Tag Archives: human

#437635 Toyota Research Demonstrates ...

Over the last several years, Toyota has been putting more muscle into forward-looking robotics research than just about anyone. In addition to the Toyota Research Institute (TRI), there’s that massive 175-acre robot-powered city of the future that Toyota still plans to build next to Mount Fuji. Even Toyota itself acknowledges that it might be crazy, but that’s just how they roll—as TRI CEO Gill Pratt told me a while back, when Toyota decides to do something, they really do go all-in on it.

TRI has been focusing heavily on home robots, which is reflective of the long-term nature of what TRI is trying to do, because home robots are both the place where we’ll need robots the most at the same time as they’re the place where it’s going to be hardest to deploy them. The unpredictable nature of homes, and the fact that homes tend to have squishy fragile people in them, are robot-unfriendly characteristics, but as the population continues to age (an increasingly acute problem in Japan), homes offer an enormous amount of potential for helping us maintain our independence.

Today, Toyota is showing off some of the research that it’s been working on recently, in the form of a virtual reality presentation in lieu of an in-person press event. For journalists, TRI pre-loaded the recording onto a VR headset, which was FedEx’ed to my house. You can watch the entire 40-minute presentation in 360 video on YouTube (or in VR if you have a headset of your own), but if you don’t watch the whole thing, you should at least check out the full-on GLaDOS (with arms) that TRI thinks belongs in your home.

The presentation features an introduction from Gill Pratt, who looks entirely too comfortable embedded inside of one of TRI’s telepresence robots. The event also covers a lot of territory, but the highlight is almost certainly the new hardware that TRI demonstrates.

Soft bubble gripper

Photo: TRI

This is a “soft bubble gripper,” under development at TRI’s Cambridge, Mass., branch. These passively-compliant, air-filled grippers make it easier to grasp many different kinds of objects safely, but the nifty thing is that they’ve got cameras inside of them watching a pattern of dots on the interior of the soft membrane.

When the outside of the bubble makes contact with an object, the bubble deforms, and the deformation of the dot pattern on the inside can be tracked by the camera to determine both directions and magnitudes of forces. This is a concept that we’ve seen elsewhere before, but TRI’s implementation is a clever way of making an inherently safe end effector that can still perform all the sensing you need it to do for relatively complex manipulation tasks.

The bubble gripper was presented at ICRA this year, and you can read the technical paper here.

Ceiling-mounted home robot

Photo: TRI

I don’t know whether robots dangling from the ceiling was somehow sinister pre-Portal, but it sure as heck is for me having played through that game a couple of times, and it’s since been reinforced by AUTO from WALL-E.

The reason that we generally see robots mounted on the floor or on tables or on mobile bases is that we’re bipeds, not bats, and giving a robot access to a human-like workspace is easiest to do if you also give that robot a human-like position and orientation. And if you want to be able to reach stuff high up, you do what TRI did with their previous generation of kitchen manipulator, and just give it the ability to make itself super tall. But TRI is convinced it’s a good place to put our future home robots:

One innovative concept is a “gantry robot” that would descend from an overhead framework to perform tasks such as loading the dishwasher, wiping surfaces, and clearing clutter. By traveling on the ceiling, the robot avoids the problems of navigating household floor clutter and navigating cramped spaces. When not in use, the robot would tuck itself up out of the way. To further investigate this idea, the team has built a laboratory prototype robot that can do all the same tasks as a floor-based mobile robot but with the innovative overhead mobility system.

Another obvious problem with the gantry robot is that you have to install all kinds of stuff in your ceiling for this to work, which makes it very impractical (if not totally impossible) to introduce a system like this into a home that wasn’t built specifically for it. If, however, you do build a home with a robot like this in mind, the animation below from TRI shows how it could be extra useful. Suddenly, stairs are a non-issue. Payload is presumably also a non-issue, since loads can be transferred to the ceiling. Batteries become unnecessary, so the whole robot can be much lighter weight, which in turn makes it safer. Sensors get a fantastic view, and obstacle avoidance becomes trivial.

Robots as “time machines”

Photo: TRI

TRI’s presentation covered more than what we’ve highlighted here—our focus has been on the hardware prototypes, but TRI had more to talk about, including learning through demonstration, scaling learning through simulation, and how TRI has been working with users to figure out what research directions should be explored. It’s all available right now on YouTube, and it’s well worth 40 minutes of your time.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings”
—Gill Pratt, TRI

It’s only been five years since Toyota announced the $1 billion investment that established TRI, and it feels like the progress that’s been made since then has been substantial. It’s not often that vision, resources, and long-term commitment come together like this, and TRI’s emphasis on making life better for people is one of the things that helps to keep us optimistic about the future of robotics.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings,” Gill Pratt told us. “And what it means to amplify a person, particularly as they’re aging—what we’re really trying to do is build a time machine. This may sound fanciful, and of course we can’t build a real time machine, but maybe we can build robotic assistants to make our lives as we age seem as if we are actually using a time machine.” He explains that it doesn’t mean building robots for convenience or to do our jobs for us. “It means building technology that enables us to continue to live and to work and to relate to each other as if we were younger,” he says. “And that’s really what our main goal is.” Continue reading

Posted in Human Robots

#437630 How Toyota Research Envisions the Future ...

Yesterday, the Toyota Research Institute (TRI) showed off some of the projects that it’s been working on recently, including a ceiling-mounted robot that could one day help us with household chores. That system is just one example of how TRI envisions the future of robotics and artificial intelligence. As TRI CEO Gill Pratt told us, the company is focusing on robotics and AI technology for “amplifying, rather than replacing, human beings.” In other words, Toyota wants to develop robots not for convenience or to do our jobs for us, but rather to allow people to continue to live and work independently even as we age.

To better understand Toyota’s vision of robotics 15 to 20 years from now, it’s worth watching the 20-minute video below, which depicts various scenarios “where the application of robotic capabilities is enabling members of an aging society to live full and independent lives in spite of the challenges that getting older brings.” It’s a long video, but it helps explains TRI’s perspective on how robots will collaborate with humans in our daily lives over the next couple of decades.

Those are some interesting conceptual telepresence-controlled bipeds they’ve got running around in that video, right?

For more details, we sent TRI some questions on how it plans to go from concepts like the ones shown in the video to real products that can be deployed in human environments. Below are answers from TRI CEO Gill Pratt, who is also chief scientist for Toyota Motor Corp.; Steffi Paepcke, senior UX designer at TRI; and Max Bajracharya, VP of robotics at TRI.

IEEE Spectrum: TRI seems to have a more explicit focus on eventual commercialization than most of the robotics research that we cover. At what point TRI starts to think about things like reliability and cost?

Photo: TRI

Toyota is exploring robots capable of manipulating dishes in a sink and a dishwasher, performing experiments and simulations to make sure that the robots can handle a wide range of conditions.

Gill Pratt: It’s a really interesting question, because the normal way to think about this would be to say, well, both reliability and cost are product development tasks. But actually, we need to think about it at the earliest possible stage with research as well. The hardware that we use in the laboratory for doing experiments, we don’t worry about cost there, or not nearly as much as you’d worry about for a product. However, in terms of what research we do, we very much have to think about, is it possible (if the research is successful) for it to end up in a product that has a reasonable cost. Because if a customer can’t afford what we come up with, maybe it has some academic value but it’s not actually going to make a difference in their quality of life in the real world. So we think about cost very much from the beginning.

The same is true with reliability. Right now, we’re working very hard to make our control techniques robust to wide variations in the environment. For instance, in work that Russ Tedrake is doing with manipulating dishes in a sink and a dishwasher, both in physical testing and in simulation, we’re doing thousands and now millions of different experiments to make sure that we can handle the edge cases and it works over a very wide range of conditions.

A tremendous amount of work that we do is trying to bring robotics out of the age of doing demonstrations. There’s been a history of robotics where for some time, things have not been reliable, so we’d catch the robot succeeding just once and then show that video to the world, and people would get the mis-impression that it worked all of the time. Some researchers have been very good about showing the blooper reel too, to show that some of the time, robots don’t work.

“A tremendous amount of work that we do is trying to bring robotics out of the age of doing demonstrations. There’s been a history of robotics where for some time, things have not been reliable, so we’d catch the robot succeeding just once and then show that video to the world, and people would get the mis-impression that it worked all of the time.”
—Gill Pratt, TRI

In the spirit of sharing things that didn’t work, can you tell us a bit about some of the robots that TRI has had under development that didn’t make it into the demo yesterday because they were abandoned along the way?

Steffi Paepcke: We’re really looking at how we can connect people; it can be hard to stay in touch and see our loved ones as much as we would like to. There have been a few prototypes that we’ve worked on that had to be put on the shelf, at least for the time being. We were exploring how to use light so that people could be ambiently aware of one another across distances. I was very excited about that—the internal name was “glowing orb.” For a variety of reasons, it didn’t work out, but it was really fascinating to investigate different modalities for keeping in touch.

Another prototype we worked on—we found through our research that grocery shopping is obviously an important part of life, and for a lot of older adults, it’s not necessarily the right answer to always have groceries delivered. Getting up and getting out of the house keeps you physically active, and a lot of people prefer to continue doing it themselves. But it can be challenging, especially if you’re purchasing heavy items that you need to transport. We had a prototype that assisted with grocery shopping, but when we pivoted our focus to Japan, we found that the inside of a Japanese home really needs to stay inside, and the outside needs to stay outside, so a robot that traverses both domains is probably not the right fit for a Japanese audience, and those were some really valuable lessons for us.

Photo: TRI

Toyota recently demonstrated a gantry robot that would hang from the ceiling to perform tasks like wiping surfaces and clearing clutter.

I love that TRI is exploring things like the gantry robot both in terms of near-term research and as part of its long-term vision, but is a robot like this actually worth pursuing? Or more generally, what’s the right way to compromise between making an environment robot friendly, and asking humans to make changes to their homes?

Max Bajracharya: We think a lot about the problems that we’re trying to address in a holistic way. We don’t want to just give people a robot, and assume that they’re not going to change anything about their lifestyle. We have a lot of evidence from people who use automated vacuum cleaners that people will adapt to the tools you give them, and they’ll change their lifestyle. So we want to think about what is that trade between changing the environment, and giving people robotic assistance and tools.

We certainly think that there are ways to make the gantry system plausible. The one you saw today is obviously a prototype and does require significant infrastructure. If we’re going to retrofit a home, that isn’t going to be the way to do it. But we still feel like we’re very much in the prototype phase, where we’re trying to understand whether this is worth it to be able to bypass navigation challenges, and coming up with the pros and cons of the gantry system. We’re evaluating whether we think this is the right approach to solving the problem.

To what extent do you think humans should be either directly or indirectly in the loop with home and service robots?

Bajracharya: Our goal is to amplify people, so achieving this is going to require robots to be in a loop with people in some form. One thing we have learned is that using people in a slow loop with robots, such as teaching them or helping them when they make mistakes, gives a robot an important advantage over one that has to do everything perfectly 100 percent of the time. In unstructured human environments, robots are going to encounter corner cases, and are going to need to learn to adapt. People will likely play an important role in helping the robots learn. Continue reading

Posted in Human Robots

#437628 Video Friday: An In-Depth Look at Mesmer ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Bear Robotics, a robotics and artificial intelligence company, and SoftBank Robotics Group, a leading robotics manufacturer and solutions provider, have collaborated to bring a new robot named Servi to the food service and hospitality field.

[ Bear Robotics ]

A literal in-depth look at Engineered Arts’ Mesmer android.

[ Engineered Arts ]

Is your robot running ROS? Is it connected to the Internet? Are you actually in control of it right now? Are you sure?

I appreciate how the researchers admitted to finding two of their own robots as part of the scan, a Baxter and a drone.

[ Brown ]

Smile Robotics describes this as “(possibly) world’s first full-autonomous clear-up-the-table robot.”

We’re not qualified to make a judgement on the world firstness, but personally I hate clearing tables, so this robot has my vote.

Smile Robotics founder and CEO Takashi Ogura, along with chief engineer Mitsutaka Kabasawa and engineer Kazuya Kobayashi, are former Google roboticists. Ogura also worked at SCHAFT. Smile says its robot uses ROS and is controlled by a framework written mainly in Rust, adding: “We are hiring Rustacean Roboticists!”

[ Smile Robotics ]

We’re not entirely sure why, but Panasonic has released plans for an Internet of Things system for hamsters.

We devised a recipe for a “small animal healthcare device” that can measure the weight and activity of small animals, the temperature and humidity of the breeding environment, and manage their health. This healthcare device visualizes the health status and breeding environment of small animals and manages their health to promote early detection of diseases. While imagining the scene where a healthcare device is actually used for an important small animal that we treat with affection, we hope to help overcome the current difficult situation through manufacturing.

[ Panasonic ] via [ RobotStart ]

Researchers at Yale have developed a robotic fabric, a breakthrough that could lead to such innovations as adaptive clothing, self-deploying shelters, or lightweight shape-changing machinery.

The researchers focused on processing functional materials into fiber-form so they could be integrated into fabrics while retaining its advantageous properties. For example, they made variable stiffness fibers out of an epoxy embedded with particles of Field’s metal, an alloy that liquifies at relatively low temperatures. When cool, the particles are solid metal and make the material stiffer; when warm, the particles melt into liquid and make the material softer.

[ Yale ]

In collaboration with Armasuisse and SBB, RSL demonstrated the use of a teleoperated Menzi Muck M545 to clean up a rock slide in Central Switzerland. The machine can be operated from a teloperation platform with visual and motion feedback. The walking excavator features an active chassis that can adapt to uneven terrain.


An international team of JKU researchers is continuing to develop their vision for robots made out of soft materials. A new article in the journal “Communications Materials” demonstrates just how these kinds of soft machines react using weak magnetic fields to move very quickly. A triangle-shaped robot can roll itself in air at high speed and walk forward when exposed to an alternating in-plane square wave magnetic field (3.5 mT, 1.5 Hz). The diameter of the robot is 18 mm with a thickness of 80 µm. A six-arm robot can grab, transport, and release non-magnetic objects such as a polyurethane foam cube controlled by a permanent magnet.

Okay but tell me more about that cute sheep.

[ JKU ]

Interbotix has this “research level robotic crawler,” which both looks mean and runs ROS, a dangerous combination.

And here’s how it all came together:

[ Interbotix ]

I guess if you call them “loitering missile systems” rather than “drones that blow things up” people are less likely to get upset?

[ AeroVironment ]

In this video, we show a planner for a master dual-arm robot to manipulate tethered tools with an assistant dual-arm robot’s help. The assistant robot provides assistance to the master robot by manipulating the tool cable and avoiding collisions. The provided assistance allows the master robot to perform tool placements on the robot workspace table to regrasp the tool, which would typically fail since the tool cable tension may change the tool positions. It also allows the master robot to perform tool handovers, which would normally cause entanglements or collisions with the cable and the environment without the assistance.

[ Harada Lab ]

This video shows a flexible and robust robotic system for autonomous drawing on 3D surfaces. The system takes 2D drawing strokes and a 3D target surface (mesh or point clouds) as input. It maps the 2D strokes onto the 3D surface and generates a robot motion to draw the mapped strokes using visual recognition, grasp pose reasoning, and motion planning.

[ Harada Lab ]

Weekly mobility test. This time the Warthog takes on a fallen tree. Will it cross it? The answer is in the video!

And the answer is: kinda?


One of the advantages of walking machines is their ability to apply forces in all directions and of various magnitudes to the environment. Many of the multi-legged robots are equipped with point contact feet as these simplify the design and control of the robot. The iStruct project focuses on the development of a foot that allows extensive contact with the environment.

[ DFKI ]

An urgent medical transport was simulated in NASA’s second Systems Integration and Operationalization (SIO) demonstration Sept. 28 with partner Bell Textron Inc. Bell used the remotely-piloted APT 70 to conduct a flight representing an urgent medical transport mission. It is envisioned in the future that an operational APT 70 could provide rapid medical transport for blood, organs, and perishable medical supplies (payload up to 70 pounds). The APT 70 is estimated to move three times as fast as ground transportation.

Always a little suspicious when the video just shows the drone flying, and sitting on the ground, but not that tricky transition between those two states.

[ NASA ]

A Lockheed Martin Robotics Seminar on “Socially Assistive Mobile Robots,” by Yi Guo from Stevens Institute of Technology.

The use of autonomous mobile robots in human environments is on the rise. Assistive robots have been seen in real-world environments, such as robot guides in airports, robot polices in public parks, and patrolling robots in supermarkets. In this talk, I will first present current research activities conducted in the Robotics and Automation Laboratory at Stevens. I’ll then focus on robot-assisted pedestrian regulation, where pedestrian flows are regulated and optimized through passive human-robot interaction.

[ UMD ]

This week’s CMU RI Seminar is by CMU’s Zachary Manchester, on “The World’s Tiniest Space Program.”

The aerospace industry has experienced a dramatic shift over the last decade: Flying a spacecraft has gone from something only national governments and large defense contractors could afford to something a small startup can accomplish on a shoestring budget. A virtuous cycle has developed where lower costs have led to more launches and the growth of new markets for space-based data. However, many barriers remain. This talk will focus on driving these trends to their ultimate limit by harnessing advances in electronics, planning, and control to build spacecraft that cost less than a new smartphone and can be deployed in large numbers.

[ CMU RI ] Continue reading

Posted in Human Robots

#437624 AI-Powered Drone Learns Extreme ...

Quadrotors are among the most agile and dynamic machines ever created. In the hands of a skilled human pilot, they can do some astonishing series of maneuvers. And while autonomous flying robots have been getting better at flying dynamically in real-world environments, they still haven’t demonstrated the same level of agility of manually piloted ones.

Now researchers from the Robotics and Perception Group at the University of Zurich and ETH Zurich, in collaboration with Intel, have developed a neural network training method that “enables an autonomous quadrotor to fly extreme acrobatic maneuvers with only onboard sensing and computation.” Extreme.

There are two notable things here: First, the quadrotor can do these extreme acrobatics outdoors without any kind of external camera or motion-tracking system to help it out (all sensing and computing is onboard). Second, all of the AI training is done in simulation, without the need for an additional simulation-to-real-world (what researchers call “sim-to-real”) transfer step. Usually, a sim-to-real transfer step means putting your quadrotor into one of those aforementioned external tracking systems, so that it doesn’t completely bork itself while trying to reconcile the differences between the simulated world and the real world, where, as the researchers wrote in a paper describing their system, “even tiny mistakes can result in catastrophic outcomes.”

To enable “zero-shot” sim-to-real transfer, the neural net training in simulation uses an expert controller that knows exactly what’s going on to teach a “student controller” that has much less perfect knowledge. That is, the simulated sensory input that the student ends up using as it learns to follow the expert has been abstracted to present the kind of imperfect, imprecise data it’s going to encounter in the real world. This can involve things like abstracting away the image part of the simulation until you’d have no way of telling the difference between abstracted simulation and abstracted reality, which is what allows the system to make that sim-to-real leap.

The simulation environment that the researchers used was Gazebo, slightly modified to better simulate quadrotor physics. Meanwhile, over in reality, a custom 1.5-kilogram quadrotor with a 4:1 thrust to weight ratio performed the physical experiments, using only a Nvidia Jetson TX2 computing board and an Intel RealSense T265, a dual fisheye camera module optimized for V-SLAM. To challenge the learning system, it was trained to perform three acrobatic maneuvers plus a combo of all of them:

Image: University of Zurich/ETH Zurich/Intel

Reference trajectories for acrobatic maneuvers. Top row, from left: Power Loop, Barrel Roll, and Matty Flip. Bottom row: Combo.

All of these maneuvers require high accelerations of up to 3 g’s and careful control, and the Matty Flip is particularly challenging, at least for humans, because the whole thing is done while the drone is flying backwards. Still, after just a few hours of training in simulation, the drone was totally real-world competent at these tricks, and could even extrapolate a little bit to perform maneuvers that it was not explicitly trained on, like doing multiple loops in a row. Where humans still have the advantage over drones is (as you might expect since we’re talking about robots) is quickly reacting to novel or unexpected situations. And when you’re doing this sort of thing outdoors, novel and unexpected situations are everywhere, from a gust of wind to a jealous bird.

For more details, we spoke with Antonio Loquercio from the University of Zurich’s Robotics and Perception Group.

IEEE Spectrum: Can you explain how the abstraction layer interfaces with the simulated sensors to enable effective sim-to-real transfer?

Antonio Loquercio: The abstraction layer applies a specific function to the raw sensor information. Exactly the same function is applied to the real and simulated sensors. The result of the function, which is “abstracted sensor measurements,” makes simulated and real observation of the same scene similar. For example, suppose we have a sequence of simulated and real images. We can very easily tell apart the real from the simulated ones given the difference in rendering. But if we apply the abstraction function of “feature tracks,” which are point correspondences in time, it becomes very difficult to tell which are the simulated and real feature tracks, since point correspondences are independent of the rendering. This applies for humans as well as for neural networks: Training policies on raw images gives low sim-to-real transfer (since images are too different between domains), while training on the abstracted images has high transfer abilities.

How useful is visual input from a camera like the Intel RealSense T265 for state estimation during such aggressive maneuvers? Would using an event camera substantially improve state estimation?

Our end-to-end controller does not require a state estimation module. It shares however some components with traditional state estimation pipelines, specifically the feature extractor and the inertial measurement unit (IMU) pre-processing and integration function. The input of the neural networks are feature tracks and integrated IMU measurements. When looking at images with low features (for example when the camera points to the sky), the neural net will mainly rely on IMU. When more features are available, the network uses to correct the accumulated drift from IMU. Overall, we noticed that for very short maneuvers IMU measurements were sufficient for the task. However, for longer ones, visual information was necessary to successfully address the IMU drift and complete the maneuver. Indeed, visual information reduces the odds of a crash by up to 30 percent in the longest maneuvers. We definitely think that event camera can improve even more the current approach since they could provide valuable visual information during high speed.

“The Matty Flip is probably one of the maneuvers that our approach can do very well … It is super challenging for humans, since they don’t see where they’re going and have problems in estimating their speed. For our approach the maneuver is no problem at all, since we can estimate forward velocities as well as backward velocities.”
—Antonio Loquercio, University of Zurich

You describe being able to train on “maneuvers that stretch the abilities of even expert human pilots.” What are some examples of acrobatics that your drones might be able to do that most human pilots would not be capable of?

The Matty Flip is probably one of the maneuvers that our approach can do very well, but human pilots find very challenging. It basically entails doing a high speed power loop by always looking backward. It is super challenging for humans, since they don’t see where they’re going and have problems in estimating their speed. For our approach the maneuver is no problem at all, since we can estimate forward velocities as well as backward velocities.

What are the limits to the performance of this system?

At the moment the main limitation is the maneuver duration. We never trained a controller that could perform maneuvers longer than 20 seconds. In the future, we plan to address this limitation and train general controllers which can fly in that agile way for significantly longer with relatively small drift. In this way, we could start being competitive against human pilots in drone racing competitions.

Can you talk about how the techniques developed here could be applied beyond drone acrobatics?

The current approach allows us to do acrobatics and agile flight in free space. We are now working to perform agile flight in cluttered environments, which requires a higher degree of understanding of the surrounding with respect to this project. Drone acrobatics is of course only an example application. We selected it because it makes a stress test of the controller performance. However, several other applications which require fast and agile flight can benefit from our approach. Examples are delivery (we want our Amazon packets always faster, don’t we?), search and rescue, or inspection. Going faster allows us to cover more space in less time, saving battery costs. Indeed, agile flight has very similar battery consumption of slow hovering for an autonomous drone.

“Deep Drone Acrobatics,” by Elia Kaufmann, Antonio Loquercio, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide Scaramuzza from the Robotics and Perception Group at the University of Zurich and ETH Zurich, and Intel’s Intelligent Systems Lab, was presented at RSS 2020. Continue reading

Posted in Human Robots

#437614 Video Friday: Poimo Is a Portable ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Engineers at the University of California San Diego have built a squid-like robot that can swim untethered, propelling itself by generating jets of water. The robot carries its own power source inside its body. It can also carry a sensor, such as a camera, for underwater exploration.

[ UCSD ]

Thanks Ioana!

Shark Robotics, French and European leader in Unmanned Ground Vehicles, is announcing today a disinfection add-on for Boston Dynamics Spot robot, designed to fight the COVID-19 pandemic. The Spot robot with Shark’s purpose-built disinfection payload can decontaminate up to 2,000 m2 in 15 minutes, in any space that needs to be sanitized – such as hospitals, metro stations, offices, warehouses or facilities.

[ Shark Robotics ]

Here’s an update on the Poimo portable inflatable mobility project we wrote about a little while ago; while not strictly robotics, it seems like it holds some promise for rapidly developing different soft structures that robotics might find useful.

[ University of Tokyo ]

Thanks Ryuma!

Pretty cool that you can do useful force feedback teleop while video chatting through a “regular broadband Internet connection.” Although, what “regular” means to you is a bit subjective, right?

[ HEBI Robotics ]

Thanks Dave!

While NASA's Mars rover Perseverance travels through space toward the Red Planet, its nearly identical rover twin is hard at work on Earth. The vehicle system test bed (VSTB) rover named OPTIMISM is a full-scale engineering version of the Mars-bound rover. It is used to test hardware and software before the commands are sent up to the Perseverance rover.

[ NASA ]

Jacquard takes ordinary, familiar objects and enhances them with new digital abilities and experiences, while remaining true to their original purpose — like being your favorite jacket, backpack or a pair of shoes that you love to wear.

Our ambition is simple: to make life easier. By staying connected to your digital world, your things can do so much more. Skip a song by brushing your sleeve. Take a picture by tapping on a shoulder strap. Get reminded about the phone you left behind with a blink of light or a haptic buzz on your cuff.

[ Google ATAP ]

Should you attend the IROS 2020 workshop on “Planetary Exploration Robots: Challenges and Opportunities”? Of course you should!

[ Workshop ]

Kuka makes a lot of these videos where I can’t help but think that if they put as much effort into programming the robot as they did into producing the video, the result would be much more impressive.

[ Kuka ]

The Colorado School of Mines is one of the first customers to buy a Spot robot from Boston Dynamics to help with robotics research. Watch as scientists take Spot into the school's mine for the first time.

[ HCR ] via [ CNET ]

A very interesting soft(ish) actuator from Ayato Kanada at Kyushu University's Control Engineering Lab.

A flexible ultrasonic motor (FUSM), which generates linear motion as a novel soft actuator. This motor consists of a single metal cube stator with a hole and an elastic elongated coil spring inserted into the hole. When voltages are applied to piezoelectric plates on the stator, the coil spring moves back and forward as a linear slider. In the FUSM that uses the friction drive as the principle, the most important parameter for optimizing its output is the preload between the stator and slider. The coil spring has a slightly larger diameter than the stator hole and generates the preload by expanding in a radial direction. The coil springs act not only as a flexible slider but also as a resistive positional sensor. Changes in the resistance between the stator and the coil spring end are converted to a voltage and used for position detection.

[ Control Engineering Lab ]

Thanks Ayato!

We show how to use the limbs of a quadruped robot to identify fine-grained soil, representative for Martian regolith.

[ Paper ] via [ ANYmal Research ]

PR2 is serving breakfast and cleaning up afterwards. It’s slow, but all you have to do is eat and leave.

That poor PR2 is a little more naked than it's probably comfortable with.

[ EASE ]

NVIDIA researchers present a hierarchical framework that combines model-based control and reinforcement learning (RL) to synthesize robust controllers for a quadruped robot (the Unitree Laikago).


What's interesting about this assembly task is that the robot is using its arm only for positioning, and doing the actual assembly with just fingers.

[ RC2L ]

In this electronics assembly application, Kawasaki's cobot duAro2 uses a tool changing station to tackle a multitude of tasks and assemble different CPU models.

Okay but can it apply thermal paste to a CPU in the right way? Personally, I find that impossible.

[ Kawasaki ]

You only need to watch this video long enough to appreciate the concept of putting a robot on a robot.

[ Impress ]

In this lecture, we’ll hear from the man behind one of the biggest robotics companies in the world, Boston Dynamics, whose robotic dog, Spot, has been used to encourage social distancing in Singapore and is now getting ready for FDA approval to be able to measure patients’ vital signs in hospitals.

[ Alan Turing Institute ]

Greg Kahn from UC Berkeley wrote in to share his recent dissertation talk on “Mobile Robot Learning.”

In order to create mobile robots that can autonomously navigate real-world environments, we need generalizable perception and control systems that can reason about the outcomes of navigational decisions. Learning-based methods, in which the robot learns to navigate by observing the outcomes of navigational decisions in the real world, offer considerable promise for obtaining these intelligent navigation systems. However, there are many challenges impeding mobile robots from autonomously learning to act in the real-world, in particular (1) sample-efficiency–how to learn using a limited amount of data? (2) supervision–how to tell the robot what to do? and (3) safety–how to ensure the robot and environment are not damaged or destroyed during learning? In this talk, I will present deep reinforcement learning methods for addressing these real world mobile robot learning challenges and show results which enable ground and aerial robots to navigate in complex indoor and outdoor environments.

[ UC Berkeley ]

Thanks Greg!

Leila Takayama from UC Santa Cruz (and previously Google X and Willow Garage) gives a talk entitled “Toward a more human-centered future of robotics.”

Robots are no longer only in outer space, in factory cages, or in our imaginations. We interact with robotic agents when withdrawing cash from bank ATMs, driving cars with adaptive cruise control, and tuning our smart home thermostats. In the moment of those interactions with robotic agents, we behave in ways that do not necessarily align with the rational belief that robots are just plain machines. Through a combination of controlled experiments and field studies, we use theories and concepts from the social sciences to explore ways that human and robotic agents come together, including how people interact with personal robots and how people interact through telepresence robots. Together, we will explore topics and raise questions about the psychology of human-robot interaction and how we could invent a future of a more human-centered robotics that we actually want to live in.

[ Leila Takayama ]

Roboticist and stand-up comedian Naomi Fitter from Oregon State University gives a talk on “Everything I Know about Telepresence.”

Telepresence robots hold promise to connect people by providing videoconferencing and navigation abilities in far-away environments. At the same time, the impacts of current commercial telepresence robots are not well understood, and circumstances of robot use including internet connection stability, odd personalizations, and interpersonal relationship between a robot operator and people co-located with the robot can overshadow the benefit of the robot itself. And although the idea of telepresence robots has been around for over two decades, available nonverbal expressive abilities through telepresence robots are limited, and suitable operator user interfaces for the robot (for example, controls that allow for the operator to hold a conversation and move the robot simultaneously) remain elusive. So where should we be using telepresence robots? Are there any pitfalls to watch out for? What do we know about potential robot expressivity and user interfaces? This talk will cover my attempts to address these questions and ways in which the robotics research community can build off of this work

[ Talking Robotics ] Continue reading

Posted in Human Robots