Tag Archives: forward

#439095 DARPA Prepares for the Subterranean ...

The DARPA Subterranean Challenge Final Event is scheduled to take place at the Louisville Mega Cavern in Louisville, Kentucky, from September 21 to 23. We’ve followed SubT teams as they’ve explored their way through abandoned mines, unfinished nuclear reactors, and a variety of caves, and now everything comes together in one final course where the winner of the Systems Track will take home the $2 million first prize.

It’s a fitting reward for teams that have been solving some of the hardest problems in robotics, but winning isn’t going to be easy, and we’ll talk with SubT Program Manager Tim Chung about what we have to look forward to.

Since we haven’t talked about SubT in a little while (what with the unfortunate covid-related cancellation of the Systems Track Cave Circuit), here’s a quick refresher of where we are: the teams have made it through the Tunnel Circuit, the Urban Circuit, and a virtual version of the Cave Circuit, and some of them have been testing in caves of their own. The Final Event will include all of these environments, and the teams of robots will have 60 minutes to autonomously map the course, locating artifacts to score points. Since I’m not sure where on Earth there’s an underground location that combines tunnels and caves with urban structures, DARPA is going to have to get creative, and the location in which they’ve chosen to do that is Louisville, Kentucky.

The Louisville Mega Cavern is a former limestone mine, most of which is under the Louisville Zoo. It’s not all that deep, mostly less than 30 meters under the surface, but it’s enormous: with 370,000 square meters of rooms and passages, the cavern currently hosts (among other things) a business park, a zipline course, and mountain bike trails, because why not. While DARPA is keeping pretty quiet on the details, I’m guessing that they’ll be taking over a chunk of the cavern and filling it with features representing as many of the environmental challenges as they can.

To learn more about how the SubT Final Event is going to go, we spoke with SubT Program Manager Tim Chung. But first, we talked about Tim’s perspective on the success of the Urban Circuit, and how teams have been managing without an in-person Cave Circuit.

IEEE Spectrum: How did the SubT Urban Circuit go?

Tim Chung: On a couple fronts, Urban Circuit was really exciting. We were in this unfinished nuclear power plant—I’d be surprised if any of the competitors had prior experience in such a facility, or anything like it. I think that was illuminating both from an experiential point of view for the competitors, but also from a technology point of view, too.

One thing that I thought was really interesting was that we, DARPA, didn't need to make the venue more challenging. The real world is really that hard. There are places that were just really heinous for these robots to have to navigate through in order to look in every nook and cranny for artifacts. There were corners and doorways and small corridors and all these kind of things that really forced the teams to have to work hard, and the feedback was, why did DARPA have to make it so hard? But we didn’t, and in fact there were places that for the safety of the robots and personnel, we had to ensure the robots couldn’t go.

It sounds like some teams thought this course was on the more difficult side—do you think you tuned it to just the right amount of DARPA-hard?

Our calibration worked quite well. We were able to tease out and help refine and better understand what technologies are both useful and critical and also those technologies that might not necessarily get you the leap ahead capability. So as an example, the Urban Circuit really emphasized verticality, where you have to be able to sense, understand, and maneuver in three dimensions. Being able to capitalize on their robot technologies to address that verticality really stratified the teams, and showed how critical those capabilities are.

We saw teams that brought a lot of those capabilities do very well, and teams that brought baseline capabilities do what they could on the single floor that they were able to operate on. And so I think we got the Goldilocks solution for Urban Circuit that combined both difficulty and ambition.

Photos: Evan Ackerman/IEEE Spectrum

Two SubT Teams embedded networking equipment in balls that they could throw onto the course.

One of the things that I found interesting was that two teams independently came up with throwable network nodes. What was DARPA’s reaction to this? Is any solution a good solution, or was it more like the teams were trying to game the system?

You mean, do we want teams to game the rules in any way so as to get a competitive advantage? I don't think that's what the teams were doing. I think they were operating not only within the bounds of the rules, which permitted such a thing as throwable sensors where you could stand at the line and see how far you could chuck these things—not only was that acceptable by the rules, but anticipated. Behind the scenes, we tried to do exactly what these teams are doing and think through different approaches, so we explicitly didn't forbid such things in our rules because we thought it's important to have as wide an aperture as possible.

With these comms nodes specifically, I think they’re pretty clever. They were in some cases hacked together with a variety of different sports paraphernalia to see what would provide the best cushioning. You know, a lot of that happens in the field, and what it captured was that sometimes you just need to be up at two in the morning and thinking about things in a slightly different way, and that's when some nuggets of innovation can arise, and we see this all the time with operators in the field as well. They might only have duct tape or Styrofoam or whatever the case may be and that's when they come up with different ways to solve these problems. I think from DARPA’s perspective, and certainly from my perspective, wherever innovation can strike, we want to try to encourage and inspire those opportunities. I thought it was great, and it’s all part of the challenge.

Is there anything you can tell us about what your original plan had been for the Cave Circuit?

I can say that we’ve had the opportunity to go through a number of these caves scattered all throughout the country, and engage with caving communities—cavers clubs, speleologists that conduct research, and then of course the cave rescue community. The single biggest takeaway
is that every cave, and there are tens of thousands of them in the US alone, every cave has its own personality, and a lot of that personality is quite hidden from humans, because we can’t explore or access all of the cave. This led us to a number of different caves that were intriguing from a DARPA perspective but also inspirational for our Cave Circuit Virtual Competition.

How do you feel like the tuning was for the Virtual Cave Circuit?

The Virtual Competition, as you well know, was exciting in the sense that we could basically combine eight worlds into one competition, whereas the systems track competition really didn’t give us that opportunity. Even if we were able have held the Cave Circuit Systems Competition in person, it would have been at one site, and it would have been challenging to represent the level of diversity that we could with the Virtual Competition. So I think from that perspective, it’s clearly an advantage in terms of calibration—diversity gets you the ability to aggregate results to capture those that excel across all worlds as well as those that do well in one world or some worlds and not the others. I think the calibration was great in the sense that we were able to see the gamut of performance. Those that did well, did quite well, and those that have room to grow showed where those opportunities are for them as well.

We had to find ways to capture that diversity and that representativeness, and I think one of the fun ways we did that was with the different cave world tiles that we were able to combine in a variety of different ways. We also made use of a real world data set that we were able to take from a laser scan. Across the board, we had a really great chance to illustrate why virtual testing and simulation still plays such a dominant role in robotics technology development, and why I think it will continue to play an increasing role for developing these types of autonomy solutions.

Photo: Team CSIRO Data 61

How can systems track teams learn from their testing in whatever cave is local to them and effectively apply that to whatever cave environment is part of the final considering what the diversity of caves is?

I think that hits the nail on the head for what we as technologists are trying to discover—what are the transferable generalizable insights and how does that inform our technology development? As roboticists we want to optimize our systems to perform well at the tasks that they were designed to do, and oftentimes that means specialization because we get increased performance at the expense of being a generalist robot. I think in the case of SubT, we want to have our cake and eat it too—we want robots that perform well and reliably, but we want them to do so not just in one environment, which is how we tend to think about robot performance, but we want them to operate well in many environments, many of which have yet to be faced.

And I think that's kind of the nuance here, that we want robot systems to be generalists for the sake of being able to handle the unknown, namely the real world, but still achieve a high level of performance and perhaps they do that to their combined use of different technologies or advances in autonomy or perception approaches or novel mechanisms or mobility, but somehow they're still able, at least in aggregate, to achieve high performance.

We know these teams eagerly await any type of clue that DARPA can provide like about the SubT environments. From the environment previews for Tunnel, Urban, and even Cave, the teams were pivoting around and thinking a little bit differently. The takeaway, however, was that they didn't go to a clean sheet design—their systems were flexible enough that they could incorporate some of those specialist trends while still maintaining the notion of a generalist framework.

Looking ahead to the SubT Final, what can you tell us about the Louisville Mega Cavern?

As always, I’ll keep you in suspense until we get you there, but I can say that from the beginning of the SubT Challenge we had always envisioned teams of robots that are able to address not only the uncertainty of what's right in front of them, but also the uncertainty of what comes next. So I think the teams will be advantaged by thinking through subdomain awareness, or domain awareness if you want to generalize it, whether that means tuning multi-purpose robots, or deploying different robots, or employing your team of robots differently. Knowing which subdomain you are in is likely to be helpful, because then you can take advantage of those unique lessons learned through all those previous experiences then capitalize on that.

As far as specifics, I think the Mega Cavern offers many of the features important to what it means to be underground, while giving DARPA a pretty blank canvas to realize our vision of the SubT Challenge.

The SubT Final will be different from the earlier circuits in that there’s just one 60-minute run, rather than two. This is going to make things a lot more stressful for teams who have experienced bad robot days—why do it this way?

The preliminary round has two 30-minute runs, and those two runs are very similar to how we have done it during the circuits, of a single run per configuration per course. Teams will have the opportunity to show that their systems can face the obstacles in the final course, and it's the sum of those scores much like we did during the circuits, to help mitigate some of the concerns that you mentioned of having one robot somehow ruin their chances at a prize.

The prize round does give DARPA as well as the community a chance to focus on the top six teams from the preliminary round, and allows us to understand how they came to be at the top of the pack while emphasizing their technological contributions. The prize round will be one and done, but all of these teams we anticipate will be putting their best robot forward and will show the world why they deserve to win the SubT Challenge.

We’ve always thought that when called upon these robots need to operate in really challenging environments, and in the context of real world operations, there is no second chance. I don't think it's actually that much of a departure from our interests and insistence on bringing reliable technologies to the field, and those teams that might have something break here and there, that's all part of the challenge, of being resilient. Many teams struggled with robots that were debilitated on the course, and they still found ways to succeed and overcome that in the field, so maybe the rules emphasize that desire for showing up and working on game day which is consistent, I think, with how we've always envisioned it. This isn’t to say that these systems have to work perfectly, they just have to work in a way such that the team is resilient enough to tackle anything that they face.

It’s not too late for teams to enter for both the Virtual Track and the Systems Track to compete in the SubT Final, right?

Yes, that's absolutely right. Qualifications are still open, we are eager to welcome new teams to join in along with our existing competitors. I think any dark horse competitors coming into the Finals may be able to bring something that we haven't seen before, and that would be really exciting. I think it'll really make for an incredibly vibrant and illuminating final event.

The final event qualification deadline for the Systems Competition is April 21, and the qualification deadline for the Virtual Competition is June 29. More details here. Continue reading

Posted in Human Robots

#439055 Stretch Is Boston Dynamics’ Take on a ...

Today, Boston Dynamics is announcing Stretch, a mobile robot designed to autonomously move boxes around warehouses. At first glance, you might be wondering why the heck this is a Boston Dynamics robot at all, since the dynamic mobility that we associate with most of their platforms is notably absent. The combination of strength and speed in Stretch’s arm is something we haven’t seen before in a mobile robot, and it’s what makes this a unique and potentially exciting entry into the warehouse robotics space.

Useful mobile manipulation in any environment that’s not almost entirely structured is still a significant challenge in robotics, and it requires a very difficult combination of sensing, intelligence, and dynamic motion, all of which are classic Boston Dynamics. But also classic Boston Dynamics is building really cool platforms, and only later trying to figure out a way of making them commercially viable. So why Stretch, why boxes, why now, and (the real question) why not Handle? We talk with Boston Dynamics’ Vice President of Product Engineering Kevin Blankespoor to find out.

Stretch is very explicitly a box-handling mobile robot for relatively well structured warehouses. It’s in no way designed to be a generalist that many of Boston Dynamics’ other robots are. And to be fair, this is absolutely how to make a robot that’s practical and cost effective right out of the crate: Identify a task that is dull or dirty or dangerous for humans, design a robot to do that task safely and efficiently, and deploy it with the expectation that it’ll be really good at that task but not necessarily much else. This is a very different approach than a robot like Spot, where the platform came first and the practical applications came later—with Stretch, it’s all about that specific task in a specific environment.

There are already robotic solutions for truck unloading, palletizing, and depalletizing, but Stretch seems to be uniquely capable. For truck unloading, the highest performance systems that I’m aware of are monstrous things (here’s one example from Honeywell) that use a ton of custom hardware to just sort of ingest the cargo within a trailer all at once. In a highly structured and predictable warehouse, this sort of thing may pay off over the long term, but it’s going to be extremely expensive and not very versatile at all.

Palletizing and depalletizing robots are much more common in warehouses today. They’re almost always large industrial arms surrounded by a network of custom conveyor belts and whatnot, suffering from the same sorts of constraints as a truck unloader— very capable in some situations, but generally high cost and low flexibility.

Photo: Boston Dynamics

Stretch is probably not going to be able to compete with either of these types of dedicated systems when it comes to sheer speed, but it offers lots of other critical advantages: It’s fast and easy to deploy, easy to use, and adaptable to a variety of different tasks without costly infrastructure changes. It’s also very much not Handle, which was Boston Dynamics’ earlier (although not that much earlier) attempt at a box-handling robot for warehouses, and (let’s be honest here) a much more Boston Dynamics-y thing than Stretch seems to be. To learn more about why the answer is Stretch rather than Handle, and how Stretch will fit into the warehouse of the very near future, we spoke with Kevin Blankespoor, Boston Dynamics’ VP of Product Engineering and chief engineer for both Handle and Stretch.

IEEE Spectrum: Tell me about Stretch!

Kevin Blankespoor: Stretch is the first mobile robot that we’ve designed specifically for the warehouse. It’s all about moving boxes. Stretch is a flexible robot that can move throughout the warehouse and do different tasks. During a typical day in the life of Stretch in the future, it might spend the morning on the inbound side of the warehouse unloading boxes from trucks. It might spend the afternoon in the aisles of the warehouse building up pallets to go to retailers and e-commerce facilities, and it might spend the evening on the outbound side of the warehouse loading boxes into the trucks. So, it really goes to where the work is.

There are already other robots that include truck unloading robots, palletizing and depalletizing robots, and mobile bases with arms on them. What makes Boston Dynamics the right company to introduce a new robot in this space?

We definitely thought through this, because there are already autonomous mobile robots [AMRs] out there. Most of them, though, are more like pallet movers or tote movers—they don't have an arm, and most of them are really just about moving something from point A to point B without manipulation capability. We've seen some experiments where people put arms on AMRs, but nothing that's made it very far in the market. And so when we started looking at Stretch, we realized we really needed to make a custom robot, and that it was something we could do quickly.

“We got a lot of interest from people who wanted to put Atlas to work in the warehouse, but we knew that we could build a simpler robot to do some of those same tasks.”

Stretch is built with pieces from Spot and Atlas and that gave us a big head start. For example, if you look at Stretch’s vision system, it's 2D cameras, depth sensors, and software that allows it to do obstacle detection, box detection, and localization. Those are all the same sensors and software that we've been using for years on our legged robots. And if you look closely at Stretch’s wrist joints, they're actually the same as Spot’s hips. They use the same electric motors, the same gearboxes, the same sensors, and they even have the same closed-loop controller controlling the joints.

If you were to buy an existing industrial robot arm with this kind of performance, it would be about four times heavier than the arm we built, and it's really hard to make that into a mobile robot. A lot of this came from our leg technology because it’s so important for our leg designs to be lightweight for the robots to balance. We took that same strength to weight advantage that we have, and built it into this arm. We're able to rapidly piece together things from our other robots to get us out of the gate quickly, so even though this looks like a totally different robot, we think we have a good head start going into this market.

At what point did you decide to go with an arm on a statically stable base on Stretch, rather than something more, you know, dynamic-y?

Stretch looks really different than the robots that Boston Dynamics has done in the past. But you'd be surprised how much similarity there is between our legged robots and Stretch under the hood. Looking back, we actually got our start on moving boxes with Atlas, and at that point it was just research and development. We were really trying to do force control for box grasping. We were picking up heavy boxes and maintaining balance and working on those fundamentals. We released a video of that as our first next-gen Atlas video, and it was interesting. We got a lot of interest from people who wanted to put Atlas to work in the warehouse, but we knew that we could build a simpler robot to do some of those same tasks.

So at this point we actually came up with Handle. The intent of Handle was to do a couple things—one was, we thought we could build a simpler robot that had Atlas’ attributes. Handle has a small footprint so it can fit in tight spaces, but it can pick up heavy boxes. And in addition to that, we had always really wanted to combine wheels and legs. We’d been talking about doing that for a decade and so Handle was a chance for us to try it.

We built a couple versions of Handle, and the first one was really just a prototype to kind of explore the morphology. But the second one was more purpose-built for warehouse tasks, and we started building pallets with that one and it looked pretty good. And then we started doing truck unloading with Handle, which was the pivotal moment. Handle could do it, but it took too long. Every time Handle grasped a box, it would have to roll back and then get to a place where it could spin itself to face forward and place the box, and trucks are very tight for a robot this size, so there's not a lot of room to maneuver. We knew the whole time that there was a robot like Stretch that was another alternative, but that's really when it became clear that Stretch would have a lot of advantages, and we started working on it about a year ago.

Stretch is certainly impressive in a practical way, but I’ll admit to really hoping that something like Handle could have turned out to be a viable warehouse robot.

I love the Handle project as well, and I’m very passionate about that robot. And there was a stage before we built Stretch where we thought, “this would be pretty standard looking compared to Handle, is it going to capture enough of the Boston Dynamics secret sauce?” But when you actually dissect all the problems within Stretch that you have to tackle, there are a lot of cool robotics problems left in there—the vision system, the planning, the manipulation, the grasping of the boxes—it's a lot harder to solve than it looks, and we're excited that we're actually getting fairly far down that road now.

What happens to Handle now?

Stretch has really taken over our team as far as warehouse products go. Handle we still use occasionally as a research robot, but it’s not actively under development. Stretch is really Handle’s descendent. Handle’s not retired, exactly, but we’re just using it for things like the dance video.

There’s still potential to do cool stuff with Handle. I do think that combining wheels with legs is very cool, and largely unexplored compared to its potential. So I still think that you're gonna see versions of robots combining wheels and legs like Handle, and maybe a version of Handle in the future that does more of that. But because we're switching this thread from research into product, Stretch is really the main focus now.

How autonomous is Stretch?

Stretch is semi-autonomous, and that means it really needs to work with people to tap into its full potential. With truck unloading, for example, a person will drive Stretch into the back of the truck and then basically point Stretch in the right direction and say go. And from that point on, everything’s autonomous. Stretch has its vision system and its mobility and it can detect all the boxes, grasp all boxes, and move them onto a conveyor all autonomously. This is something that takes people hours to do manually, and Stretch can go all the way until it gets to the last box, and the truck is empty. There are some parts of the truck unloading task that do require people, like verifying that the truck is in the right place and opening the doors. But this takes a person just a few minutes, and then the robot can spend hours or as long as it takes to do its job autonomously.

There are also other tasks in the warehouse where the autonomy will increase in the future. After truck unloading, the second thing we’ll take on is order building, which will be more in the aisles of a warehouse. For that, Stretch will be navigating around the warehouse, finding the right pallet it needs to take a box from, and loading it onto a new pallet. This will be a different model with more autonomy; you’ll still have people involved to some degree, but the robot will have a higher percentage of the time where it can work independently.

What kinds of constraints is Stretch operating under? Do the boxes all have to be stacked neatly in the back of the truck, do they have to be the same size, the same color, etc?

“This will be a different model with more autonomy. You’ll still have people involved to some degree, but the robot will have a higher percentage of the time where it can work independently.”

If you think about manufacturing, where there's been automation for decades, you can go into a modern manufacturing facility and there are robot arms and conveyors and other machines. But if you look at the actual warehouse space, 90+ percent is manually operated, and that's because of what you just asked about— things that are less structured, where there’s more variety, and it's more challenging for a robot. But this is starting to change. This is really, really early days, and you’re going to be seeing a lot more robots in the warehouse space.

The warehouse robotics industry is going to grow a lot over the next decade, and a lot of that boils down to vision—the ability for robots to navigate and to understand what they’re seeing. Actually seeing boxes in real world scenarios is challenging, especially when there's a lot of variety. We've been testing our machine learning-based box detection system on Pick for a few years now, and it's gotten far enough that we know it’s one of the technical hurdles you need to overcome to succeed in the warehouse.

Can you compare the performance of Stretch to the performance of a human in a box-unloading task?

Stretch can move cases up to 50 pounds which is the OSHA limit for how much a single person's allowed to move. The peak case rate for Stretch is 800 cases per hour. You really need to keep up with the flow of goods throughout the warehouse, and 800 cases per hour should be enough for most applications. This is similar to a really good human; most humans are probably slower, and it’s hard for a human to sustain that rate, and one of the big issues with people doing this jobs is injury rates. Imagine moving really heavy boxes all day, and having to reach up high or bend down to get them—injuries are really common in this area. Truck unloading is one of the hardest jobs in a warehouse, and that’s one of the reasons we’re starting there with Stretch.

Is Stretch safe for humans to be around?

We looked at using collaborative robot arms for Stretch, but they don’t have the combination of strength and speed and reach to do this task. That’s partially just due to the laws of physics—if you want to move a 50lb box really fast, that’s a lot of energy there. So, Stretch does need to maintain separation from humans, but it’s pretty safe when it’s operating in the back of a truck.

In the middle of a warehouse, Stretch will have a couple different modes. When it's traveling around it'll be kind of like an AMR, and use a safety-rated lidar making sure that it slows down or stops as people get closer. If it's parked and the arm is moving, it'll do the same thing, monitoring anyone getting close and either slow down or stop.

How do you see Stretch interacting with other warehouse robots?

For building pallet orders, we can do that in a couple of different ways, and we’re experimenting with partners in the AMR space. So you might have an AMR that moves the pallet around and then rendezvous with Stretch, and Stretch does the manipulation part and moves boxes onto the pallet, and then the AMR scuttles off to the next rendezvous point where maybe a different Stretch meets it. We’re developing prototypes of that behavior now with a few partners. Another way to do it is Stretch can actually pull the pallet around itself and do both tasks. There are two fundamental things that happen in the warehouse: there's movement of goods, and there's manipulation of goods, and Stretch can do both.

You’re aware that Hello Robot has a mobile manipulator called Stretch, right?

Great minds think alike! We know Aaron [Edsinger] from the Google days; we all used to be in the same company, and he’s a great guy. We’re in very different applications and spaces, though— Aaron’s robot is going into research and maybe a little bit into the consumer space, while this robot is on a much bigger scale aimed at industrial applications, so I think there’s actually a lot of space between our robots, in terms of how they’ll be used.

Editor’s Note: We did check in with Aaron Edsinger at Hello Robot, and he sees things a little bit differently. “We're disappointed they chose our name for their robot,” Edsinger told us. “We're seriously concerned about it and considering our options.” We sincerely hope that Boston Dynamics and Hello Robot can come to an amicable solution on this.
What’s the timeline for commercial deployment of Stretch?

This is a prototype of the Stretch robot, and anytime we design a new robot, we always like to build a prototype as quickly as possible so we can figure out what works and what doesn't work. We did that with our bipeds and quadrupeds as well. So, we get an early look at what we need to iterate, because any time you build the first thing, it's not the right thing, and you always need to make changes to get to the final version. We've got about six of those Stretch prototypes operating now. In parallel, our hardware team is finishing up the design of the productized version of Stretch. That version of Stretch looks a lot like the prototype, but every component has been redesigned from the ground up to be manufacturable, to be reliable, and to be higher performance.

For the productized version of Stretch, we’ll build up the first units this summer, and then it’ll go on sale next year. So this is kind of a sneak peak into what the final product will be.

How much does it cost, and will you be selling Stretch, or offering it as a service?

We’re not quite ready to talk about cost yet, but it’ll be cost effective, and similar in cost to existing systems if you were to combine an industrial robot arm, custom gripper, and mobile base. We’re considering both selling and leasing as a service, but we’re not quite ready to narrow it down yet.

Photo: Boston Dynamics

As with all mobile manipulators, what Stretch can do long-term is constrained far more by software than by hardware. With a fast and powerful arm, a mobile base, a solid perception system, and 16 hours of battery life, you can imagine how different grippers could enable all kinds of different capabilities. But we’re getting ahead of ourselves, because it’s a long, long way from getting a prototype to work pretty well to getting robots into warehouses in a way that’s commercially viable long-term, even when the use case is as clear as it seems to be for Stretch.

Stretch also could signal a significant shift in focus for Boston Dynamics. While Blankespoor’s comments about Stretch leveraging Boston Dynamics’ expertise with robots like Spot and Atlas are well taken, Stretch is arguably the most traditional robot that the company has designed, and they’ve done so specifically to be able to sell robots into industry. This is what you do if you’re a robotics company who wants to make money by selling robots commercially, which (historically) has not been what Boston Dynamics is all about. Despite its bonkers valuation, Boston Dynamics ultimately needs to make money, and robots like Stretch are a good way to do it. With that in mind, I wouldn’t be surprised to see more robots like this from Boston Dynamics—robots that leverage the company’s unique technology, but that are designed to do commercially useful tasks in a somewhat less flashy way. And if this strategy keeps Boston Dynamics around (while funding some occasional creative craziness), then I’m all for it. Continue reading

Posted in Human Robots

#439023 In ‘Klara and the Sun,’ We Glimpse ...

In a store in the center of an unnamed city, humanoid robots are displayed alongside housewares and magazines. They watch the fast-moving world outside the window, anxiously awaiting the arrival of customers who might buy them and take them home. Among them is Klara, a particularly astute robot who loves the sun and wants to learn as much as possible about humans and the world they live in.

So begins Kazuo Ishiguro’s new novel Klara and the Sun, published earlier this month. The book, told from Klara’s perspective, portrays an eerie future society in which intelligent machines and other advanced technologies have been integrated into daily life, but not everyone is happy about it.

Technological unemployment, the progress of artificial intelligence, inequality, the safety and ethics of gene editing, increasing loneliness and isolation—all of which we’re grappling with today—show up in Ishiguro’s world. It’s like he hit a fast-forward button, mirroring back to us how things might play out if we don’t approach these technologies with caution and foresight.

The wealthy genetically edit or “lift” their children to set them up for success, while the poor have to make do with the regular old brains and bodies bequeathed them by evolution. Lifted and unlifted kids generally don’t mix, and this is just one of many sinister delineations between a new breed of haves and have-nots.

There’s anger about robots’ steady infiltration into everyday life, and questions about how similar their rights should be to those of humans. “First they take the jobs. Then they take the seats at the theater?” one woman fumes.

References to “changes” and “substitutions” allude to an economy where automation has eliminated millions of jobs. While “post-employed” people squat in abandoned buildings and fringe communities arm themselves in preparation for conflict, those whose livelihoods haven’t been destroyed can afford to have live-in housekeepers and buy Artificial Friends (or AFs) for their lonely children.

“The old traditional model that we still live with now—where most of us can get some kind of paid work in exchange for our services or the goods we make—has broken down,” Ishiguro said in a podcast discussion of the novel. “We’re not talking just about the difference between rich and poor getting bigger. We’re talking about a gap appearing between people who participate in society in an obvious way and people who do not.”

He has a point; as much as techno-optimists claim that the economic changes brought by automation and AI will give us all more free time, let us work less, and devote time to our passion projects, how would that actually play out? What would millions of “post-employed” people receiving basic income actually do with their time and energy?

In the novel, we don’t get much of a glimpse of this side of the equation, but we do see how the wealthy live. After a long wait, just as the store manager seems ready to give up on selling her, Klara is chosen by a 14-year-old girl named Josie, the daughter of a woman who wears “high-rank clothes” and lives in a large, sunny home outside the city. Cheerful and kind, Josie suffers from an unspecified illness that periodically flares up and leaves her confined to her bed for days at a time.

Her life seems somewhat bleak, the need for an AF clear. In this future world, the children of the wealthy no longer go to school together, instead studying alone at home on their digital devices. “Interaction meetings” are set up for them to learn to socialize, their parents carefully eavesdropping from the next room and trying not to intervene when there’s conflict or hurt feelings.

Klara does her best to be a friend, aide, and confidante to Josie while continuing to learn about the world around her and decode the mysteries of human behavior. We surmise that she was programmed with a basic ability to understand emotions, which evolves along with her other types of intelligence. “I believe I have many feelings. The more I observe, the more feelings become available to me,” she explains to one character.

Ishiguro does an excellent job of representing Klara’s mind: a blend of pre-determined programming, observation, and continuous learning. Her narration has qualities both robotic and human; we can tell when something has been programmed in—she “Gives Privacy” to the humans around her when that’s appropriate, for example—and when she’s figured something out for herself.

But the author maintains some mystery around Klara’s inner emotional life. “Does she actually understand human emotions, or is she just observing human emotions and simulating them within herself?” he said. “I suppose the question comes back to, what are our emotions as human beings? What do they amount to?”

Klara is particularly attuned to human loneliness, since she essentially was made to help prevent it. It is, in her view, peoples’ biggest fear, and something they’ll go to great lengths to avoid, yet can never fully escape. “Perhaps all humans are lonely,” she says.

Warding off loneliness through technology isn’t a futuristic idea, it’s something we’ve been doing for a long time, with the technologies at hand growing more and more sophisticated. Products like AFs already exist. There’s XiaoIce, a chatbot that uses “sentiment analysis” to keep its 660 million users engaged, and Azuma Hikari, a character-based AI designed to “bring comfort” to users whose lives lack emotional connection with other humans.

The mere existence of these tools would be sinister if it wasn’t for their widespread adoption; when millions of people use AIs to fill a void in their lives, it raises deeper questions about our ability to connect with each other and whether technology is building it up or tearing it down.

This isn’t the only big question the novel tackles. An overarching theme is one we’ve been increasingly contemplating as computers start to acquire more complex capabilities, like the beginnings of creativity or emotional awareness: What is it that truly makes us human?

“Do you believe in the human heart?” one character asks. “I don’t mean simply the organ, obviously. I’m speaking in the poetic sense. The human heart. Do you think there is such a thing? Something that makes each of us special and individual?”

The alternative, at least in the story, is that people don’t have a unique essence, but rather we’re all a blend of traits and personalities that can be reduced to strings of code. Our understanding of the brain is still elementary, but at some level, doesn’t all human experience boil down to the firing of billions of neurons between our ears? Will we one day—in a future beyond that painted by Ishiguro, but certainly foreshadowed by it—be able to “decode” our humanity to the point that there’s nothing mysterious left about it? “A human heart is bound to be complex,” Klara says. “But it must be limited.”

Whether or not you agree, Klara and the Sun is worth the read. It’s both a marvelous, engaging story about what it means to love and be human, and a prescient warning to approach technological change with caution and nuance. We’re already living in a world where AI keeps us company, influences our behavior, and is wreaking various forms of havoc. Ishiguro’s novel is a snapshot of one of our possible futures, told through the eyes of a robot who keeps you rooting for her to the end.

Image Credit: Marion Wellmann from Pixabay Continue reading

Posted in Human Robots

#439004 Video Friday: A Walking, Wheeling ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

This is a pretty terrible video, I think because it was harvested from WeChat, which is where Tencent decided to premiere its new quadruped robot.

Not bad, right? Its name is Max, it has a top speed of 25 kph thanks to its elbow wheels, and we know almost nothing else about it.

[ Tencent ]

Thanks Fan!

Can't bring yourself to mask-shame others? Build a robot to do it for you instead!

[ GitHub ]

Researchers at Georgia Tech have recently developed an entirely soft, long-stroke electromagnetic actuator using liquid metal, compliant magnetic composites, and silicone polymers. The robot was inspired by the motion of the Xenia coral, which pulses its polyps to circulate oxygen under water to promote photosynthesis.

In this work, power applied to soft coils generates an electromagnetic field, which causes the internal compliant magnet to move upward. This forces the squishy silicone linkages to convert linear to the rotational motion with an arclength of up to 42 mm with a bandwidth up to 30 Hz. This highly deformable, fast, and long-stroke actuator topology can be utilized for a variety of applications from biomimicry to fully-soft grasping to wearables applications.

[ Paper ] via [ Georgia Tech ]

Thanks Noah!

Jueying Mini Lite may look a little like a Boston Dynamics Spot, but according to DeepRobotics, its coloring is based on Bruce Lee's Kung Fu clothes.

[ DeepRobotics ]

Henrique writes, “I would like to share with you the supplementary video of our recent work accepted to ICRA 2021. The video features a quadruped and a full-size humanoid performing dynamic jumps, after a brief animated intro of what direct transcription is. Me and my colleagues have put a lot of hard work into this, and I am very proud of the results.”

Making big robots jump is definitely something to be proud of!

[ SLMC Edinburgh ]

Thanks Henrique!

The finals of the Powered Exoskeleton Race for Cybathlon Global 2020.

[ Cybathlon ]

Thanks Fan!

It's nice that every once in a while, the world can get excited about science and robots.

[ NASA ]

Playing the Imperial March over footage of an army of black quadrupeds may not be sending quite the right message.

[ Unitree ]

Kod*lab PhD students Abriana Stewart-Height, Diego Caporale and Wei-Hsi Chen, with former Kod*lab student Garrett Wenger were on set in the summer of 2019 to operate RHex for the filming of Lapsis, a first feature film by director and screenwriter Noah Hutton.

[ Kod*lab ]

In class 2.008, Design and Manufacturing II, mechanical engineering students at MIT learn the fundamental principles of manufacturing at scale by designing and producing their own yo-yos. Instructors stress the importance of sustainable practices in the global supply chain.

[ MIT ]

A short history of robotics, from ABB.

[ ABB ]

In this paper, we propose a whole-body planning framework that unifies dynamic locomotion and manipulation tasks by formulating a single multi-contact optimal control problem. This is demonstrated in a set of real hardware experiments done in free-motion, such as base or end-effector pose tracking, and while pushing/pulling a heavy resistive door. Robustness against model mismatches and external disturbances is also verified during these test cases.

[ Paper ]

This paper presents PANTHER, a real-time perception-aware (PA) trajectory planner in dynamic environments. PANTHER plans trajectories that avoid dynamic obstacles while also keeping them in the sensor field of view (FOV) and minimizing the blur to aid in object tracking.

Extensive hardware experiments in unknown dynamic environments with all the computation running onboard are presented, with velocities of up to 5.8 m/s, and with relative velocities (with respect to the obstacles) of up to 6.3 m/s. The only sensors used are an IMU, a forward-facing depth camera, and a downward-facing monocular camera.

[ MIT ]

With our SaaS solution, we enable robots to inspect industrial facilities. One of the robots our software supports, is the Boston Dynamics Spot robot. In this video we demonstrate how autonomous industrial inspection with the Boston Dynamics Spot Robot is performed with our teach and repeat solution.

[ Energy Robotics ]

In this week’s episode of Tech on Deck, learn about our first technology demonstration sent to Station: The Robotic Refueling Mission. This tech demo helped us develop the tools and techniques needed to robotically refuel a satellite in space, an important capability for space exploration.

[ NASA ]

At Covariant we are committed to research and development that will bring AI Robotics to the real world. As a part of this, we believe it's important to educate individuals on how these exciting innovations will make a positive, fundamental and global impact for years to come. In this presentation, our co-founder Pieter Abbeel breaks down his thoughts on the current state of play for AI robotics.

[ Covariant ]

How do you fly a helicopter on Mars? It takes Ingenuity and Perseverance. During this technology demo, Farah Alibay and Tim Canham will get into the details of how these craft will manage this incredible task.

[ NASA ]

Complex real-world environments continue to present significant challenges for fielding robotic teams, which often face expansive spatial scales, difficult and dynamic terrain, degraded environmental conditions, and severe communication constraints. Breakthrough technologies call for integrated solutions across autonomy, perception, networking, mobility, and human teaming thrusts. As such, the DARPA OFFSET program and the DARPA Subterranean Challenge seek novel approaches and new insights for discovering and demonstrating these innovative technologies, to help close critical gaps for robotic operations in complex urban and underground environments.

[ UPenn ] Continue reading

Posted in Human Robots

#438779 Meet Catfish Charlie, the CIA’s ...

Photo: CIA Museum

CIA roboticists designed Catfish Charlie to take water samples undetected. Why they wanted a spy fish for such a purpose remains classified.

In 1961, Tom Rogers of the Leo Burnett Agency created Charlie the Tuna, a jive-talking cartoon mascot and spokesfish for the StarKist brand. The popular ad campaign ran for several decades, and its catchphrase “Sorry, Charlie” quickly hooked itself in the American lexicon.

When the CIA’s Office of Advanced Technologies and Programs started conducting some fish-focused research in the 1990s, Charlie must have seemed like the perfect code name. Except that the CIA’s Charlie was a catfish. And it was a robot.

More precisely, Charlie was an unmanned underwater vehicle (UUV) designed to surreptitiously collect water samples. Its handler controlled the fish via a line-of-sight radio handset. Not much has been revealed about the fish’s construction except that its body contained a pressure hull, ballast system, and communications system, while its tail housed the propulsion. At 61 centimeters long, Charlie wouldn’t set any biggest-fish records. (Some species of catfish can grow to 2 meters.) Whether Charlie reeled in any useful intel is unknown, as details of its missions are still classified.

For exploring watery environments, nothing beats a robot
The CIA was far from alone in its pursuit of UUVs nor was it the first agency to do so. In the United States, such research began in earnest in the 1950s, with the U.S. Navy’s funding of technology for deep-sea rescue and salvage operations. Other projects looked at sea drones for surveillance and scientific data collection.

Aaron Marburg, a principal electrical and computer engineer who works on UUVs at the University of Washington’s Applied Physics Laboratory, notes that the world’s oceans are largely off-limits to crewed vessels. “The nature of the oceans is that we can only go there with robots,” he told me in a recent Zoom call. To explore those uncharted regions, he said, “we are forced to solve the technical problems and make the robots work.”

Image: Thomas Wells/Applied Physics Laboratory/University of Washington

An oil painting commemorates SPURV, a series of underwater research robots built by the University of Washington’s Applied Physics Lab. In nearly 400 deployments, no SPURVs were lost.

One of the earliest UUVs happens to sit in the hall outside Marburg’s office: the Self-Propelled Underwater Research Vehicle, or SPURV, developed at the applied physics lab beginning in the late ’50s. SPURV’s original purpose was to gather data on the physical properties of the sea, in particular temperature and sound velocity. Unlike Charlie, with its fishy exterior, SPURV had a utilitarian torpedo shape that was more in line with its mission. Just over 3 meters long, it could dive to 3,600 meters, had a top speed of 2.5 m/s, and operated for 5.5 hours on a battery pack. Data was recorded to magnetic tape and later transferred to a photosensitive paper strip recorder or other computer-compatible media and then plotted using an IBM 1130.

Over time, SPURV’s instrumentation grew more capable, and the scope of the project expanded. In one study, for example, SPURV carried a fluorometer to measure the dispersion of dye in the water, to support wake studies. The project was so successful that additional SPURVs were developed, eventually completing nearly 400 missions by the time it ended in 1979.

Working on underwater robots, Marburg says, means balancing technical risks and mission objectives against constraints on funding and other resources. Support for purely speculative research in this area is rare. The goal, then, is to build UUVs that are simple, effective, and reliable. “No one wants to write a report to their funders saying, ‘Sorry, the batteries died, and we lost our million-dollar robot fish in a current,’ ” Marburg says.

A robot fish called SoFi
Since SPURV, there have been many other unmanned underwater vehicles, of various shapes and sizes and for various missions, developed in the United States and elsewhere. UUVs and their autonomous cousins, AUVs, are now routinely used for scientific research, education, and surveillance.

At least a few of these robots have been fish-inspired. In the mid-1990s, for instance, engineers at MIT worked on a RoboTuna, also nicknamed Charlie. Modeled loosely on a blue-fin tuna, it had a propulsion system that mimicked the tail fin of a real fish. This was a big departure from the screws or propellers used on UUVs like SPURV. But this Charlie never swam on its own; it was always tethered to a bank of instruments. The MIT group’s next effort, a RoboPike called Wanda, overcame this limitation and swam freely, but never learned to avoid running into the sides of its tank.

Fast-forward 25 years, and a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled SoFi, a decidedly more fishy robot designed to swim next to real fish without disturbing them. Controlled by a retrofitted Super Nintendo handset, SoFi could dive more than 15 meters, control its own buoyancy, and swim around for up to 40 minutes between battery charges. Noting that SoFi’s creators tested their robot fish in the gorgeous waters off Fiji, IEEE Spectrum’s Evan Ackerman noted, “Part of me is convinced that roboticists take on projects like these…because it’s a great way to justify a trip somewhere exotic.”

SoFi, Wanda, and both Charlies are all examples of biomimetics, a term coined in 1974 to describe the study of biological mechanisms, processes, structures, and substances. Biomimetics looks to nature to inspire design.

Sometimes, the resulting technology proves to be more efficient than its natural counterpart, as Richard James Clapham discovered while researching robotic fish for his Ph.D. at the University of Essex, in England. Under the supervision of robotics expert Huosheng Hu, Clapham studied the swimming motion of Cyprinus carpio, the common carp. He then developed four robots that incorporated carplike swimming, the most capable of which was iSplash-II. When tested under ideal conditions—that is, a tank 5 meters long, 2 meters wide, and 1.5 meters deep—iSpash-II obtained a maximum velocity of 11.6 body lengths per second (or about 3.7 m/s). That’s faster than a real carp, which averages a top velocity of 10 body lengths per second. But iSplash-II fell short of the peak performance of a fish darting quickly to avoid a predator.

Of course, swimming in a test pool or placid lake is one thing; surviving the rough and tumble of a breaking wave is another matter. The latter is something that roboticist Kathryn Daltorio has explored in depth.

Daltorio, an assistant professor at Case Western Reserve University and codirector of the Center for Biologically Inspired Robotics Research there, has studied the movements of cockroaches, earthworms, and crabs for clues on how to build better robots. After watching a crab navigate from the sandy beach to shallow water without being thrown off course by a wave, she was inspired to create an amphibious robot with tapered, curved feet that could dig into the sand. This design allowed her robot to withstand forces up to 138 percent of its body weight.

Photo: Nicole Graf

This robotic crab created by Case Western’s Kathryn Daltorio imitates how real crabs grab the sand to avoid being toppled by waves.

In her designs, Daltorio is following architect Louis Sullivan’s famous maxim: Form follows function. She isn’t trying to imitate the aesthetics of nature—her robot bears only a passing resemblance to a crab—but rather the best functionality. She looks at how animals interact with their environments and steals evolution’s best ideas.

And yet, Daltorio admits, there is also a place for realistic-looking robotic fish, because they can capture the imagination and spark interest in robotics as well as nature. And unlike a hyperrealistic humanoid, a robotic fish is unlikely to fall into the creepiness of the uncanny valley.

In writing this column, I was delighted to come across plenty of recent examples of such robotic fish. Ryomei Engineering, a subsidiary of Mitsubishi Heavy Industries, has developed several: a robo-coelacanth, a robotic gold koi, and a robotic carp. The coelacanth was designed as an educational tool for aquariums, to present a lifelike specimen of a rarely seen fish that is often only known by its fossil record. Meanwhile, engineers at the University of Kitakyushu in Japan created Tai-robot-kun, a credible-looking sea bream. And a team at Evologics, based in Berlin, came up with the BOSS manta ray.

Whatever their official purpose, these nature-inspired robocreatures can inspire us in return. UUVs that open up new and wondrous vistas on the world’s oceans can extend humankind’s ability to explore. We create them, and they enhance us, and that strikes me as a very fair and worthy exchange.

This article appears in the March 2021 print issue as “Catfish, Robot, Swimmer, Spy.”

About the Author
Allison Marsh is an associate professor of history at the University of South Carolina and codirector of the university’s Ann Johnson Institute for Science, Technology & Society. Continue reading

Posted in Human Robots