Tag Archives: vehicles

#432311 Everyone Is Talking About AI—But Do ...

In 2017, artificial intelligence attracted $12 billion of VC investment. We are only beginning to discover the usefulness of AI applications. Amazon recently unveiled a brick-and-mortar grocery store that has successfully supplanted cashiers and checkout lines with computer vision, sensors, and deep learning. Between the investment, the press coverage, and the dramatic innovation, “AI” has become a hot buzzword. But does it even exist yet?

At the World Economic Forum Dr. Kai-Fu Lee, a Taiwanese venture capitalist and the founding president of Google China, remarked, “I think it’s tempting for every entrepreneur to package his or her company as an AI company, and it’s tempting for every VC to want to say ‘I’m an AI investor.’” He then observed that some of these AI bubbles could burst by the end of 2018, referring specifically to “the startups that made up a story that isn’t fulfillable, and fooled VCs into investing because they don’t know better.”

However, Dr. Lee firmly believes AI will continue to progress and will take many jobs away from workers. So, what is the difference between legitimate AI, with all of its pros and cons, and a made-up story?

If you parse through just a few stories that are allegedly about AI, you’ll quickly discover significant variation in how people define it, with a blurred line between emulated intelligence and machine learning applications.

I spoke to experts in the field of AI to try to find consensus, but the very question opens up more questions. For instance, when is it important to be accurate to a term’s original definition, and when does that commitment to accuracy amount to the splitting of hairs? It isn’t obvious, and hype is oftentimes the enemy of nuance. Additionally, there is now a vested interest in that hype—$12 billion, to be precise.

This conversation is also relevant because world-renowned thought leaders have been publicly debating the dangers posed by AI. Facebook CEO Mark Zuckerberg suggested that naysayers who attempt to “drum up these doomsday scenarios” are being negative and irresponsible. On Twitter, business magnate and OpenAI co-founder Elon Musk countered that Zuckerberg’s understanding of the subject is limited. In February, Elon Musk engaged again in a similar exchange with Harvard professor Steven Pinker. Musk tweeted that Pinker doesn’t understand the difference between functional/narrow AI and general AI.

Given the fears surrounding this technology, it’s important for the public to clearly understand the distinctions between different levels of AI so that they can realistically assess the potential threats and benefits.

As Smart As a Human?
Erik Cambria, an expert in the field of natural language processing, told me, “Nobody is doing AI today and everybody is saying that they do AI because it’s a cool and sexy buzzword. It was the same with ‘big data’ a few years ago.”

Cambria mentioned that AI, as a term, originally referenced the emulation of human intelligence. “And there is nothing today that is even barely as intelligent as the most stupid human being on Earth. So, in a strict sense, no one is doing AI yet, for the simple fact that we don’t know how the human brain works,” he said.

He added that the term “AI” is often used in reference to powerful tools for data classification. These tools are impressive, but they’re on a totally different spectrum than human cognition. Additionally, Cambria has noticed people claiming that neural networks are part of the new wave of AI. This is bizarre to him because that technology already existed fifty years ago.

However, technologists no longer need to perform the feature extraction by themselves. They also have access to greater computing power. All of these advancements are welcomed, but it is perhaps dishonest to suggest that machines have emulated the intricacies of our cognitive processes.

“Companies are just looking at tricks to create a behavior that looks like intelligence but that is not real intelligence, it’s just a mirror of intelligence. These are expert systems that are maybe very good in a specific domain, but very stupid in other domains,” he said.

This mimicry of intelligence has inspired the public imagination. Domain-specific systems have delivered value in a wide range of industries. But those benefits have not lifted the cloud of confusion.

Assisted, Augmented, or Autonomous
When it comes to matters of scientific integrity, the issue of accurate definitions isn’t a peripheral matter. In a 1974 commencement address at the California Institute of Technology, Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” In that same speech, Feynman also said, “You should not fool the layman when you’re talking as a scientist.” He opined that scientists should bend over backwards to show how they could be wrong. “If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing—and if they don’t want to support you under those circumstances, then that’s their decision.”

In the case of AI, this might mean that professional scientists have an obligation to clearly state that they are developing extremely powerful, controversial, profitable, and even dangerous tools, which do not constitute intelligence in any familiar or comprehensive sense.

The term “AI” may have become overhyped and confused, but there are already some efforts underway to provide clarity. A recent PwC report drew a distinction between “assisted intelligence,” “augmented intelligence,” and “autonomous intelligence.” Assisted intelligence is demonstrated by the GPS navigation programs prevalent in cars today. Augmented intelligence “enables people and organizations to do things they couldn’t otherwise do.” And autonomous intelligence “establishes machines that act on their own,” such as autonomous vehicles.

Roman Yampolskiy is an AI safety researcher who wrote the book “Artificial Superintelligence: A Futuristic Approach.” I asked him whether the broad and differing meanings might present difficulties for legislators attempting to regulate AI.

Yampolskiy explained, “Intelligence (artificial or natural) comes on a continuum and so do potential problems with such technology. We typically refer to AI which one day will have the full spectrum of human capabilities as artificial general intelligence (AGI) to avoid some confusion. Beyond that point it becomes superintelligence. What we have today and what is frequently used in business is narrow AI. Regulating anything is hard, technology is no exception. The problem is not with terminology but with complexity of such systems even at the current level.”

When asked if people should fear AI systems, Dr. Yampolskiy commented, “Since capability comes on a continuum, so do problems associated with each level of capability.” He mentioned that accidents are already reported with AI-enabled products, and as the technology advances further, the impact could spread beyond privacy concerns or technological unemployment. These concerns about the real-world effects of AI will likely take precedence over dictionary-minded quibbles. However, the issue is also about honesty versus deception.

Is This Buzzword All Buzzed Out?
Finally, I directed my questions towards a company that is actively marketing an “AI Virtual Assistant.” Carl Landers, the CMO at Conversica, acknowledged that there are a multitude of explanations for what AI is and isn’t.

He said, “My definition of AI is technology innovation that helps solve a business problem. I’m really not interested in talking about the theoretical ‘can we get machines to think like humans?’ It’s a nice conversation, but I’m trying to solve a practical business problem.”

I asked him if AI is a buzzword that inspires publicity and attracts clients. According to Landers, this was certainly true three years ago, but those effects have already started to wane. Many companies now claim to have AI in their products, so it’s less of a differentiator. However, there is still a specific intention behind the word. Landers hopes to convey that previously impossible things are now possible. “There’s something new here that you haven’t seen before, that you haven’t heard of before,” he said.

According to Brian Decker, founder of Encom Lab, machine learning algorithms only work to satisfy their preexisting programming, not out of an interior drive for better understanding. Therefore, he views AI as an entirely semantic argument.

Decker stated, “A marketing exec will claim a photodiode controlled porch light has AI because it ‘knows when it is dark outside,’ while a good hardware engineer will point out that not one bit in a register in the entire history of computing has ever changed unless directed to do so according to the logic of preexisting programming.”

Although it’s important for everyone to be on the same page regarding specifics and underlying meaning, AI-powered products are already powering past these debates by creating immediate value for humans. And ultimately, humans care more about value than they do about semantic distinctions. In an interview with Quartz, Kai-Fu Lee revealed that algorithmic trading systems have already given him an 8X return over his private banking investments. “I don’t trade with humans anymore,” he said.

Image Credit: vrender / Shutterstock.com Continue reading

Posted in Human Robots

#432165 Silicon Valley Is Winning the Race to ...

Henry Ford didn’t invent the motor car. The late 1800s saw a flurry of innovation by hundreds of companies battling to deliver on the promise of fast, efficient and reasonably-priced mechanical transportation. Ford later came to dominate the industry thanks to the development of the moving assembly line.

Today, the sector is poised for another breakthrough with the advent of cars that drive themselves. But unlike the original wave of automobile innovation, the race for supremacy in autonomous vehicles is concentrated among a few corporate giants. So who is set to dominate this time?

I’ve analyzed six companies we think are leading the race to build the first truly driverless car. Three of these—General Motors, Ford, and Volkswagen—come from the existing car industry and need to integrate self-driving technology into their existing fleet of mass-produced vehicles. The other three—Tesla, Uber, and Waymo (owned by the same company as Google)—are newcomers from the digital technology world of Silicon Valley and have to build a mass manufacturing capability.

While it’s impossible to know all the developments at any given time, we have tracked investments, strategic partnerships, and official press releases to learn more about what’s happening behind the scenes. The car industry typically rates self-driving technology on a scale from Level 0 (no automation) to Level 5 (full automation). We’ve assessed where each company is now and estimated how far they are from reaching the top level. Here’s how we think each player is performing.

Volkswagen has invested in taxi-hailing app Gett and partnered with chip-maker Nvidia to develop an artificial intelligence co-pilot for its cars. In 2018, the VW Group is set to release the Audi A8, the first production vehicle that reaches Level 3 on the scale, “conditional driving automation.” This means the car’s computer will handle all driving functions, but a human has to be ready to take over if necessary.

Ford already sells cars with a Level 2 autopilot, “partial driving automation.” This means one or more aspects of driving are controlled by a computer based on information about the environment, for example combined cruise control and lane centering. Alongside other investments, the company has put $1 billion into Argo AI, an artificial intelligence company for self-driving vehicles. Following a trial to test pizza delivery using autonomous vehicles, Ford is now testing Level 4 cars on public roads. These feature “high automation,” where the car can drive entirely on its own but not in certain conditions such as when the road surface is poor or the weather is bad.

General Motors
GM also sells vehicles with Level 2 automation but, after buying Silicon Valley startup Cruise Automation in 2016, now plans to launch the first mass-production-ready Level 5 autonomy vehicle that drives completely on its own by 2019. The Cruise AV will have no steering wheel or pedals to allow a human to take over and be part of a large fleet of driverless taxis the company plans to operate in big cities. But crucially the company hasn’t yet secured permission to test the car on public roads.

Waymo (Google)

Waymo Level 5 testing. Image Credit: Waymo

Founded as a special project in 2009, Waymo separated from Google (though they’re both owned by the same parent firm, Alphabet) in 2016. Though it has never made, sold, or operated a car on a commercial basis, Waymo has created test vehicles that have clocked more than 4 million miles without human drivers as of November 2017. Waymo tested its Level 5 car, “Firefly,” between 2015 and 2017 but then decided to focus on hardware that could be installed in other manufacturers’ vehicles, starting with the Chrysler Pacifica.

The taxi-hailing app maker Uber has been testing autonomous cars on the streets of Pittsburgh since 2016, always with an employee behind the wheel ready to take over in case of a malfunction. After buying the self-driving truck company Otto in 2016 for a reported $680 million, Uber is now expanding its AI capabilities and plans to test NVIDIA’s latest chips in Otto’s vehicles. It has also partnered with Volvo to create a self-driving fleet of cars and with Toyota to co-create a ride-sharing autonomous vehicle.

The first major car manufacturer to come from Silicon Valley, Tesla was also the first to introduce Level 2 autopilot back in 2015. The following year, it announced that all new Teslas would have the hardware for full autonomy, meaning once the software is finished it can be deployed on existing cars with an instant upgrade. Some experts have challenged this approach, arguing that the company has merely added surround cameras to its production cars that aren’t as capable as the laser-based sensing systems that most other carmakers are using.

But the company has collected data from hundreds of thousands of cars, driving millions of miles across all terrains. So, we shouldn’t dismiss the firm’s founder, Elon Musk, when he claims a Level 4 Tesla will drive from LA to New York without any human interference within the first half of 2018.


Who’s leading the race? Image Credit: IMD

At the moment, the disruptors like Tesla, Waymo, and Uber seem to have the upper hand. While the traditional automakers are focusing on bringing Level 3 and 4 partial automation to market, the new companies are leapfrogging them by moving more directly towards Level 5 full automation. Waymo may have the least experience of dealing with consumers in this sector, but it has already clocked up a huge amount of time testing some of the most advanced technology on public roads.

The incumbent carmakers are also focused on the difficult process of integrating new technology and business models into their existing manufacturing operations by buying up small companies. The challengers, on the other hand, are easily partnering with other big players including manufacturers to get the scale and expertise they need more quickly.

Tesla is building its own manufacturing capability but also collecting vast amounts of critical data that will enable it to more easily upgrade its cars when ready for full automation. In particular, Waymo’s experience, technology capability, and ability to secure solid partnerships puts it at the head of the pack.

This article was originally published on The Conversation. Read the original article.

Image Credit: Waymo Continue reading

Posted in Human Robots

#432031 Why the Rise of Self-Driving Vehicles ...

It’s been a long time coming. For years Waymo (formerly known as Google Chauffeur) has been diligently developing, driving, testing and refining its fleets of various models of self-driving cars. Now Waymo is going big. The company recently placed an order for several thousand new Chrysler Pacifica minivans and next year plans to launch driverless taxis in a number of US cities.

This deal raises one of the biggest unanswered questions about autonomous vehicles: if fleets of driverless taxis make it cheap and easy for regular people to get around, what’s going to happen to car ownership?

One popular line of thought goes as follows: as autonomous ride-hailing services become ubiquitous, people will no longer need to buy their own cars. This notion has a certain logical appeal. It makes sense to assume that as driverless taxis become widely available, most of us will eagerly sell the family car and use on-demand taxis to get to work, run errands, or pick up the kids. After all, vehicle ownership is pricey and most cars spend the vast majority of their lives parked.

Even experts believe commercial availability of autonomous vehicles will cause car sales to drop.

Market research firm KPMG estimates that by 2030, midsize car sales in the US will decline from today’s 5.4 million units sold each year to nearly half that number, a measly 2.1 million units. Another market research firm, ReThinkX, offers an even more pessimistic estimate (or optimistic, depending on your opinion of cars), predicting that autonomous vehicles will reduce consumer demand for new vehicles by a whopping 70 percent.

The reality is that the impending death of private vehicle sales is greatly exaggerated. Despite the fact that autonomous taxis will be a beneficial and widely-embraced form of urban transportation, we will witness the opposite. Most people will still prefer to own their own autonomous vehicle. In fact, the total number of units of autonomous vehicles sold each year is going to increase rather than decrease.

When people predict the demise of car ownership, they are overlooking the reality that the new autonomous automotive industry is not going to be just a re-hash of today’s car industry with driverless vehicles. Instead, the automotive industry of the future will be selling what could be considered an entirely new product: a wide variety of intelligent, self-guiding transportation robots. When cars become a widely used type of transportation robot, they will be cheap, ubiquitous, and versatile.

Several unique characteristics of autonomous vehicles will ensure that people will continue to buy their own cars.

1. Cost: Thanks to simpler electric engines and lighter auto bodies, autonomous vehicles will be cheaper to buy and maintain than today’s human-driven vehicles. Some estimates bring the price to $10K per vehicle, a stark contrast with today’s average of $30K per vehicle.

2. Personal belongings: Consumers will be able to do much more in their driverless vehicles, including work, play, and rest. This means they will want to keep more personal items in their cars.

3. Frequent upgrades: The average (human-driven) car today is owned for 10 years. As driverless cars become software-driven devices, their price/performance ratio will track to Moore’s law. Their rapid improvement will increase the appeal and frequency of new vehicle purchases.

4. Instant accessibility: In a dense urban setting, a driverless taxi is able to show up within minutes of being summoned. But not so in rural areas, where people live miles apart. For many, delay and “loss of control” over their own mobility will increase the appeal of owning their own vehicle.

5. Diversity of form and function: Autonomous vehicles will be available in a wide variety of sizes and shapes. Consumers will drive demand for custom-made, purpose-built autonomous vehicles whose form is adapted for a particular function.

Let’s explore each of these characteristics in more detail.

Autonomous vehicles will cost less for several reasons. For one, they will be powered by electric engines, which are cheaper to construct and maintain than gasoline-powered engines. Removing human drivers will also save consumers money. Autonomous vehicles will be much less likely to have accidents, hence they can be built out of lightweight, lower-cost materials and will be cheaper to insure. With the human interface no longer needed, autonomous vehicles won’t be burdened by the manufacturing costs of a complex dashboard, steering wheel, and foot pedals.

While hop-on, hop-off autonomous taxi-based mobility services may be ideal for some of the urban population, several sizeable customer segments will still want to own their own cars.

These include people who live in sparsely-populated rural areas who can’t afford to wait extended periods of time for a taxi to appear. Families with children will prefer to own their own driverless cars to house their childrens’ car seats and favorite toys and sippy cups. Another loyal car-buying segment will be die-hard gadget-hounds who will eagerly buy a sexy upgraded model every year or so, unable to resist the siren song of AI that is three times as safe, or a ride that is twice as smooth.

Finally, consider the allure of robotic diversity.

Commuters will invest in a home office on wheels, a sleek, traveling workspace resembling the first-class suite on an airplane. On the high end of the market, city-dwellers and country-dwellers alike will special-order custom-made autonomous vehicles whose shape and on-board gadgetry is adapted for a particular function or hobby. Privately-owned small businesses will buy their own autonomous delivery robot that could range in size from a knee-high, last-mile delivery pod, to a giant, long-haul shipping device.

As autonomous vehicles near commercial viability, Waymo’s procurement deal with Fiat Chrysler is just the beginning.

The exact value of this future automotive industry has yet to be defined, but research from Intel’s internal autonomous vehicle division estimates this new so-called “passenger economy” could be worth nearly $7 trillion a year. To position themselves to capture a chunk of this potential revenue, companies whose businesses used to lie in previously disparate fields such as robotics, software, ships, and entertainment (to name but a few) have begun to form a bewildering web of what they hope will be symbiotic partnerships. Car hailing and chip companies are collaborating with car rental companies, who in turn are befriending giant software firms, who are launching joint projects with all sizes of hardware companies, and so on.

Last year, car companies sold an estimated 80 million new cars worldwide. Over the course of nearly a century, car companies and their partners, global chains of suppliers and service providers, have become masters at mass-producing and maintaining sturdy and cost-effective human-driven vehicles. As autonomous vehicle technology becomes ready for mainstream use, traditional automotive companies are being forced to grapple with the painful realization that they must compete in a new playing field.

The challenge for traditional car-makers won’t be that people no longer want to own cars. Instead, the challenge will be learning to compete in a new and larger transportation industry where consumers will choose their product according to the appeal of its customized body and the quality of its intelligent software.

Melba Kurman and Hod Lipson are the authors of Driverless: Intelligent Cars and the Road Ahead and Fabricated: the New World of 3D Printing.

Image Credit: hfzimages / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#431995 The 10 Grand Challenges Facing Robotics ...

Robotics research has been making great strides in recent years, but there are still many hurdles to the machines becoming a ubiquitous presence in our lives. The journal Science Robotics has now identified 10 grand challenges the field will have to grapple with to make that a reality.

Editors conducted an online survey on unsolved challenges in robotics and assembled an expert panel of roboticists to shortlist the 30 most important topics, which were then grouped into 10 grand challenges that could have major impact in the next 5 to 10 years. Here’s what they came up with.

1. New Materials and Fabrication Schemes
Roboticists are beginning to move beyond motors, gears, and sensors by experimenting with things like artificial muscles, soft robotics, and new fabrication methods that combine multiple functions in one material. But most of these advances have been “one-off” demonstrations, which are not easy to combine.

Multi-functional materials merging things like sensing, movement, energy harvesting, or energy storage could allow more efficient robot designs. But combining these various properties in a single machine will require new approaches that blend micro-scale and large-scale fabrication techniques. Another promising direction is materials that can change over time to adapt or heal, but this requires much more research.

2. Bioinspired and Bio-Hybrid Robots
Nature has already solved many of the problems roboticists are trying to tackle, so many are turning to biology for inspiration or even incorporating living systems into their robots. But there are still major bottlenecks in reproducing the mechanical performance of muscle and the ability of biological systems to power themselves.

There has been great progress in artificial muscles, but their robustness, efficiency, and energy and power density need to be improved. Embedding living cells into robots can overcome challenges of powering small robots, as well as exploit biological features like self-healing and embedded sensing, though how to integrate these components is still a major challenge. And while a growing “robo-zoo” is helping tease out nature’s secrets, more work needs to be done on how animals transition between capabilities like flying and swimming to build multimodal platforms.

3. Power and Energy
Energy storage is a major bottleneck for mobile robotics. Rising demand from drones, electric vehicles, and renewable energy is driving progress in battery technology, but the fundamental challenges have remained largely unchanged for years.

That means that in parallel to battery development, there need to be efforts to minimize robots’ power utilization and give them access to new sources of energy. Enabling them to harvest energy from their environment and transmitting power to them wirelessly are two promising approaches worthy of investigation.

4. Robot Swarms
Swarms of simple robots that assemble into different configurations to tackle various tasks can be a cheaper, more flexible alternative to large, task-specific robots. Smaller, cheaper, more powerful hardware that lets simple robots sense their environment and communicate is combining with AI that can model the kind of behavior seen in nature’s flocks.

But there needs to be more work on the most efficient forms of control at different scales—small swarms can be controlled centrally, but larger ones need to be more decentralized. They also need to be made robust and adaptable to the changing conditions of the real world and resilient to deliberate or accidental damage. There also needs to be more work on swarms of non-homogeneous robots with complementary capabilities.

5. Navigation and Exploration
A key use case for robots is exploring places where humans cannot go, such as the deep sea, space, or disaster zones. That means they need to become adept at exploring and navigating unmapped, often highly disordered and hostile environments.

The major challenges include creating systems that can adapt, learn, and recover from navigation failures and are able to make and recognize new discoveries. This will require high levels of autonomy that allow the robots to monitor and reconfigure themselves while being able to build a picture of the world from multiple data sources of varying reliability and accuracy.

6. AI for Robotics
Deep learning has revolutionized machines’ ability to recognize patterns, but that needs to be combined with model-based reasoning to create adaptable robots that can learn on the fly.

Key to this will be creating AI that’s aware of its own limitations and can learn how to learn new things. It will also be important to create systems that are able to learn quickly from limited data rather than the millions of examples used in deep learning. Further advances in our understanding of human intelligence will be essential to solving these problems.

7. Brain-Computer Interfaces
BCIs will enable seamless control of advanced robotic prosthetics but could also prove a faster, more natural way to communicate instructions to robots or simply help them understand human mental states.

Most current approaches to measuring brain activity are expensive and cumbersome, though, so work on compact, low-power, and wireless devices will be important. They also tend to involve extended training, calibration, and adaptation due to the imprecise nature of reading brain activity. And it remains to be seen if they will outperform simpler techniques like eye tracking or reading muscle signals.

8. Social Interaction
If robots are to enter human environments, they will need to learn to deal with humans. But this will be difficult, as we have very few concrete models of human behavior and we are prone to underestimate the complexity of what comes naturally to us.

Social robots will need to be able to perceive minute social cues like facial expression or intonation, understand the cultural and social context they are operating in, and model the mental states of people they interact with to tailor their dealings with them, both in the short term and as they develop long-standing relationships with them.

9. Medical Robotics
Medicine is one of the areas where robots could have significant impact in the near future. Devices that augment a surgeon’s capabilities are already in regular use, but the challenge will be to increase the autonomy of these systems in such a high-stakes environment.

Autonomous robot assistants will need to be able to recognize human anatomy in a variety of contexts and be able to use situational awareness and spoken commands to understand what’s required of them. In surgery, autonomous robots could perform the routine steps of a procedure, giving way to the surgeon for more complicated patient-specific bits.

Micro-robots that operate inside the human body also hold promise, but there are still many roadblocks to their adoption, including effective delivery systems, tracking and control methods, and crucially, finding therapies where they improve on current approaches.

10. Robot Ethics and Security
As the preceding challenges are overcome and robots are increasingly integrated into our lives, this progress will create new ethical conundrums. Most importantly, we may become over-reliant on robots.

That could lead to humans losing certain skills and capabilities, making us unable to take the reins in the case of failures. We may end up delegating tasks that should, for ethical reasons, have some human supervision, and allow people to pass the buck to autonomous systems in the case of failure. It could also reduce self-determination, as human behaviors change to accommodate the routines and restrictions required for robots and AI to work effectively.

Image Credit: Zenzen / Shutterstock.com Continue reading

Posted in Human Robots

#431951 Robots to the rescue: Saving lives with ...

Last week's sea rescue of Australian swimmers by an Unmanned Aerial Vehicle (UAV) is just the start of a robotics revolution. Continue reading

Posted in Human Robots