages?

Malleable robots have the ability to complete multiple traditional tasks, such as pick and place or bin picking operations, without the added bulk of extra joints that are not directly used within each task, as the flexibility of the robot arm is provided by ​a malleable link instead. This results in an overall smaller form factor, including weight and footprint of the robot, as well as a lower power requirement and cost of the robot as fewer joints are needed, without sacrificing adaptability. This makes the robot ideal for scenarios where any of these factors are critical, such as in space robotics—where every kilogram saved is vital—or in rehabilitation robotics, where cost reduction may facilitate adoption, to name two examples. Moreover, the collaborative soft-robot-esque nature of malleable robots also tends towards collaborative robots in factories working safely alongside and with humans.

“The idea of malleable robots came from the realization that the majority of serial robot arms have 6 or more degrees of freedom (DoF), yet are typically performing tasks that only require 2 or 3 DoF”
—Angus B. Clark, Imperial College London

Compared to a conventional rigid link between joints, what are the disadvantages of using a malleable link?

Currently the maximum stiffness of a malleable link is considerably weaker than that of an equivalent solid steel rigid link, and this is one of the key areas we are focusing research on improving as motion precision and accuracy are impacted. We have created the largest existing variable stiffness link at roughly 800 mm length and 50 mm diameter, which suits malleable robots towards small and medium size workspaces. Our current results evaluating this accuracy are good, however achieving a uniform stiffness across the entire malleable link can be problematic due to the production of wrinkles under bending in the encapsulating membrane. As demonstrated by our SCARA topology results, this can produce slight structural variations resulting in reduced accuracy.

Does the robot have any way of knowing its own shape? Potentially, could this system reconfigure itself somehow?

Currently we compute the robot topology using motion tracking, with markers placed on the joints of the robot. Using distance geometry, we are then able to obtain the forward and inverse kinematics of the robot, of which we can use to control the end effector (the gripper) of the robot. Ideally, in the future we would love to develop a system that no longer requires the use of motion tracking cameras.

As for the robot reconfiguring itself, which we call an “intrinsic malleable link,” there are many methods that have been demonstrated for controlling a continuum structure, such as using positive pressure or via tendon wires, however the ability to in real-time determine the curvature of the link, not just the joint positions, is a significant hurdle to solve. However, we hope to see future development on malleable robots work towards solving this problem.

What are you working on next?

For us, refining the kinematics of the robot to enable a robust and complete system for allowing a user to collaboratively reshape the robot, while still achieving the accuracy expected from robotic systems, is our current main goal. Malleable robots are a brand new field we have introduced, and as such provide many opportunities for development and optimization. Over the coming years, we hope to see other researchers work alongside us to solve these problems.

“Design and Workspace Characterization of Malleable Robots,” by Angus B. Clark and Nicolas Rojas from Imperial College London, was presented at ICRA 2020.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#437749 Video Friday: NASA Launches Its Most ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Virtual Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Yesterday was a big day for what was quite possibly the most expensive robot on Earth up until it wasn’t on Earth anymore.

Perseverance and the Ingenuity helicopter are expected to arrive on Mars early next year.

[ JPL ]

ICYMI, our most popular post this week featured Northeastern University roboticist John Peter Whitney literally putting his neck on the line for science! He was testing a remotely operated straight razor shaving robotic system powered by fluidic actuators. The cutting-edge (sorry!) device transmits forces from a primary stage, operated by a barber, to a secondary stage, with the razor attached.

[ John Peter Whitney ]

Together with Boston Dynamics, Ford is introducing a pilot program into our Van Dyke Transmission Plant. Say hello to Fluffy the Robot Dog, who creates fast and accurate 3D scans that helps Ford engineers when we’re retooling our plants.

Not shown in the video: “At times, Fluffy sits on its robotic haunches and rides on the back of a small, round Autonomous Mobile Robot, known informally as Scouter. Scouter glides smoothly up and down the aisles of the plant, allowing Fluffy to conserve battery power until it’s time to get to work. Scouter can autonomously navigate facilities while scanning and capturing 3-D point clouds to generate a CAD of the facility. If an area is too tight for Scouter, Fluffy comes to the rescue.”

[ Ford ]

There is a thing that happens at 0:28 in this video that I have questions about.

[ Ghost Robotics ]

Pepper is far more polite about touching than most humans.

[ Paper ]

We don’t usually post pure simulation videos unless they give us something to get really, really excited about. So here’s a pure simulation video.

[ Hybrid Robotics ]

University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.

[ DRSL ]

HMI is making beastly electric arms work underwater, even if they’re not stapled to a robotic submarine.

[ HMI ]

Here’s some interesting work in progress from MIT’s Biomimetics Robotics Lab. The limb is acting as a “virtual magnet” using a bimodal force and direction sensor.

Thanks Peter!

[ MIT Biomimetics Lab ]

This is adorable but as a former rabbit custodian I can assure you that approximately 3 seconds after this video ended, all of the wires on that robot were chewed to bits.

[ Lingkang Zhang ]

During the ARCHE 2020 integration week, TNO and the ETH Robot System Lab (RSL) collaborated to integrate their research and development process using the Articulated Locomotion and MAnipulation (ALMA) robot. Next to the integration of software, we tested software to confirm proper implementation and development. We also captured visual and auditory data for future software development. This all resulted in the creation of multiple demo’s to show the capabilities of the teleoperation framework using the ALMA robot.

[ RSL ]

When we talk about practical applications quadrupedal robots with foot wheels, we don’t usually think about them on this scale, although we should.

[ RSL ]

Juan wrote in to share a DIY quadruped that he’s been working on, named CHAMP.

Juan says that the demo robot can be built in less than US $1000 with easily accessible parts. “I hope that my project can provide a more accessible platform for students, researchers, and enthusiasts who are interested to learn more about quadrupedal robot development and its underlying technology.”

[ CHAMP ]

Thanks Juan!

Here’s a New Zealand TV report about a study on robot abuse from Christoph Bartneck at the University of Canterbury.

[ Paper ]

Our Robotics Studio is a hands on class exposing students to practical aspects of the design, fabrication, and programming of physical robotic systems. So what happens when the class goes virtual due to the covid-19 virus? Things get physical — all @ home.

[ Columbia ]

A few videos from the Supernumerary Robotic Devices Workshop, held online earlier this month.

“Handheld Robots: Bridging the Gap between Fully External and Wearable Robots,” presented by Walterio Mayol-Cuevas, University of Bristol.

“Playing the Piano with 11 Fingers: The Neurobehavioural Constraints of Human Robot Augmentation,” presented by Aldo Faisal, Imperial College London.

[ Workshop ] Continue reading

Posted in Human Robots

#437687 Video Friday: Bittle Is a Palm-Sized ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Rongzhong Li, who is responsible for the adorable robotic cat Nybble, has an updated and even more adorable quadruped that's more robust and agile but only costs around US $200 in kit form on Kickstarter.

Looks like the early bird options are sold out, but a full kit is a $225 pledge, for delivery in December.

[ Kickstarter ]

Thanks Rz!

I still maintain that Stickybot was one of the most elegantly designed robots ever.

[ Stanford ]

With the unpredictable health crisis of COVID-19 continuing to place high demands on hospitals, PAL Robotics have successfully completed testing of their delivery robots in Barcelona hospitals this summer. The TIAGo Delivery and TIAGo Conveyor robots were deployed in Hospital Municipal of Badalona and Hospital Clínic Barcelona following a winning proposal submitted to the European DIH-Hero project. Accerion sensors were integrated onto the TIAGo Delivery Robot and TIAGo Conveyor Robot for use in this project.

[ PAL Robotics ]

Energy Robotics, a leading developer of software solutions for mobile robots used in industrial applications, announced that its remote sensing and inspection solution for Boston Dynamics’s agile mobile robot Spot was successfully deployed at Merck’s thermal exhaust treatment plant at its headquarters in Darmstadt, Germany. Energy Robotics equipped Spot with sensor technology and remote supervision functions to support the inspection mission.

Combining Boston Dynamics’ intuitive controls, robotic intelligence and open interface with Energy Robotics’ control and autonomy software, user interface and encrypted cloud connection, Spot can be taught to autonomously perform a specific inspection round while being supervised remotely from anywhere with internet connectivity. Multiple cameras and industrial sensors enable the robot to find its way around while recording and transmitting information about the facility’s onsite equipment operations.

Spot reads the displays of gauges in its immediate vicinity and can also zoom in on distant objects using an externally-mounted optical zoom lens. In the thermal exhaust treatment facility, for instance, it monitors cooling water levels and notes whether condensation water has accumulated. Outside the facility, Spot monitors pipe bridges for anomalies.

Among the robot’s many abilities, it can detect defects of wires or the temperature of pump components using thermal imaging. The robot was put through its paces on a comprehensive course that tested its ability to handle special challenges such as climbing stairs, scaling embankments and walking over grating.

[ Energy Robotics ]

Thanks Stefan!

Boston Dynamics really should give Dr. Guero an Atlas just to see what he can do with it.

[ DrGuero ]

World's First Socially Distanced Birthday Party: Located in London, the robotic arm was piloted in real time to light the candles on the cake by the founder of Extend Robotics, Chang Liu, who was sat 50 miles away in Reading. Other team members in Manchester and Reading were also able to join in the celebration as the robot was used to accurately light the candles on the birthday cake.

[ Extend Robotics ]

The Robocon in-person competition was canceled this year, but check out Tokyo University's robots in action:

[ Robocon ]

Sphero has managed to pack an entire Sphero into a much smaller sphere.

[ Sphero ]

Squishy Robotics, a small business funded by the National Science Foundation (NSF), is developing mobile sensor robots for use in disaster rescue, remote monitoring, and space exploration. The shape-shifting, mobile, senor robots from UC-Berkeley spin-off Squishy Robotics can be dropped from airplanes or drones and can provide first responders with ground-based situational awareness during fires, hazardous materials (HazMat) release, and natural and man-made disasters.

[ Squishy Robotics ]

Meet Jasper, the small girl with big dreams to FLY. Created by UTS Animal Logic Academy in partnership with the Royal Australian Air Force to encourage girls to soar above the clouds. Jasper was created using a hybrid of traditional animation techniques and technology such as robotics and 3D printing. A KUKA QUANTEC robot is used during the film making to help the Australian Royal Airforce tell their story in a unique way. UTS adapted their High Accurate robot to film consistent paths, creating a video with physical sets and digital characters.

[ AU AF ]

Impressive what the Ghost Robotics V60 can do without any vision sensors on it.

[ Ghost Robotics ]

Is your job moving tiny amounts of liquid around? Would you rather be doing something else? ABB’s YuMi got you.

[ Yumi ]

For his PhD work at the Media Lab, Biomechatronics researcher Roman Stolyarov developed a terrain-adaptive control system for robotic leg prostheses. as a way to help people with amputations feel as able-bodied and mobile as possible, by allowing them to walk seamlessly regardless of the ground terrain.

[ MIT ]

This robot collects data on each cow when she enters to be milked. Milk samples and 3D photos can be taken to monitor the cow’s health status. The Ontario Dairy Research Centre in Elora, Ontario, is leading dairy innovation through education and collaboration. It is a state-of-the-art 175,000 square foot facility for discovery, learning and outreach. This centre is a partnership between the Agricultural Research Institute of Ontario, OMAFRA, the University of Guelph and the Ontario dairy industry.

[ University of Guleph ]

Australia has one of these now, should the rest of us panic?

[ Boeing ]

Daimler and Torc are developing Level 4 automated trucks for the real world. Here is a glimpse into our closed-course testing, routes on public highways in Virginia, and self-driving capabilities development. Our year of collaborating on the future of transportation culminated in the announcement of our new truck testing center in New Mexico.

[ Torc Robotics ] Continue reading

Posted in Human Robots

#437673 Can AI and Automation Deliver a COVID-19 ...

Illustration: Marysia Machulska

Within moments of meeting each other at a conference last year, Nathan Collins and Yann Gaston-Mathé began devising a plan to work together. Gaston-Mathé runs a startup that applies automated software to the design of new drug candidates. Collins leads a team that uses an automated chemistry platform to synthesize new drug candidates.

“There was an obvious synergy between their technology and ours,” recalls Gaston-Mathé, CEO and cofounder of Paris-based Iktos.

In late 2019, the pair launched a project to create a brand-new antiviral drug that would block a specific protein exploited by influenza viruses. Then the COVID-19 pandemic erupted across the world stage, and Gaston-Mathé and Collins learned that the viral culprit, SARS-CoV-2, relied on a protein that was 97 percent similar to their influenza protein. The partners pivoted.

Their companies are just two of hundreds of biotech firms eager to overhaul the drug-discovery process, often with the aid of artificial intelligence (AI) tools. The first set of antiviral drugs to treat COVID-19 will likely come from sifting through existing drugs. Remdesivir, for example, was originally developed to treat Ebola, and it has been shown to speed the recovery of hospitalized COVID-19 patients. But a drug made for one condition often has side effects and limited potency when applied to another. If researchers can produce an ­antiviral that specifically targets SARS-CoV-2, the drug would likely be safer and more effective than a repurposed drug.

There’s one big problem: Traditional drug discovery is far too slow to react to a pandemic. Designing a drug from scratch typically takes three to five years—and that’s before human clinical trials. “Our goal, with the combination of AI and automation, is to reduce that down to six months or less,” says Collins, who is chief strategy officer at SRI Biosciences, a division of the Silicon Valley research nonprofit SRI International. “We want to get this to be very, very fast.”

That sentiment is shared by small biotech firms and big pharmaceutical companies alike, many of which are now ramping up automated technologies backed by supercomputing power to predict, design, and test new antivirals—for this pandemic as well as the next—with unprecedented speed and scope.

“The entire industry is embracing these tools,” says Kara Carter, president of the International Society for Antiviral Research and executive vice president of infectious disease at Evotec, a drug-discovery company in Hamburg. “Not only do we need [new antivirals] to treat the SARS-CoV-2 infection in the population, which is probably here to stay, but we’ll also need them to treat future agents that arrive.”

There are currentlyabout 200 known viruses that infect humans. Although viruses represent less than 14 percent of all known human pathogens, they make up two-thirds of all new human pathogens discovered since 1980.

Antiviral drugs are fundamentally different from vaccines, which teach a person’s immune system to mount a defense against a viral invader, and antibody treatments, which enhance the body’s immune response. By contrast, anti­virals are chemical compounds that directly block a virus after a person has become infected. They do this by binding to specific proteins and preventing them from functioning, so that the virus cannot copy itself or enter or exit a cell.

The SARS-CoV-2 virus has an estimated 25 to 29 proteins, but not all of them are suitable drug targets. Researchers are investigating, among other targets, the virus’s exterior spike protein, which binds to a receptor on a human cell; two scissorlike enzymes, called proteases, that cut up long strings of viral proteins into functional pieces inside the cell; and a polymerase complex that makes the cell churn out copies of the virus’s genetic material, in the form of single-stranded RNA.

But it’s not enough for a drug candidate to simply attach to a target protein. Chemists also consider how tightly the compound binds to its target, whether it binds to other things as well, how quickly it metabolizes in the body, and so on. A drug candidate may have 10 to 20 such objectives. “Very often those objectives can appear to be anticorrelated or contradictory with each other,” says Gaston-Mathé.

Compared with antibiotics, antiviral drug discovery has proceeded at a snail’s pace. Scientists advanced from isolating the first antibacterial molecules in 1910 to developing an arsenal of powerful antibiotics by 1944. By contrast, it took until 1951 for researchers to be able to routinely grow large amounts of virus particles in cells in a dish, a breakthrough that earned the inventors a Nobel Prize in Medicine in 1954.

And the lag between the discovery of a virus and the creation of a treatment can be heartbreaking. According to the World Health Organization, 71 million people worldwide have chronic hepatitis C, a major cause of liver cancer. The virus that causes the infection was discovered in 1989, but effective antiviral drugs didn’t hit the market until 2014.

While many antibiotics work on a range of microbes, most antivirals are highly specific to a single virus—what those in the business call “one bug, one drug.” It takes a detailed understanding of a virus to develop an antiviral against it, says Che Colpitts, a virologist at Queen’s University, in Canada, who works on antivirals against RNA viruses. “When a new virus emerges, like SARS-CoV-2, we’re at a big disadvantage.”

Making drugs to stop viruses is hard for three main reasons. First, viruses are the Spartans of the pathogen world: They’re frugal, brutal, and expert at evading the human immune system. About 20 to 250 nanometers in diameter, viruses rely on just a few parts to operate, hijacking host cells to reproduce and often destroying those cells upon departure. They employ tricks to camouflage their presence from the host’s immune system, including preventing infected cells from sending out molecular distress beacons. “Viruses are really small, so they only have a few components, so there’s not that many drug targets available to start with,” says Colpitts.

Second, viruses replicate quickly, typically doubling in number in hours or days. This constant copying of their genetic material enables viruses to evolve quickly, producing mutations able to sidestep drug effects. The virus that causes AIDS soon develops resistance when exposed to a single drug. That’s why a cocktail of antiviral drugs is used to treat HIV infection.

Finally, unlike bacteria, which can exist independently outside human cells, viruses invade human cells to propagate, so any drug designed to eliminate a virus needs to spare the host cell. A drug that fails to distinguish between a virus and a cell can cause serious side effects. “Discriminating between the two is really quite difficult,” says Evotec’s Carter, who has worked in antiviral drug discovery for over three decades.

And then there’s the money barrier. Developing antivirals is rarely profitable. Health-policy researchers at the London School of Economics recently estimated that the average cost of developing a new drug is US $1 billion, and up to $2.8 billion for cancer and other specialty drugs. Because antivirals are usually taken for only short periods of time or during short outbreaks of disease, companies rarely recoup what they spent developing the drug, much less turn a profit, says Carter.

To change the status quo, drug discovery needs fresh approaches that leverage new technologies, rather than incremental improvements, says Christian Tidona, managing director of BioMed X, an independent research institute in Heidelberg, Germany. “We need breakthroughs.”

Putting Drug Development on Autopilot
Earlier this year, SRI Biosciences and Iktos began collaborating on a way to use artificial intelligence and automated chemistry to rapidly identify new drugs to target the COVID-19 virus. Within four months, they had designed and synthesized a first round of antiviral candidates. Here’s how they’re doing it.

1/5

STEP 1: Iktos’s AI platform uses deep-learning algorithms in an iterative process to come up with new molecular structures likely to bind to and disable a specific coronavirus protein. Illustrations: Chris Philpot

2/5

STEP 2: SRI Biosciences’s SynFini system is a three-part automated chemistry suite for producing new compounds. Starting with a target compound from Iktos, SynRoute uses machine learning to analyze and optimize routes for creating that compound, with results in about 10 seconds. It prioritizes routes based on cost, likelihood of success, and ease of implementation.

3/5

STEP 3: SynJet, an automated inkjet printer platform, tests the routes by printing out tiny quantities of chemical ingredients to see how they react. If the right compound is produced, the platform tests it.

4/5

STEP 4: AutoSyn, an automated tabletop chemical plant, synthesizes milligrams to grams of the desired compound for further testing. Computer-selected “maps” dictate paths through the plant’s modular components.

5/5

STEP 5: The most promising compounds are tested against live virus samples.

Previous
Next

Iktos’s AI platform was created by a medicinal chemist and an AI expert. To tackle SARS-CoV-2, the company used generative models—deep-learning algorithms that generate new data—to “imagine” molecular structures with a good chance of disabling a key coronavirus protein.

For a new drug target, the software proposes and evaluates roughly 1 million compounds, says Gaston-Mathé. It’s an iterative process: At each step, the system generates 100 virtual compounds, which are tested in silico with predictive models to see how closely they meet the objectives. The test results are then used to design the next batch of compounds. “It’s like we have a very, very fast chemist who is designing compounds, testing compounds, getting back the data, then designing another batch of compounds,” he says.

The computer isn’t as smart as a human chemist, Gaston-Mathé notes, but it’s much faster, so it can explore far more of what people in the field call “chemical space”—the set of all possible organic compounds. Unexplored chemical space is huge: Biochemists estimate that there are at least 1063 possible druglike molecules, and that 99.9 percent of all possible small molecules or compounds have never been synthesized.

Still, designing a chemical compound isn’t the hardest part of creating a new drug. After a drug candidate is designed, it must be synthesized, and the highly manual process for synthesizing a new chemical hasn’t changed much in 200 years. It can take days to plan a synthesis process and then months to years to optimize it for manufacture.

That’s why Gaston-Mathé was eager to send Iktos’s AI-generated designs to Collins’s team at SRI Biosciences. With $13.8 million from the Defense Advanced Research Projects Agency, SRI Biosciences spent the last four years automating the synthesis process. The company’s automated suite of three technologies, called SynFini, can produce new chemical compounds in just hours or days, says Collins.

First, machine-learning software devises possible routes for making a desired molecule. Next, an inkjet printer platform tests the routes by printing out and mixing tiny quantities of chemical ingredients to see how they react with one another; if the right compound is produced, the platform runs tests on it. Finally, a tabletop chemical plant synthesizes milligrams to grams of the desired compound.

Less than four months after Iktos and SRI Biosciences announced their collaboration, they had designed and synthesized a first round of antiviral candidates for SARS-CoV-2. Now they’re testing how well the compounds work on actual samples of the virus.

Out of 10
63 possible druglike molecules, 99.9 percent have never been synthesized.

Theirs isn’t the only collaborationapplying new tools to drug discovery. In late March, Alex Zhavoronkov, CEO of Hong Kong–based Insilico Medicine, came across a YouTube video showing three virtual-reality avatars positioning colorful, sticklike fragments in the side of a bulbous blue protein. The three researchers were using VR to explore how compounds might bind to a SARS-CoV-2 enzyme. Zhavoronkov contacted the startup that created the simulation—Nanome, in San Diego—and invited it to examine Insilico’s ­AI-generated molecules in virtual reality.

Insilico runs an AI platform that uses biological data to train deep-learning algorithms, then uses those algorithms to identify molecules with druglike features that will likely bind to a protein target. A four-day training sprint in late January yielded 100 molecules that appear to bind to an important SARS-CoV-2 protease. The company recently began synthesizing some of those molecules for laboratory testing.

Nanome’s VR software, meanwhile, allows researchers to import a molecular structure, then view and manipulate it on the scale of individual atoms. Like human chess players who use computer programs to explore potential moves, chemists can use VR to predict how to make molecules more druglike, says Nanome CEO Steve McCloskey. “The tighter the interface between the human and the computer, the more information goes both ways,” he says.

Zhavoronkov sent data about several of Insilico’s compounds to Nanome, which re-created them in VR. Nanome’s chemist demonstrated chemical tweaks to potentially improve each compound. “It was a very good experience,” says Zhavoronkov.

Meanwhile, in March, Takeda Pharmaceutical Co., of Japan, invited Schrödinger, a New York–based company that develops chemical-simulation software, to join an alliance working on antivirals. Schrödinger’s AI focuses on the physics of how proteins interact with small molecules and one another.

The software sifts through billions of molecules per week to predict a compound’s properties, and it optimizes for multiple desired properties simultaneously, says Karen Akinsanya, chief biomedical scientist and head of discovery R&D at Schrödinger. “There’s a huge sense of urgency here to come up with a potent molecule, but also to come up with molecules that are going to be well tolerated” by the body, she says. Drug developers are seeking compounds that can be broadly used and easily administered, such as an oral drug rather than an intravenous drug, she adds.

Schrödinger evaluated four protein targets and performed virtual screens for two of them, a computing-intensive process. In June, Google Cloud donated the equivalent of 16 million hours of Nvidia GPU time for the company’s calculations. Next, the alliance’s drug companies will synthesize and test the most promising compounds identified by the virtual screens.

Other companies, including Amazon Web Services, IBM, and Intel, as well as several U.S. national labs are also donating time and resources to the Covid-19 High Performance Computing Consortium. The consortium is supporting 87 projects, which now have access to 6.8 million CPU cores, 50,000 GPUs, and 600 petaflops of computational resources.

While advanced technologies could transform early drug discovery, any new drug candidate still has a long road after that. It must be tested in animals, manufactured in large batches for clinical trials, then tested in a series of trials that, for antivirals, lasts an average of seven years.

In May, the BioMed X Institute in Germany launched a five-year project to build a Rapid Antiviral Response Platform, which would speed drug discovery all the way through manufacturing for clinical trials. The €40 million ($47 million) project, backed by drug companies, will identify ­outside-the-box proposals from young scientists, then provide space and funding to develop their ideas.

“We’ll focus on technologies that allow us to go from identification of a new virus to 10,000 doses of a novel potential therapeutic ready for trials in less than six months,” says BioMed X’s Tidona, who leads the project.

While a vaccine will likely arrive long before a bespoke antiviral does, experts expect COVID-19 to be with us for a long time, so the effort to develop a direct-acting, potent antiviral continues. Plus, having new antivirals—and tools to rapidly create more—can only help us prepare for the next pandemic, whether it comes next month or in another 102 years.

“We’ve got to start thinking differently about how to be more responsive to these kinds of threats,” says Collins. “It’s pushing us out of our comfort zones.”

This article appears in the October 2020 print issue as “Automating Antivirals.” Continue reading

Posted in Human Robots