Tag Archives: they

#439882 Robot umpires are coming to baseball. ...

Baseball fans know the bitter heartbreak of calls that don't go their way—especially, a ball that should've been a strike. And, with advances in technology including computer vision, artificial intelligence, and the ubiquity of Wi-Fi, it would be easier than ever for baseball officials to replace humans with robotic umpires. Continue reading

Posted in Human Robots

#439532 Lethal Autonomous Weapons Exist; They ...

This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.
A chilling future that some had said might not arrive for many years to come is, in fact, already here. According to a recent UN report, a drone airstrike in Libya from the spring of 2020—made against Libyan National Army forces by Turkish-made STM Kargu-2 drones on behalf of Libya's Government of National Accord—was conducted by weapons systems with no known humans “in the loop.”
In so many words, the red line of autonomous targeting of humans has now been crossed.
To the best of our knowledge, this official United Nations reporting marks the first documented use case of a lethal autonomous weapon system akin to what has elsewhere been called a “Slaughterbot.” We believe this is a landmark moment. Civil society organizations, such as ours, have previously advocated for a preemptive treaty prohibiting the development and use of lethal autonomous weapons, much as blinding weapons were preemptively banned in 1998. The window for preemption has now passed, but the need for a treaty is more urgent than ever.
The STM Kargu-2 is a flying quadcopter that weighs a mere 7 kg, is being mass-produced, is capable of fully autonomous targeting, can form swarms, remains fully operational when GPS and radio links are jammed, and is equipped with facial recognition software to target humans. In other words, it's a Slaughterbot.
The UN report notes: “Logistics convoys and retreating [Haftar Affiliated Forces] were subsequently hunted down and remotely engaged by the unmanned combat aerial vehicles or the lethal autonomous weapons systems such as the STM Kargu-2 (see Annex 30) and other loitering munitions. The lethal autonomous weapons systems were programmed to attack targets without requiring data connectivity between the operator and the munition.” Annex 30 of the report depicts photographic evidence of the downed STM Kargu-2 system.

UNITED NATIONS

In a previous effort to identify consensus areas for prohibition, we brought together experts with a range of views on lethal autonomous weapons to brainstorm a way forward. We published the agreed findings in “A Path Towards Reasonable Autonomous Weapons Regulation,” which suggested a “time-limited moratorium on the development, deployment, transfer, and use of anti-personnel lethal autonomous weapon systems” as a first, and absolute minimum, step for regulation.
A recent position statement from the International Committee of the Red Cross on autonomous weapons systems concurs. It states that “use of autonomous weapon systems to target human beings should be ruled out. This would best be achieved through a prohibition on autonomous weapon systems that are designed or used to apply force against persons.” This sentiment is shared by many civil society organizations, such as the UK-based advocacy organization Article 36, which recommends that “An effective structure for international legal regulation would prohibit certain configurations—such as systems that target people.”
The “Slaughterbots” Question
In 2017, the Future of Life Institute, which we represent, released a nearly eight-minute-long video titled “Slaughterbots”—which was viewed by an estimated 75 million people online—dramatizing the dangers of lethal autonomous weapons. At the time of release, the video received both praise and criticism. Paul Scharre's Dec. 2017 IEEE Spectrum article “Why You Shouldn't Fear Slaughterbots” argued that “Slaughterbots” was “very much science fiction” and a “piece of propaganda.” At a Nov. 2017 meeting about lethal autonomous weapons in Geneva, Switzerland, the Russian ambassador to the UN also reportedly dismissed it, saying that such concerns were 25 or 30 years in the future. We addressed these critiques in our piece—also for Spectrum— titled “Why You Should Fear Slaughterbots–A Response.” Now, less than four years later, reality has made the case for us: The age of Slaughterbots appears to have begun.

The first step must be an immediate moratorium on the development, deployment, and use of lethal autonomous weapons that target persons, combined with a commitment to negotiate a permanent treaty.
We produced “Slaughterbots” to educate the public and policymakers alike about the potential imminent dangers of small, cheap, and ubiquitous lethal autonomous weapons systems. Beyond the moral issue of handing over decisions over life and death to algorithms, the video pointed out that autonomous weapons will, inevitably, turn into weapons of mass destruction, precisely because they require no human supervision and can therefore be deployed in vast numbers. (A related point, concerning the tactical agility of such weapons platforms, was made in Spectrum last month in an article by Natasha Bajema.) Furthermore, like small arms, autonomous weaponized drones will proliferate easily on the international arms market. As the “Slaughterbots” video's epilogue explained, all the component technologies were already available, and we expected militaries to start deploying such weapons very soon. That prediction was essentially correct.
The past few years have seen a series of media reports about military testing of ever-larger drone swarms and battlefield use of weapons with increasingly autonomous functions. In 2019, then-Secretary of Defense Mark Esper, at a meeting of the National Security Commission on Artificial Intelligence, remarked, “As we speak, the Chinese government is already exporting some of its most advanced military aerial drones to the Middle East.
“In addition,” Esper added, “Chinese weapons manufacturers are selling drones advertised as capable of full autonomy, including the ability to conduct lethal targeted strikes.”
While China has entered the autonomous drone export business, other producers and exporters of highly autonomous weapons systems include Turkey and Israel. Small drone systems have progressed from being limited to semi-autonomous and anti-materiel targeting, to possessing fully autonomous operational modes equipped with sensors that can identify, track, and target humans.
Azerbaijan's decisive advantage over Armenian forces in the 2020 Nagorno-Karabakh conflict has been attributed to their arsenal of cheap, kamikaze “suicide drones.” During the conflict, there was reported use of the Israeli Orbiter 1K and Harop, which are both loitering munitions that self-destruct on impact. These weapons are deployed by a human in a specific geographic region, but they ultimately select their own targets without human intervention. Azerbaijan's success with these weapons has provided a compelling precedent for how inexpensive, highly autonomous systems can enable militaries without an advanced air force to compete on the battlefield. The result has been a worldwide surge in demand for these systems, as the price of air superiority has gone down dramatically. While the systems used in Azerbaijan are arguably a software update away from autonomous targeting of humans, their described intended use was primarily materiel targets such as radar systems and vehicles.
If, as it seems, the age of Slaughterbots is here, what can the world do about it? The first step must be an immediate moratorium on the development, deployment, and use of lethal autonomous weapons that target persons, combined with a commitment to negotiate a permanent treaty. We also need agreements that facilitate verification and enforcement, including design constraints on remotely piloted weapons that prevent software conversion to autonomous operation as well as industry rules to prevent large-scale, illicit weaponization of civilian drones.
We want nothing more than for our “Slaughterbots” video to become merely a historical reminder of a horrendous path not taken—a mistake the human race could have made, but didn't. Continue reading

Posted in Human Robots

#439320 Lethal Autonomous Weapons Exist; They ...

This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

A chilling future that some had said might not arrive for many years to come is, in fact, already here. According to a recent UN report, a drone airstrike in Libya from the spring of 2020—made against Libyan National Army forces by Turkish-made STM Kargu-2 drones on behalf of Libya’s Government of National Accord—was conducted by weapons systems with no known humans “in the loop.”

In so many words, the red line of autonomous targeting of humans has now been crossed.

To the best of our knowledge, this official United Nations reporting marks the first documented use case of a lethal autonomous weapon system akin to what has elsewhere been called a “Slaughterbot.” We believe this is a landmark moment. Civil society organizations, such as ours, have previously advocated for a preemptive treaty prohibiting the development and use of lethal autonomous weapons, much as blinding weapons were preemptively banned in 1998. The window for preemption has now passed, but the need for a treaty is more urgent than ever.

The STM Kargu-2 is a flying quadcopter that weighs a mere 7 kg, is being mass-produced, is capable of fully autonomous targeting, can form swarms, remains fully operational when GPS and radio links are jammed, and is equipped with facial recognition software to target humans. In other words, it’s a Slaughterbot.

The UN report notes: “Logistics convoys and retreating [Haftar Affiliated Forces] were subsequently hunted down and remotely engaged by the unmanned combat aerial vehicles or the lethal autonomous weapons systems such as the STM Kargu-2 (see Annex 30) and other loitering munitions. The lethal autonomous weapons systems were programmed to attack targets without requiring data connectivity between the operator and the munition.” Annex 30 of the report depicts photographic evidence of the downed STM Kargu-2 system.

UNITED NATIONS

In a previous effort to identify consensus areas for prohibition, we brought together experts with a range of views on lethal autonomous weapons to brainstorm a way forward. We published the agreed findings in “A Path Towards Reasonable Autonomous Weapons Regulation,” which suggested a “time-limited moratorium on the development, deployment, transfer, and use of anti-personnel lethal autonomous weapon systems” as a first, and absolute minimum, step for regulation.

A recent position statement from the International Committee of the Red Cross on autonomous weapons systems concurs. It states that “use of autonomous weapon systems to target human beings should be ruled out. This would best be achieved through a prohibition on autonomous weapon systems that are designed or used to apply force against persons.” This sentiment is shared by many civil society organizations, such as the UK-based advocacy organization Article 36, which recommends that “An effective structure for international legal regulation would prohibit certain configurations—such as systems that target people.”

The “Slaughterbots” Question

In 2017, the Future of Life Institute, which we represent, released a nearly eight-minute-long video titled “Slaughterbots”—which was viewed by an estimated 75 million people online—dramatizing the dangers of lethal autonomous weapons. At the time of release, the video received both praise and criticism. Paul Scharre’s Dec. 2017 IEEE Spectrum article “Why You Shouldn’t Fear Slaughterbots” argued that “Slaughterbots” was “very much science fiction” and a “piece of propaganda.” At a Nov. 2017 meeting about lethal autonomous weapons in Geneva, Switzerland, the Russian ambassador to the UN also reportedly dismissed it, saying that such concerns were 25 or 30 years in the future. We addressed these critiques in our piece—also for Spectrum— titled “Why You Should Fear Slaughterbots–A Response.” Now, less than four years later, reality has made the case for us: The age of Slaughterbots appears to have begun.

The first step must be an immediate moratorium on the development, deployment, and use of lethal autonomous weapons that target persons, combined with a commitment to negotiate a permanent treaty.

We produced “Slaughterbots” to educate the public and policymakers alike about the potential imminent dangers of small, cheap, and ubiquitous lethal autonomous weapons systems. Beyond the moral issue of handing over decisions over life and death to algorithms, the video pointed out that autonomous weapons will, inevitably, turn into weapons of mass destruction, precisely because they require no human supervision and can therefore be deployed in vast numbers. (A related point, concerning the tactical agility of such weapons platforms, was made in Spectrum last month in an article by Natasha Bajema.) Furthermore, like small arms, autonomous weaponized drones will proliferate easily on the international arms market. As the “Slaughterbots” video’s epilogue explained, all the component technologies were already available, and we expected militaries to start deploying such weapons very soon. That prediction was essentially correct.

The past few years have seen a series of media reports about military testing of ever-larger drone swarms and battlefield use of weapons with increasingly autonomous functions. In 2019, then-Secretary of Defense Mark Esper, at a meeting of the National Security Commission on Artificial Intelligence, remarked, “As we speak, the Chinese government is already exporting some of its most advanced military aerial drones to the Middle East.

“In addition,” Esper added, “Chinese weapons manufacturers are selling drones advertised as capable of full autonomy, including the ability to conduct lethal targeted strikes.”

While China has entered the autonomous drone export business, other producers and exporters of highly autonomous weapons systems include Turkey and Israel. Small drone systems have progressed from being limited to semi-autonomous and anti-materiel targeting, to possessing fully autonomous operational modes equipped with sensors that can identify, track, and target humans.

Azerbaijan’s decisive advantage over Armenian forces in the 2020 Nagorno-Karabakh conflict has been attributed to their arsenal of cheap, kamikaze “suicide drones.” During the conflict, there was reported use of the Israeli Orbiter 1K and Harop, which are both loitering munitions that self-destruct on impact. These weapons are deployed by a human in a specific geographic region, but they ultimately select their own targets without human intervention. Azerbaijan’s success with these weapons has provided a compelling precedent for how inexpensive, highly autonomous systems can enable militaries without an advanced air force to compete on the battlefield. The result has been a worldwide surge in demand for these systems, as the price of air superiority has gone down dramatically. While the systems used in Azerbaijan are arguably a software update away from autonomous targeting of humans, their described intended use was primarily materiel targets such as radar systems and vehicles.

If, as it seems, the age of Slaughterbots is here, what can the world do about it? The first step must be an immediate moratorium on the development, deployment, and use of lethal autonomous weapons that target persons, combined with a commitment to negotiate a permanent treaty. We also need agreements that facilitate verification and enforcement, including design constraints on remotely piloted weapons that prevent software conversion to autonomous operation as well as industry rules to prevent large-scale, illicit weaponization of civilian drones.

We want nothing more than for our “Slaughterbots” video to become merely a historical reminder of a horrendous path not taken—a mistake the human race could have made, but didn’t.

Stuart Russell is a professor of computer science at the University of California, Berkeley, and coauthor of the standard textbook “Artificial Intelligence: A Modern Approach.”

Anthony Aguirre is a professor of physics at the University of California, Santa Cruz, and cofounder of the Future of Life Institute.

Emilia Javorsky is a physician-scientist who leads advocacy on autonomous weapons for the Future of Life Institute.

Max Tegmark is a professor of physics at MIT, cofounder of the Future of Life Institute, and author of “Life 3.0: Being Human in the Age of Artificial Intelligence.” Continue reading

Posted in Human Robots

#439247 Drones and Sensors Could Spot Fires ...

The speed at which a wildfire can rip through an area and wreak havoc is nothing short of awe-inspiring and terrifying. Early detection of these events is critical for fire management efforts, whether that involves calling in firefighters or evacuating nearby communities.

Currently, early fire detection in remote areas is typically done by satellite—but this approach can be hindered by cloud cover. What’s more, even the most advanced satellite systems detect fires once the burning area reaches an average seize of 18.4 km2 (7.1 square miles).

To detect wildfires earlier on, some researchers are proposing a novel solution that harnesses a network of Internet of Things (IoT) sensors and a fleet of drones, or unmanned aerial vehicles (UAVs). The researchers tested their approach through simulations, described in a study published May 5 in IEEE Internet of Things Journal, finding that it can detect fires that are just 2.5 km2 (just under one square mile) in size with near perfect accuracy.

Their idea is timely, as climate change is driving an increase in wildfires around many regions of the world, as seen recently in California and Australia.

“In the last few years, the number, frequency, and severity of wildfires have increased dramatically worldwide, significantly impacting countries’ economies, ecosystems, and communities. Wildfire management presents a significant challenge in which early fire detection is key,” emphasizes Osama Bushnaq, a senior researcher at the Autonomous Robotics Research Center of the Technology Innovation Institute in Abu Dhabi, who was involved in the study.

The approach that Bushnaq and his colleagues are proposing involves a network of IoT sensors scattered throughout regions of concern, such as a national park or forests situated near communities. If a fire ignites, IoT devices deployed in the area will detect it and wait until a patrolling UAV is within transmission range to report their measurements. If a UAV receives multiple positive detections by the IoT devices, it will notify the nearby firefighting department that a wildfire has been verified.

The researchers evaluated a number of different UAVs and IoT sensors based on cost and features to determine the optimal combinations. Next, they tested their UAV-IoT approach through simulations, whereby 420 IoT sensors were deployed and 18 UAVs patrolled per square kilometer of simulated forest. The system could detect fires covering 2.5 km2 with greater than 99 percent accuracy. For smaller fires covering 0.5 km2 the approach yielded 69 percent accuracy.

These results suggest that, if an optimal number of UAVs and IoT devices are present, wildfires can be detected in much shorter time than with the satellite imaging. But Bushnaq acknowledges that this approach has its limitations. “UAV-IoT networks can only cover relatively smaller areas,” he explains. “Therefore, the UAV-IoT network would be particularly suitable for wildfire detection at high-risk regions.”

For these reasons, the researchers are proposing that UAV-IoT approach be used alongside satellite imaging, which can cover vast areas but with less wildfire detection speed and reliability.

Moving forward, the team plans to explore ways of further improving upon this approach, for example by optimizing the trajectory of the UAVs or addressing issues related to the battery life of UAVs.

Bushnaq envisions such UAV-IoT systems having much broader applications, too. “Although the system is designed for wildfire detection, it can be used for monitoring different forest parameters, such as wind speed, moisture content, or temperature estimation,” he says, noting that such a system could also be extended beyond the forest setting, for example by monitoring oil spills in bodies of water. Continue reading

Posted in Human Robots

#439110 Robotic Exoskeletons Could One Day Walk ...

Engineers, using artificial intelligence and wearable cameras, now aim to help robotic exoskeletons walk by themselves.

Increasingly, researchers around the world are developing lower-body exoskeletons to help people walk. These are essentially walking robots users can strap to their legs to help them move.

One problem with such exoskeletons: They often depend on manual controls to switch from one mode of locomotion to another, such as from sitting to standing, or standing to walking, or walking on the ground to walking up or down stairs. Relying on joysticks or smartphone apps every time you want to switch the way you want to move can prove awkward and mentally taxing, says Brokoslaw Laschowski, a robotics researcher at the University of Waterloo in Canada.

Scientists are working on automated ways to help exoskeletons recognize when to switch locomotion modes — for instance, using sensors attached to legs that can detect bioelectric signals sent from your brain to your muscles telling them to move. However, this approach comes with a number of challenges, such as how how skin conductivity can change as a person’s skin gets sweatier or dries off.

Now several research groups are experimenting with a new approach: fitting exoskeleton users with wearable cameras to provide the machines with vision data that will let them operate autonomously. Artificial intelligence (AI) software can analyze this data to recognize stairs, doors, and other features of the surrounding environment and calculate how best to respond.

Laschowski leads the ExoNet project, the first open-source database of high-resolution wearable camera images of human locomotion scenarios. It holds more than 5.6 million images of indoor and outdoor real-world walking environments. The team used this data to train deep-learning algorithms; their convolutional neural networks can already automatically recognize different walking environments with 73 percent accuracy “despite the large variance in different surfaces and objects sensed by the wearable camera,” Laschowski notes.

According to Laschowski, a potential limitation of their work their reliance on conventional 2-D images, whereas depth cameras could also capture potentially useful distance data. He and his collaborators ultimately chose not to rely on depth cameras for a number of reasons, including the fact that the accuracy of depth measurements typically degrades in outdoor lighting and with increasing distance, he says.

In similar work, researchers in North Carolina had volunteers with cameras either mounted on their eyeglasses or strapped onto their knees walk through a variety of indoor and outdoor settings to capture the kind of image data exoskeletons might use to see the world around them. The aim? “To automate motion,” says Edgar Lobaton an electrical engineering researcher at North Carolina State University. He says they are focusing on how AI software might reduce uncertainty due to factors such as motion blur or overexposed images “to ensure safe operation. We want to ensure that we can really rely on the vision and AI portion before integrating it into the hardware.”

In the future, Laschowski and his colleagues will focus on improving the accuracy of their environmental analysis software with low computational and memory storage requirements, which are important for onboard, real-time operations on robotic exoskeletons. Lobaton and his team also seek to account for uncertainty introduced into their visual systems by movements .

Ultimately, the ExoNet researchers want to explore how AI software can transmit commands to exoskeletons so they can perform tasks such as climbing stairs or avoiding obstacles based on a system’s analysis of a user's current movements and the upcoming terrain. With autonomous cars as inspiration, they are seeking to develop autonomous exoskeletons that can handle the walking task without human input, Laschowski says.

However, Laschowski adds, “User safety is of the utmost importance, especially considering that we're working with individuals with mobility impairments,” resulting perhaps from advanced age or physical disabilities.
“The exoskeleton user will always have the ability to override the system should the classification algorithm or controller make a wrong decision.” Continue reading

Posted in Human Robots