Tag Archives: boss

#438779 Meet Catfish Charlie, the CIA’s ...

Photo: CIA Museum

CIA roboticists designed Catfish Charlie to take water samples undetected. Why they wanted a spy fish for such a purpose remains classified.

In 1961, Tom Rogers of the Leo Burnett Agency created Charlie the Tuna, a jive-talking cartoon mascot and spokesfish for the StarKist brand. The popular ad campaign ran for several decades, and its catchphrase “Sorry, Charlie” quickly hooked itself in the American lexicon.

When the CIA’s Office of Advanced Technologies and Programs started conducting some fish-focused research in the 1990s, Charlie must have seemed like the perfect code name. Except that the CIA’s Charlie was a catfish. And it was a robot.

More precisely, Charlie was an unmanned underwater vehicle (UUV) designed to surreptitiously collect water samples. Its handler controlled the fish via a line-of-sight radio handset. Not much has been revealed about the fish’s construction except that its body contained a pressure hull, ballast system, and communications system, while its tail housed the propulsion. At 61 centimeters long, Charlie wouldn’t set any biggest-fish records. (Some species of catfish can grow to 2 meters.) Whether Charlie reeled in any useful intel is unknown, as details of its missions are still classified.

For exploring watery environments, nothing beats a robot
The CIA was far from alone in its pursuit of UUVs nor was it the first agency to do so. In the United States, such research began in earnest in the 1950s, with the U.S. Navy’s funding of technology for deep-sea rescue and salvage operations. Other projects looked at sea drones for surveillance and scientific data collection.

Aaron Marburg, a principal electrical and computer engineer who works on UUVs at the University of Washington’s Applied Physics Laboratory, notes that the world’s oceans are largely off-limits to crewed vessels. “The nature of the oceans is that we can only go there with robots,” he told me in a recent Zoom call. To explore those uncharted regions, he said, “we are forced to solve the technical problems and make the robots work.”

Image: Thomas Wells/Applied Physics Laboratory/University of Washington

An oil painting commemorates SPURV, a series of underwater research robots built by the University of Washington’s Applied Physics Lab. In nearly 400 deployments, no SPURVs were lost.

One of the earliest UUVs happens to sit in the hall outside Marburg’s office: the Self-Propelled Underwater Research Vehicle, or SPURV, developed at the applied physics lab beginning in the late ’50s. SPURV’s original purpose was to gather data on the physical properties of the sea, in particular temperature and sound velocity. Unlike Charlie, with its fishy exterior, SPURV had a utilitarian torpedo shape that was more in line with its mission. Just over 3 meters long, it could dive to 3,600 meters, had a top speed of 2.5 m/s, and operated for 5.5 hours on a battery pack. Data was recorded to magnetic tape and later transferred to a photosensitive paper strip recorder or other computer-compatible media and then plotted using an IBM 1130.

Over time, SPURV’s instrumentation grew more capable, and the scope of the project expanded. In one study, for example, SPURV carried a fluorometer to measure the dispersion of dye in the water, to support wake studies. The project was so successful that additional SPURVs were developed, eventually completing nearly 400 missions by the time it ended in 1979.

Working on underwater robots, Marburg says, means balancing technical risks and mission objectives against constraints on funding and other resources. Support for purely speculative research in this area is rare. The goal, then, is to build UUVs that are simple, effective, and reliable. “No one wants to write a report to their funders saying, ‘Sorry, the batteries died, and we lost our million-dollar robot fish in a current,’ ” Marburg says.

A robot fish called SoFi
Since SPURV, there have been many other unmanned underwater vehicles, of various shapes and sizes and for various missions, developed in the United States and elsewhere. UUVs and their autonomous cousins, AUVs, are now routinely used for scientific research, education, and surveillance.

At least a few of these robots have been fish-inspired. In the mid-1990s, for instance, engineers at MIT worked on a RoboTuna, also nicknamed Charlie. Modeled loosely on a blue-fin tuna, it had a propulsion system that mimicked the tail fin of a real fish. This was a big departure from the screws or propellers used on UUVs like SPURV. But this Charlie never swam on its own; it was always tethered to a bank of instruments. The MIT group’s next effort, a RoboPike called Wanda, overcame this limitation and swam freely, but never learned to avoid running into the sides of its tank.

Fast-forward 25 years, and a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled SoFi, a decidedly more fishy robot designed to swim next to real fish without disturbing them. Controlled by a retrofitted Super Nintendo handset, SoFi could dive more than 15 meters, control its own buoyancy, and swim around for up to 40 minutes between battery charges. Noting that SoFi’s creators tested their robot fish in the gorgeous waters off Fiji, IEEE Spectrum’s Evan Ackerman noted, “Part of me is convinced that roboticists take on projects like these…because it’s a great way to justify a trip somewhere exotic.”

SoFi, Wanda, and both Charlies are all examples of biomimetics, a term coined in 1974 to describe the study of biological mechanisms, processes, structures, and substances. Biomimetics looks to nature to inspire design.

Sometimes, the resulting technology proves to be more efficient than its natural counterpart, as Richard James Clapham discovered while researching robotic fish for his Ph.D. at the University of Essex, in England. Under the supervision of robotics expert Huosheng Hu, Clapham studied the swimming motion of Cyprinus carpio, the common carp. He then developed four robots that incorporated carplike swimming, the most capable of which was iSplash-II. When tested under ideal conditions—that is, a tank 5 meters long, 2 meters wide, and 1.5 meters deep—iSpash-II obtained a maximum velocity of 11.6 body lengths per second (or about 3.7 m/s). That’s faster than a real carp, which averages a top velocity of 10 body lengths per second. But iSplash-II fell short of the peak performance of a fish darting quickly to avoid a predator.

Of course, swimming in a test pool or placid lake is one thing; surviving the rough and tumble of a breaking wave is another matter. The latter is something that roboticist Kathryn Daltorio has explored in depth.

Daltorio, an assistant professor at Case Western Reserve University and codirector of the Center for Biologically Inspired Robotics Research there, has studied the movements of cockroaches, earthworms, and crabs for clues on how to build better robots. After watching a crab navigate from the sandy beach to shallow water without being thrown off course by a wave, she was inspired to create an amphibious robot with tapered, curved feet that could dig into the sand. This design allowed her robot to withstand forces up to 138 percent of its body weight.

Photo: Nicole Graf

This robotic crab created by Case Western’s Kathryn Daltorio imitates how real crabs grab the sand to avoid being toppled by waves.

In her designs, Daltorio is following architect Louis Sullivan’s famous maxim: Form follows function. She isn’t trying to imitate the aesthetics of nature—her robot bears only a passing resemblance to a crab—but rather the best functionality. She looks at how animals interact with their environments and steals evolution’s best ideas.

And yet, Daltorio admits, there is also a place for realistic-looking robotic fish, because they can capture the imagination and spark interest in robotics as well as nature. And unlike a hyperrealistic humanoid, a robotic fish is unlikely to fall into the creepiness of the uncanny valley.

In writing this column, I was delighted to come across plenty of recent examples of such robotic fish. Ryomei Engineering, a subsidiary of Mitsubishi Heavy Industries, has developed several: a robo-coelacanth, a robotic gold koi, and a robotic carp. The coelacanth was designed as an educational tool for aquariums, to present a lifelike specimen of a rarely seen fish that is often only known by its fossil record. Meanwhile, engineers at the University of Kitakyushu in Japan created Tai-robot-kun, a credible-looking sea bream. And a team at Evologics, based in Berlin, came up with the BOSS manta ray.

Whatever their official purpose, these nature-inspired robocreatures can inspire us in return. UUVs that open up new and wondrous vistas on the world’s oceans can extend humankind’s ability to explore. We create them, and they enhance us, and that strikes me as a very fair and worthy exchange.

This article appears in the March 2021 print issue as “Catfish, Robot, Swimmer, Spy.”

About the Author
Allison Marsh is an associate professor of history at the University of South Carolina and codirector of the university’s Ann Johnson Institute for Science, Technology & Society. Continue reading

Posted in Human Robots

#437357 Algorithms Workers Can’t See Are ...

“I’m sorry, Dave. I’m afraid I can’t do that.” HAL’s cold, if polite, refusal to open the pod bay doors in 2001: A Space Odyssey has become a defining warning about putting too much trust in artificial intelligence, particularly if you work in space.

In the movies, when a machine decides to be the boss (or humans let it) things go wrong. Yet despite myriad dystopian warnings, control by machines is fast becoming our reality.

Algorithms—sets of instructions to solve a problem or complete a task—now drive everything from browser search results to better medical care.

They are helping design buildings. They are speeding up trading on financial markets, making and losing fortunes in micro-seconds. They are calculating the most efficient routes for delivery drivers.

In the workplace, self-learning algorithmic computer systems are being introduced by companies to assist in areas such as hiring, setting tasks, measuring productivity, evaluating performance, and even terminating employment: “I’m sorry, Dave. I’m afraid you are being made redundant.”

Giving self‐learning algorithms the responsibility to make and execute decisions affecting workers is called “algorithmic management.” It carries a host of risks in depersonalizing management systems and entrenching pre-existing biases.

At an even deeper level, perhaps, algorithmic management entrenches a power imbalance between management and worker. Algorithms are closely guarded secrets. Their decision-making processes are hidden. It’s a black-box: perhaps you have some understanding of the data that went in, and you see the result that comes out, but you have no idea of what goes on in between.

Algorithms at Work
Here are a few examples of algorithms already at work.

At Amazon’s fulfillment center in south-east Melbourne, they set the pace for “pickers,” who have timers on their scanners showing how long they have to find the next item. As soon as they scan that item, the timer resets for the next. All at a “not quite walking, not quite running” speed.

Or how about AI determining your success in a job interview? More than 700 companies have trialed such technology. US developer HireVue says its software speeds up the hiring process by 90 percent by having applicants answer identical questions and then scoring them according to language, tone, and facial expressions.

Granted, human assessments during job interviews are notoriously flawed. Algorithms,however, can also be biased. The classic example is the COMPAS software used by US judges, probation, and parole officers to rate a person’s risk of re-offending. In 2016 a ProPublica investigation showed the algorithm was heavily discriminatory, incorrectly classifying black subjects as higher risk 45 percent of the time, compared with 23 percent for white subjects.

How Gig Workers Cope
Algorithms do what their code tells them to do. The problem is this code is rarely available. This makes them difficult to scrutinize, or even understand.

Nowhere is this more evident than in the gig economy. Uber, Lyft, Deliveroo, and other platforms could not exist without algorithms allocating, monitoring, evaluating, and rewarding work.

Over the past year Uber Eats’ bicycle couriers and drivers, for instance, have blamed unexplained changes to the algorithm for slashing their jobs, and incomes.

Rider’s can’t be 100 percent sure it was all down to the algorithm. But that’s part of the problem. The fact those who depend on the algorithm don’t know one way or the other has a powerful influence on them.

This is a key result from our interviews with 58 food-delivery couriers. Most knew their jobs were allocated by an algorithm (via an app). They knew the app collected data. What they didn’t know was how data was used to award them work.

In response, they developed a range of strategies (or guessed how) to “win” more jobs, such as accepting gigs as quickly as possible and waiting in “magic” locations. Ironically, these attempts to please the algorithm often meant losing the very flexibility that was one of the attractions of gig work.

The information asymmetry created by algorithmic management has two profound effects. First, it threatens to entrench systemic biases, the type of discrimination hidden within the COMPAS algorithm for years. Second, it compounds the power imbalance between management and worker.

Our data also confirmed others’ findings that it is almost impossible to complain about the decisions of the algorithm. Workers often do not know the exact basis of those decisions, and there’s no one to complain to anyway. When Uber Eats bicycle couriers asked for reasons about their plummeting income, for example, responses from the company advised them “we have no manual control over how many deliveries you receive.”

Broader Lessons
When algorithmic management operates as a “black box” one of the consequences is that it is can become an indirect control mechanism. Thus far under-appreciated by Australian regulators, this control mechanism has enabled platforms to mobilize a reliable and scalable workforce while avoiding employer responsibilities.

“The absence of concrete evidence about how the algorithms operate”, the Victorian government’s inquiry into the “on-demand” workforce notes in its report, “makes it hard for a driver or rider to complain if they feel disadvantaged by one.”

The report, published in June, also found it is “hard to confirm if concern over algorithm transparency is real.”

But it is precisely the fact it is hard to confirm that’s the problem. How can we start to even identify, let alone resolve, issues like algorithmic management?

Fair conduct standards to ensure transparency and accountability are a start. One example is the Fair Work initiative, led by the Oxford Internet Institute. The initiative is bringing together researchers with platforms, workers, unions, and regulators to develop global principles for work in the platform economy. This includes “fair management,” which focuses on how transparent the results and outcomes of algorithms are for workers.

Understandings about impact of algorithms on all forms of work is still in its infancy. It demands greater scrutiny and research. Without human oversight based on agreed principles we risk inviting HAL into our workplaces.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: PickPik Continue reading

Posted in Human Robots

#436167 Is it Time for Tech to Stop Moving Fast ...

On Monday, I attended the 2019 Fall Conference of Stanford’s Institute for Human Centered Artificial Intelligence (HAI). That same night I watched the Season 6 opener for the HBO TV show Silicon Valley. And the debates featured in both surrounded the responsibility of tech companies for the societal effects of the technologies they produce. The two events have jumbled together in my mind, perhaps because I was in a bit of a brain fog, thanks to the nasty combination of a head cold and the smoke that descended on Silicon Valley from the northern California wildfires. But perhaps that mixture turned out to be a good thing.

What is clear, in spite of the smoke, is that this issue is something a lot of people are talking about, inside and outside of Silicon Valley (witness the viral video of Rep. Alexandria Ocasio-Cortez (D-NY) grilling Facebook CEO Mark Zuckerberg).

So, to add to that conversation, here’s my HBO Silicon Valley/Stanford HAI conference mashup.

Silicon Valley’s fictional CEO Richard Hendriks, in the opening scene of the episode, tells Congress that Facebook, Google, and Amazon only care about exploiting personal data for profit. He states:

“These companies are kings, and they rule over kingdoms far larger than any nation in history.”

Meanwhile Marietje Schaake, former member of the European Parliament and a fellow at HAI, told the conference audience of 900:

“There is a lot of power in the hands of few actors—Facebook decides who is a news source, Microsoft will run the defense department’s cloud…. I believe we need a deeper debate about which tasks need to stay in the hands of the public.”

Eric Schmidt, former CEO and executive chairman of Google, agreed. He says:

“It is important that we debate now the ethics of what we are doing, and the impact of the technology that we are building.”

Stanford Associate Professor Ge Wang, also speaking at the HAI conference, pointed out:

“‘Doing no harm’ is a vital goal, and it is not easy. But it is different from a proactive goal, to ‘do good.’”

Had Silicon Valley’s Hendricks been there, he would have agreed. He said in the episode:

“Just because it’s successful, doesn’t mean it’s good. Hiroshima was a successful implementation.”

The speakers at the HAI conference discussed the implications of moving fast and breaking things, of putting untested and unregulated technology into the world now that we know that things like public trust and even democracy can be broken.

Google’s Schmidt told the HAI audience:

“I don’t think that everything that is possible should be put into the wild in society, we should answer the question, collectively, how much risk are we willing to take.

And Silicon Valley denizens real and fictional no longer think it’s OK to just say sorry afterwards. Says Schmidt:

“When you ask Facebook about various scandals, how can they still say ‘We are very sorry; we have a lot of learning to do.’ This kind of naiveté stands out of proportion to the power tech companies have. With great power should come great responsibility, or at least modesty.”

Schaake argued:

“We need more guarantees, institutions, and policies than stated good intentions. It’s about more than promises.”

Fictional CEO Hendricks thinks saying sorry is a cop-out as well. In the episode, a developer admits that his app collected user data in spite of Hendricks assuring Congress that his company doesn’t do that:

“You didn’t know at the time,” the developer says. “Don’t beat yourself up about it. But in the future, stop saying it. Or don’t; I don’t care. Maybe it will be like Google saying ‘Don’t be evil,’ or Facebook saying ‘I’m sorry, we’ll do better.’”

Hendricks doesn’t buy it:

“This stops now. I’m the boss, and this is over.”

(Well, he is fictional.)

How can government, the tech world, and the general public address this in a more comprehensive way? Out in the real world, the “what to do” discussion at Stanford HAI surrounded regulation—how much, what kind, and when.

Says the European Parliament’s Schaake:

“An often-heard argument is that government should refrain from regulating tech because [regulation] will stifle innovation. [That argument] implies that innovation is more important than democracy or the rule of law. Our problems don’t stem from over regulation, but under regulation of technologies.”

But when should that regulation happen. Stanford provost emeritus John Etchemendy, speaking from the audience at the HAI conference, said:

“I’ve been an advocate of not trying to regulate before you understand it. Like San Francisco banning of use of facial recognition is not a good example of regulation; there are uses of facial recognition that we should allow. We want regulations that are just right, that prevent the bad things and allow the good things. So we are going to get it wrong either way, if we regulate to soon or hold off, we will get some things wrong.”

Schaake would opt for regulating sooner rather than later. She says that she often hears the argument that it is too early to regulate artificial intelligence—as well as the argument that it is too late to regulate ad-based political advertising, or online privacy. Neither, to her, makes sense. She told the HAI attendees:

“We need more than guarantees than stated good intentions.”

U.S. Chief Technology Officer Michael Kratsios would go with later rather than sooner. (And, yes, the country has a CTO. President Barack Obama created the position in 2009; Kratsios is the fourth to hold the office and the first under President Donald Trump. He was confirmed in August.) Also speaking at the HAI conference, Kratsios argued:

“I don’t think we should be running to regulate anything. We are a leader [in technology] not because we had great regulations, but we have taken a free market approach. We have done great in driving innovation in technologies that are born free, like the Internet. Technologies born in captivity, like autonomous vehicles, lag behind.”

In the fictional world of HBO’s Silicon Valley, startup founder Hendricks has a solution—a technical one of course: the decentralized Internet. He tells Congress:

“The way we win is by creating a new, decentralized Internet, one where the behavior of companies like this will be impossible, forever. Where it is the users, not the kings, who have sovereign control over their data. I will help you build an Internet that is of the people, by the people, and for the people.”

(This is not a fictional concept, though it is a long way from wide use. Also called the decentralized Web, the concept takes the content on today’s Web and fragments it, and then replicates and scatters those fragments to hosts around the world, increasing privacy and reducing the ability of governments to restrict access.)

If neither regulation nor technology comes to make the world safe from the unforeseen effects of new technologies, there is one more hope, according to Schaake: the millennials and subsequent generations.

Tech companies can no longer pursue growth at all costs, not if they want to keep attracting the talent they need, says Schaake. She noted that, “the young generation looks at the environment, at homeless on the streets,” and they expect their companies to tackle those and other issues and make the world a better place. Continue reading

Posted in Human Robots

#432568 Tech Optimists See a Golden ...

Technology evangelists dream about a future where we’re all liberated from the more mundane aspects of our jobs by artificial intelligence. Other futurists go further, imagining AI will enable us to become superhuman, enhancing our intelligence, abandoning our mortal bodies, and uploading ourselves to the cloud.

Paradise is all very well, although your mileage may vary on whether these scenarios are realistic or desirable. The real question is, how do we get there?

Economist John Maynard Keynes notably argued in favor of active intervention when an economic crisis hits, rather than waiting for the markets to settle down to a more healthy equilibrium in the long run. His rebuttal to critics was, “In the long run, we are all dead.” After all, if it takes 50 years of upheaval and economic chaos for things to return to normality, there has been an immense amount of human suffering first.

Similar problems arise with the transition to a world where AI is intimately involved in our lives. In the long term, automation of labor might benefit the human species immensely. But in the short term, it has all kinds of potential pitfalls, especially in exacerbating inequality within societies where AI takes on a larger role. A new report from the Institute for Public Policy Research has deep concerns about the future of work.

Uneven Distribution
While the report doesn’t foresee the same gloom and doom of mass unemployment that other commentators have considered, the concern is that the gains in productivity and economic benefits from AI will be unevenly distributed. In the UK, jobs that account for £290 billion worth of wages in today’s economy could potentially be automated with current technology. But these are disproportionately jobs held by people who are already suffering from social inequality.

Low-wage jobs are five times more likely to be automated than high-wage jobs. A greater proportion of jobs held by women are likely to be automated. The solution that’s often suggested is that people should simply “retrain”; but if no funding or assistance is provided, this burden is too much to bear. You can’t expect people to seamlessly transition from driving taxis to writing self-driving car software without help. As we have already seen, inequality is exacerbated when jobs that don’t require advanced education (even if they require a great deal of technical skill) are the first to go.

No Room for Beginners
Optimists say algorithms won’t replace humans, but will instead liberate us from the dull parts of our jobs. Lawyers used to have to spend hours trawling through case law to find legal precedents; now AI can identify the most relevant documents for them. Doctors no longer need to look through endless scans and perform diagnostic tests; machines can do this, leaving the decision-making to humans. This boosts productivity and provides invaluable tools for workers.

But there are issues with this rosy picture. If humans need to do less work, the economic incentive is for the boss to reduce their hours. Some of these “dull, routine” parts of the job were traditionally how people getting into the field learned the ropes: paralegals used to look through case law, but AI may render them obsolete. Even in the field of journalism, there’s now software that will rewrite press releases for publication, traditionally something close to an entry-level task. If there are no entry-level jobs, or if entry-level now requires years of training, the result is to exacerbate inequality and reduce social mobility.

Automating Our Biases
The adoption of algorithms into employment has already had negative impacts on equality. Cathy O’Neil, mathematics PhD from Harvard, raises these concerns in her excellent book Weapons of Math Destruction. She notes that algorithms designed by humans often encode the biases of that society, whether they’re racial or based on gender and sexuality.

Google’s search engine advertises more executive-level jobs to users it thinks are male. AI programs predict that black offenders are more likely to re-offend than white offenders; they receive correspondingly longer sentences. It needn’t necessarily be that bias has been actively programmed; perhaps the algorithms just learn from historical data, but this means they will perpetuate historical inequalities.

Take candidate-screening software HireVue, used by many major corporations to assess new employees. It analyzes “verbal and non-verbal cues” of candidates, comparing them to employees that historically did well. Either way, according to Cathy O’Neil, they are “using people’s fear and trust of mathematics to prevent them from asking questions.” With no transparency or understanding of how the algorithm generates its results, and no consensus over who’s responsible for the results, discrimination can occur automatically, on a massive scale.

Combine this with other demographic trends. In rich countries, people are living longer. An increasing burden will be placed on a shrinking tax base to support that elderly population. A recent study said that due to the accumulation of wealth in older generations, millennials stand to inherit more than any previous generation, but it won’t happen until they’re in their 60s. Meanwhile, those with savings and capital will benefit as the economy shifts: the stock market and GDP will grow, but wages and equality will fall, a situation that favors people who are already wealthy.

Even in the most dramatic AI scenarios, inequality is exacerbated. If someone develops a general intelligence that’s near-human or super-human, and they manage to control and monopolize it, they instantly become immensely wealthy and powerful. If the glorious technological future that Silicon Valley enthusiasts dream about is only going to serve to make the growing gaps wider and strengthen existing unfair power structures, is it something worth striving for?

What Makes a Utopia?
We urgently need to redefine our notion of progress. Philosophers worry about an AI that is misaligned—the things it seeks to maximize are not the things we want maximized. At the same time, we measure the development of our countries by GDP, not the quality of life of workers or the equality of opportunity in the society. Growing wealth with increased inequality is not progress.

Some people will take the position that there are always winners and losers in society, and that any attempt to redress the inequalities of our society will stifle economic growth and leave everyone worse off. Some will see this as an argument for a new economic model, based around universal basic income. Any moves towards this will need to take care that it’s affordable, sustainable, and doesn’t lead towards an entrenched two-tier society.

Walter Schiedel’s book The Great Leveller is a huge survey of inequality across all of human history, from the 21st century to prehistoric cave-dwellers. He argues that only revolutions, wars, and other catastrophes have historically reduced inequality: a perfect example is the Black Death in Europe, which (by reducing the population and therefore the labor supply that was available) increased wages and reduced inequality. Meanwhile, our solution to the financial crisis of 2007-8 may have only made the problem worse.

But in a world of nuclear weapons, of biowarfare, of cyberwarfare—a world of unprecedented, complex, distributed threats—the consequences of these “safety valves” could be worse than ever before. Inequality increases the risk of global catastrophe, and global catastrophes could scupper any progress towards the techno-utopia that the utopians dream of. And a society with entrenched inequality is no utopia at all.

Image Credit: OliveTree / Shutterstock.com Continue reading

Posted in Human Robots