Tag Archives: first

#431186 The Coming Creativity Explosion Belongs ...

Does creativity make human intelligence special?
It may appear so at first glance. Though machines can calculate, analyze, and even perceive, creativity may seem far out of reach. Perhaps this is because we find it mysterious, even in ourselves. How can the output of a machine be anything more than that which is determined by its programmers?
Increasingly, however, artificial intelligence is moving into creativity’s hallowed domain, from art to industry. And though much is already possible, the future is sure to bring ever more creative machines.
What Is Machine Creativity?
Robotic art is just one example of machine creativity, a rapidly growing sub-field that sits somewhere between the study of artificial intelligence and human psychology.
The winning paintings from the 2017 Robot Art Competition are strikingly reminiscent of those showcased each spring at university exhibitions for graduating art students. Like the works produced by skilled artists, the compositions dreamed up by the competition’s robotic painters are aesthetically ambitious. One robot-made painting features a man’s bearded face gazing intently out from the canvas, his eyes locking with the viewer’s. Another abstract painting, “inspired” by data from EEG signals, visually depicts the human emotion of misery with jagged, gloomy stripes of black and purple.
More broadly, a creative machine is software (sometimes encased in a robotic body) that synthesizes inputs to generate new and valuable ideas, solutions to complex scientific problems, or original works of art. In a process similar to that followed by a human artist or scientist, a creative machine begins its work by framing a problem. Next, its software specifies the requirements the solution should have before generating “answers” in the form of original designs, patterns, or some other form of output.
Although the notion of machine creativity sounds a bit like science fiction, the basic concept is one that has been slowly developing for decades.
Nearly 50 years ago while a high school student, inventor and futurist Ray Kurzweil created software that could analyze the patterns in musical compositions and then compose new melodies in a similar style. Aaron, one of the world’s most famous painting robots, has been hard at work since the 1970s.
Industrial designers have used an automated, algorithm-driven process for decades to design computer chips (or machine parts) whose layout (or form) is optimized for a particular function or environment. Emily Howell, a computer program created by David Cope, writes original works in the style of classical composers, some of which have been performed by human orchestras to live audiences.
What’s different about today’s new and emerging generation of robotic artists, scientists, composers, authors, and product designers is their ubiquity and power.

“The recent explosion of artificial creativity has been enabled by the rapid maturation of the same exponential technologies that have already re-drawn our daily lives.”

I’ve already mentioned the rapidly advancing fields of robotic art and music. In the realm of scientific research, so-called “robotic scientists” such as Eureqa and Adam and Eve develop new scientific hypotheses; their “insights” have contributed to breakthroughs that are cited by hundreds of academic research papers. In the medical industry, creative machines are hard at work creating chemical compounds for new pharmaceuticals. After it read over seven million words of 20th century English poetry, a neural network developed by researcher Jack Hopkins learned to write passable poetry in a number of different styles and meters.
The recent explosion of artificial creativity has been enabled by the rapid maturation of the same exponential technologies that have already re-drawn our daily lives, including faster processors, ubiquitous sensors and wireless networks, and better algorithms.
As they continue to improve, creative machines—like humans—will perform a broad range of creative activities, ranging from everyday problem solving (sometimes known as “Little C” creativity) to producing once-in-a-century masterpieces (“Big C” creativity). A creative machine’s outputs could range from a design for a cast for a marble sculpture to a schematic blueprint for a clever new gadget for opening bottles of wine.
In the coming decades, by automating the process of solving complex problems, creative machines will again transform our world. Creative machines will serve as a versatile source of on-demand talent.
In the battle to recruit a workforce that can solve complex problems, creative machines will put small businesses on equal footing with large corporations. Art and music lovers will enjoy fresh creative works that re-interpret the style of ancient disciplines. People with a health condition will benefit from individualized medical treatments, and low-income people will receive top-notch legal advice, to name but a few potentially beneficial applications.
How Can We Make Creative Machines, Unless We Understand Our Own Creativity?
One of the most intriguing—yet unsettling—aspects of watching robotic arms skillfully oil paint is that we humans still do not understand our own creative process. Over the centuries, several different civilizations have devised a variety of models to explain creativity.
The ancient Greeks believed that poets drew inspiration from a transcendent realm parallel to the material world where ideas could take root and flourish. In the Middle Ages, philosophers and poets attributed our peculiarly human ability to “make something of nothing” to an external source, namely divine inspiration. Modern academic study of human creativity has generated vast reams of scholarship, but despite the value of these insights, the human imagination remains a great mystery, second only to that of consciousness.
Today, the rise of machine creativity demonstrates (once again), that we do not have to fully understand a biological process in order to emulate it with advanced technology.
Past experience has shown that jet planes can fly higher and faster than birds by using the forward thrust of an engine rather than wings. Submarines propel themselves forward underwater without fins or a tail. Deep learning neural networks identify objects in randomly-selected photographs with super-human accuracy. Similarly, using a fairly straightforward software architecture, creative software (sometimes paired with a robotic body) can paint, write, hypothesize, or design with impressive originality, skill, and boldness.
At the heart of machine creativity is simple iteration. No matter what sort of output they produce, creative machines fall into one of three categories depending on their internal architecture.
Briefly, the first group consists of software programs that use traditional rule-based, or symbolic AI, the second group uses evolutionary algorithms, and the third group uses a variation of a form of machine learning called deep learning that has already revolutionized voice and facial recognition software.
1) Symbolic creative machines are the oldest artificial artists and musicians. In this approach—also known as “good old-fashioned AI (GOFAI) or symbolic AI—the human programmer plays a key role by writing a set of step-by-step instructions to guide the computer through a task. Despite the fact that symbolic AI is limited in its ability to adapt to environmental changes, it’s still possible for a robotic artist programmed this way to create an impressively wide variety of different outputs.
2) Evolutionary algorithms (EA) have been in use for several decades and remain powerful tools for design. In this approach, potential solutions “compete” in a software simulator in a Darwinian process reminiscent of biological evolution. The human programmer specifies a “fitness criterion” that will be used to score and rank the solutions generated by the software. The software then generates a “first generation” population of random solutions (which typically are pretty poor in quality), scores this first generation of solutions, and selects the top 50% (those random solutions deemed to be the best “fit”). The software then takes another pass and recombines the “winning” solutions to create the next generation and repeats this process for thousands (and sometimes millions) of generations.
3) Generative deep learning (DL) neural networks represent the newest software architecture of the three, since DL is data-dependent and resource-intensive. First, a human programmer “trains” a DL neural network to recognize a particular feature in a dataset, for example, an image of a dog in a stream of digital images. Next, the standard “feed forward” process is reversed and the DL neural network begins to generate the feature, for example, eventually producing new and sometimes original images of (or poetry about) dogs. Generative DL networks have tremendous and unexplored creative potential and are able to produce a broad range of original outputs, from paintings to music to poetry.
The Coming Explosion of Machine Creativity
In the near future as Moore’s Law continues its work, we will see sophisticated combinations of these three basic architectures. Since the 1950s, artificial intelligence has steadily mastered one human ability after another, and in the process of doing so, has reduced the cost of calculation, analysis, and most recently, perception. When creative software becomes as inexpensive and ubiquitous as analytical software is today, humans will no longer be the only intelligent beings capable of creative work.
This is why I have to bite my tongue when I hear the well-intended (but shortsighted) advice frequently dispensed to young people that they should pursue work that demands creativity to help them “AI-proof” their futures.
Instead, students should gain skills to harness the power of creative machines.
There are two skills in which humans excel that will enable us to remain useful in a world of ever-advancing artificial intelligence. One, the ability to frame and define a complex problem so that it can be handed off to a creative machine to solve. And two, the ability to communicate the value of both the framework and the proposed solution to the other humans involved.
What will happen to people when creative machines begin to capably tread on intellectual ground that was once considered the sole domain of the human mind, and before that, the product of divine inspiration? While machines engaging in Big C creativity—e.g., oil painting and composing new symphonies—tend to garner controversy and make the headlines, I suspect the real world-changing application of machine creativity will be in the realm of everyday problem solving, or Little C. The mainstream emergence of powerful problem-solving tools will help people create abundance where there was once scarcity.
Image Credit: adike / Shutterstock.com Continue reading

Posted in Human Robots

#431181 Workspace Sentry collaborative robotics ...

PRINCETON, NJ September 13, 2017 – – ST Robotics announces the availability of its Workspace Sentry collaborative robotics safety system, specifically designed to meet the International Organization for Standardization (ISO)/Technical Specification (TS) 15066 on collaborative operation. The new ISO/TS 15066, a game changer for the robotics industry, provides guidelines for the design and implementation of a collaborative workspace that reduces risks to people.

The ST Robotics Workspace Sentry robot and area safety system are based on a small module that sends infrared beams across the workspace. If the user puts his hand (or any other object) in the workspace, the robot stops using programmable emergency deceleration. Each module has three beams at different angles and the distance a beam reaches is adjustable. Two or more modules can be daisy chained to watch a wider area.
Photo Credit: ST Robotics – www.robot.md
“A robot that is tuned to stop on impact may not be safe. Robots where the trip torque can be set at low thresholds are too slow for any practical industrial application. The best system is where the work area has proximity detectors so the robot stops before impact and that is the approach ST Robotics has taken,” states President and CEO of ST Robotics David Sands.

ST Robotics, widely known for ‘robotics within reach’, has offices in Princeton, New Jersey and Cambridge, England, as well as in Asia. One of the first manufacturers of bench-top robot arms, ST Robotics has been providing the lowest-priced, easy-to-program boxed robots for the past 30 years. ST’s robots are utilized the world over by companies and institutions such as Lockheed-Martin, Motorola, Honeywell, MIT, NASA, Pfizer, Sony and NXP. The numerous applications for ST’s robots benefit the manufacturing, nuclear, pharmaceutical, laboratory and semiconductor industries.

For additional information on ST Robotics, contact:
sales1@strobotics.com
(609) 584 7522
www.strobotics.com

For press inquiries, contact:
Joanne Pransky
World’s First Robotic Psychiatrist®
drjoanne@robot.md
(650) ROBOT-MD

The post Workspace Sentry collaborative robotics safety system appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#431178 Soft Robotics Releases Development Kit ...

Cambridge, MA – Soft Robotics Inc, which has built a fundamentally new class of robotic grippers, announced the release of its expanded and upgraded Soft Robotics Development Kit; SRDK 2.0.

The Soft Robotics Development Kit 2.0 comes complete with:

Robot tool flange mounting plate
4, 5 and 6 position hub plates
Tool Center Point
Soft Robotics Control Unit G2
6 rail mounted, 4 accordion actuator modules
Custom pneumatic manifold
Mounting hardware and accessories

Where the SRDK 1.0 included 5 four accordion actuator modules and the opportunity to create a gripper containing two to five actuators, The SRDK 2.0 contains 6 four accordion actuator modules plus the addition of a six position hub allowing users the ability to configure six actuator test tools. This expands use of the Development Kit to larger product applications, such as: large bagged and pouched items, IV bags, bags of nuts, bread and other food items.

SRDK 2.0 also contains an upgraded Soft Robotics Control Unit (SRCU G2) – the proprietary system that controls all software and hardware with one turnkey pneumatic operation. The upgraded SRCU features new software with a cleaner, user friendly interface and an IP65 rating. Highly intuitive, the software is able to store up to eight grip profiles and allows for very precise adjustments to actuation and vacuum.

Also new with the release of SRDK 2.0, is the introduction of several accessory kits that will allow for an expanded number of configurations and product applications available for testing.

Accessory Kit 1 – For SRDK 1.0 users only – includes the six position hub and 4 accordion actuators now included in SRDK 2.0
Accessory Kit 2 – For SRDK 1.0 or 2.0 users – includes 2 accordion actuators
Accessory Kit 3 – For SRDK 1.0 or 2.0 users – includes 3 accordion actuators

The shorter 2 and 3 accordion actuators provide increased stability for high-speed applications, increased placement precision, higher grip force capabilities and are optimized for gripping small, shallow objects.

Designed to plug and play with any existing robot currently in the market, the Soft Robotics Development Kit 2.0 allows end-users and OEM Integrators the ability to customize, test and validate their ideal Soft Robotics solution, with their own equipment, in their own environment.

Once an ideal solution has been found, the Soft Robotics team will take those exact specifications and build a production-grade tool for implementation into the manufacturing line. And, it doesn’t end there. Created to be fully reusable, the process – configure, test, validate, build, production – can start over again as many times as needed.

See the new SRDK 2.0 on display for the first time at PACK EXPO Las Vegas, September 25 – 27, 2017 in Soft Robotics booth S-5925.

Learn more about the Soft Robotics Development Kit at www.softroboticsinc.com/srdk.
Photo Credit: Soft Robotics – www.softroboticsinc.com
###
About Soft Robotics
Soft Robotics designs and builds soft robotic gripping systems and automation solutions
that can grasp and manipulate items of varying size, shape and weight. Spun out of the
Whitesides Group at Harvard University, Soft Robotics is the only company to be
commercializing this groundbreaking and proprietary technology platform. Today, the
company is a global enterprise solving previously off-limits automation challenges for
customers in food & beverage, advanced manufacturing and ecommerce. Soft Robotics’
engineers are building an ecosystem of robots, control systems, data and machine
learning to enable the workplace of the future. For more information, please visit
www.softroboticsinc.com.

Media contact:
Jennie Kondracki
The Kondracki Group, LLC
262-501-4507
jennie@kondrackigroup.com
The post Soft Robotics Releases Development Kit 2.0 appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#431175 Servosila introduces Mobile Robots ...

Servosila introduces a new member of the family of Servosila “Engineer” robots, a UGV called “Radio Engineer”. This new variant of the well-known backpack-transportable robot features a Software Defined Radio (SDR) payload module integrated into the robotic vehicle.

“Several of our key customers had asked us to enable an Electronic Warfare (EW) or Cognitive Radio applications in our robots”, – says a spokesman for the company, “By integrating a Software Defined Radio (SDR) module into our robotic platforms we cater to both requirements. Radio spectrum analysis, radio signal detection, jamming, and radio relay are important features for EOD robots such as ours. Servosila continues to serve the customers by pushing the boundaries of what their Servosila robots can do. Our partners in the research world and academia shall also greatly benefit from the new functionality that gives them more means of achieving their research goals.”
Photo Credit: Servosila – www.servosila.com
Coupling a programmable mobile robot with a software-defined radio creates a powerful platform for developing innovative applications that mix mobility and artificial intelligence with modern radio technologies. The new robotic radio applications include localized frequency hopping pattern analysis, OFDM waveform recognition, outdoor signal triangulation, cognitive mesh networking, automatic area search for radio emitters, passive or active mobile robotic radars, mobile base stations, mobile radio scanners, and many others.

A rotating head of the robot with mounts for external antennae acts as a pan-and-tilt device thus enabling various scanning and tracking applications. The neck of the robotic head is equipped with a pair of highly accurate Servosila-made servos with a pointing precision of 3.0 angular minutes. This means that the robot can point its antennae with an unprecedented accuracy.

Researchers and academia can benefit from the platform’s support for GnuRadio, an open source software framework for developing SDR applications. An on-board Intel i7 computer capable of executing OpenCL code, is internally connected to the SDR payload module. This makes it possible to execute most existing GnuRadio applications directly on the robot’s on-board computer. Other sensors of the robot such as a GPS sensor, an IMU or a thermal vision camera contribute into sensor fusion algorithms.

Since Servosila “Engineer” mobile robots are primarily designed for outdoor use, the SDR module is fully enclosed into a hardened body of the robot which provides protection in case of dust, rain, snow or impacts with obstacles while the robot is on the move. The robot and its SDR payload module are both powered by an on-board battery thus making the entire robotic radio platform independent of external power supplies.

Servosila plans to start shipping the SDR-equipped robots to international customers in October, 2017.

Web: https://www.servosila.com
YouTube: https://www.youtube.com/user/servosila/videos

About the Company
Servosila is a robotics technology company that designs, produces and markets a range of mobile robots, robotic arms, servo drives, harmonic reduction gears, robotic control systems as well as software packages that make the robots intelligent. Servosila provides consulting, training and operations support services to various customers around the world. The company markets its products and services directly or through a network of partners who provide tailored and localized services that meet specific procurement, support or operational needs.
Press Release above is by: Servosila
The post Servosila introduces Mobile Robots equipped with Software Defined Radio (SDR) payloads appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#431171 SceneScan: Real-Time 3D Depth Sensing ...

Nerian Introduces a High-Performance Successor for the Proven SP1 System
Stereo vision, which is the three-dimensional perception of our environment with two sensors likeour eyes, is a well-known technology. As a passive method – there is no need to emit light in thevisible or invisible spectral range – this technology can open up new possibilities for three dimensional perception, even under difficult conditions.
But as often, the devil is in the details: for most applications, the software implementation withstandard PCs, but also with graphics processors, is too slow. Another complicating factor is thatthese hardware platforms are expensive and not energy-efficient. The solution is to instead usespecialized hardware for image processing. A programmable logic device – a so-called FPGA – cangreatly accelerate the image processing.
As a technology leader, Nerian Vision Technologies has been following this path successfully forthe past two years with the SP1 stereo vision system, which has enabled completely newapplications in the fields of robotics, automation technology, medical technology, autonomousdriving and other domains. Now the company introduces two successors:
SceneScan and SceneScan Pro. Real eye-catchers in a double sense: stereo vision in an elegant design!But more important is, of course, the significantly improved inner workings of the two new modelsin comparison to their predecessor. The new hardware allows processing rates of up to 100 framesper second at resolutions of up to 3 megapixels, which leaves the SP1 far behind:
Photo Credit: Nerian Vision Technologies – www.nerian.com

The table illustrates the difference: while SceneScan Pro has the highest possible computing powerand is designed for the most demanding applications, SceneScan has been cost-reduced forapplications with lower requirements. The customer can thus optimize his embedded vision solution both in terms of costs and technology.
The new duo is completed by Nerian’s proven Karmin stereo cameras. Of course, industrialUSB3Vision cameras by other manufacturers are also supported.This combination not only supports the above-mentioned applications even better, but alsofacilitates completely new and innovative ones. If required, customer-specific adaptations are alsopossible.
ContactNerian Vision TechnologiesOwner: Dr. Konstantin SchauweckerGotenstr. 970771 Leinfelden-EchterdingenGermanyPhone: +49 711 / 2195 9414Email: service@nerian.comWebsite: http://nerian.com
Press Release Authored By: Nerian Vision Technologies
Photo Credit: Nerian Vision Technologies – www.nerian.com
The post SceneScan: Real-Time 3D Depth Sensing Through Stereo Vision appeared first on Roboticmagazine. Continue reading

Posted in Human Robots