Tag Archives: that

#433301 ‘Happiness Tech’ Is On the Rise. Is ...

We often get so fixated on technological progress that we forget it’s merely one component of the entirety of human progress. Technological advancement does not necessarily correlate with increases in human mental well-being.

While cleaner energy, access to education, and higher employment rates can improve quality of life, they do not guarantee happiness and inner peace. Amid what appears to be an increasing abundance of resources and ongoing human progress, we are experiencing a mental health epidemic, with high anxiety and depression rates. This is especially true in the developed world, where we have access to luxuries our ancestors couldn’t even dream of—all the world’s information contained in a device we hold in the palm of our hands, for example.

But as you may have realized through your own experience, technology can make us feel worse instead of better. Social media can become a tool for comparison and a source of debilitating status anxiety. Increased access to goods and services, along with the rise of consumerism, can lead people to choose “stuff” over true sources of meaning and get trapped in a hedonistic treadmill of materialism. Tools like artificial intelligence and big data could lead to violation of our privacy and autonomy. The digital world can take us away from the beauty of the present moment.

Understanding Happiness
How we use technology can significantly impact our happiness. In this context, “happiness” refers to a general sense of well-being, gratitude, and inner peace. Even with such a simple definition, it is a state of mind many people will admit they lack.

Eastern philosophies have told us for thousands of years that the problem of human suffering begins with our thoughts and perceptions of the circumstances we are in, as opposed to beginning with the circumstances themselves. As Derren Brown brilliantly points out in Happy: Why More or Less Everything Is Absolutely Fine, “The problem with the modern conception of happiness is that it is seen as some kind of commodity. There is this fantasy that simply by believing in yourself and setting goals you can have anything. But that simply isn’t how life works. The ancients had a much better view of it. They offered an approach of not trying to control things you can’t control, and of lessening your desires and your expectations so you achieve a harmony between what you desire and what you have.”

A core part of feeling more happy is about re-wiring our minds to adjust our expectations, exercise gratitude, escape negative narratives, and live in the present moment.

But can technology help us do that?

Applications for Mental Well-Being
Many doers are asking themselves how they can leverage digital tools to contribute to human happiness.

Meditation and mindfulness are examples of practices we can use to escape the often overwhelming burden of our thoughts and ground our minds into the present. They have become increasingly democratized with the rise of meditation mobile apps, such as Headspace, Gaia, and Calm, that allow millions of people globally to use their phones to learn from experts at a very low cost.

These companies have also partnered with hospitals, airlines, athletic teams, and others that could benefit from increased access to mindfulness and meditation. The popularity of these apps continues to rise as more people recognize their necessity. The combination of mass technology and ancient wisdom is one that can lead to a transformation of the collective consciousness.

Sometimes merely reflecting on the sources of joy in our lives and practicing gratitude can contribute to better well-being. Apps such as Happier encourage users to reflect upon and share pleasant everyday moments in their daily lives. Such exercises are based on the understanding that being happy is a “skill” one can build though practice and through scientifically-proven activities, such as writing down a nice thought and sharing your positivity with the world. Many other tools such as Track Your Happiness and Happstr allow users to track their happiness, which often serves as a valuable source of data to researchers.

There is also a growing body of knowledge that tells us we can achieve happiness by helping others. This “helper’s high” is a result of our brains producing endorphins after having a positive impact on the lives of others. In many shapes and forms, technology has made it easier now more than ever to help other people no matter where they are located. From charitable donations to the rise of social impact organizations, there is an abundance of projects that leverage technology to positively impact individual lives. Platforms like GoVolunteer connect nonprofits with individuals from a variety of skill sets who are looking to gift their abilities to those in need. Kiva allows for fundraising loans that can change lives. These are just a handful of examples of a much wider positive paradigm shift.

The Future of Technology for Well-Being
There is no denying that increasingly powerful and immersive technology can be used to better or worsen the human condition. Today’s leaders will not only have to focus on their ability to use technology to solve a problem or generate greater revenue; they will have to ask themselves if their tech solutions are beneficial or detrimental to human well-being. They will also have to remember that more powerful technology does not always translate to happier users. It is also crucial that future generations be equipped with the values required to use increasingly powerful tools responsibly and ethically.

In the Education 2030 report, the Millennium Project envisions a world wherein portable intelligent devices combined with integrated systems for lifelong learning contribute to better well-being. In this vision, “continuous evaluation of individual learning processes designed to prevent people from growing unstable and/or becoming mentally ill, along with programs aimed at eliminating prejudice and hate, could bring about a more beautiful, loving world.”

There is exciting potential for technology to be leveraged to contribute to human happiness at a massive scale. Yet, technology shouldn’t consume every aspect of our lives, since a life worth living is often about balance. Sometimes, even if just for a few moments, what would make us feel happier is we disconnected from technology to begin with.

Image Credit: 13_Phunkod / Shutterstock.com Continue reading

Posted in Human Robots

#433294 U.S. Senator Bans Funding for Beerbots ...

Jeff Flake's “beerbot” budget amendment cuts funding for robotics research Continue reading

Posted in Human Robots

#433288 The New AI Tech Turning Heads in Video ...

A new technique using artificial intelligence to manipulate video content gives new meaning to the expression “talking head.”

An international team of researchers showcased the latest advancement in synthesizing facial expressions—including mouth, eyes, eyebrows, and even head position—in video at this month’s 2018 SIGGRAPH, a conference on innovations in computer graphics, animation, virtual reality, and other forms of digital wizardry.

The project is called Deep Video Portraits. It relies on a type of AI called generative adversarial networks (GANs) to modify a “target” actor based on the facial and head movement of a “source” actor. As the name implies, GANs pit two opposing neural networks against one another to create a realistic talking head, right down to the sneer or raised eyebrow.

In this case, the adversaries are actually working together: One neural network generates content, while the other rejects or approves each effort. The back-and-forth interplay between the two eventually produces a realistic result that can easily fool the human eye, including reproducing a static scene behind the head as it bobs back and forth.

The researchers say the technique can be used by the film industry for a variety of purposes, from editing facial expressions of actors for matching dubbed voices to repositioning an actor’s head in post-production. AI can not only produce highly realistic results, but much quicker ones compared to the manual processes used today, according to the researchers. You can read the full paper of their work here.

“Deep Video Portraits shows how such a visual effect could be created with less effort in the future,” said Christian Richardt, from the University of Bath’s motion capture research center CAMERA, in a press release. “With our approach, even the positioning of an actor’s head and their facial expression could be easily edited to change camera angles or subtly change the framing of a scene to tell the story better.”

AI Tech Different Than So-Called “Deepfakes”
The work is far from the first to employ AI to manipulate video and audio. At last year’s SIGGRAPH conference, researchers from the University of Washington showcased their work using algorithms that inserted audio recordings from a person in one instance into a separate video of the same person in a different context.

In this case, they “faked” a video using a speech from former President Barack Obama addressing a mass shooting incident during his presidency. The AI-doctored video injects the audio into an unrelated video of the president while also blending the facial and mouth movements, creating a pretty credible job of lip synching.

A previous paper by many of the same scientists on the Deep Video Portraits project detailed how they were first able to manipulate a video in real time of a talking head (in this case, actor and former California governor Arnold Schwarzenegger). The Face2Face system pulled off this bit of digital trickery using a depth-sensing camera that tracked the facial expressions of an Asian female source actor.

A less sophisticated method of swapping faces using a machine learning software dubbed FakeApp emerged earlier this year. Predictably, the tech—requiring numerous photos of the source actor in order to train the neural network—was used for more juvenile pursuits, such as injecting a person’s face onto a porn star.

The application gave rise to the term “deepfakes,” which is now used somewhat ubiquitously to describe all such instances of AI-manipulated video—much to the chagrin of some of the researchers involved in more legitimate uses.

Fighting AI-Created Video Forgeries
However, the researchers are keenly aware that their work—intended for benign uses such as in the film industry or even to correct gaze and head positions for more natural interactions through video teleconferencing—could be used for nefarious purposes. Fake news is the most obvious concern.

“With ever-improving video editing technology, we must also start being more critical about the video content we consume every day, especially if there is no proof of origin,” said Michael Zollhöfer, a visiting assistant professor at Stanford University and member of the Deep Video Portraits team, in the press release.

Toward that end, the research team is training the same adversarial neural networks to spot video forgeries. They also strongly recommend that developers clearly watermark videos that are edited through AI or otherwise, and denote clearly what part and element of the scene was modified.

To catch less ethical users, the US Department of Defense, through the Defense Advanced Research Projects Agency (DARPA), is supporting a program called Media Forensics. This latest DARPA challenge enlists researchers to develop technologies to automatically assess the integrity of an image or video, as part of an end-to-end media forensics platform.

The DARPA official in charge of the program, Matthew Turek, did tell MIT Technology Review that so far the program has “discovered subtle cues in current GAN-manipulated images and videos that allow us to detect the presence of alterations.” In one reported example, researchers have targeted eyes, which rarely blink in the case of “deepfakes” like those created by FakeApp, because the AI is trained on still pictures. That method would seem to be less effective to spot the sort of forgeries created by Deep Video Portraits, which appears to flawlessly match the entire facial and head movements between the source and target actors.

“We believe that the field of digital forensics should and will receive a lot more attention in the future to develop approaches that can automatically prove the authenticity of a video clip,” Zollhöfer said. “This will lead to ever-better approaches that can spot such modifications even if we humans might not be able to spot them with our own eyes.

Image Credit: Tancha / Shutterstock.com Continue reading

Posted in Human Robots

#433284 Tech Can Sustainably Feed Developing ...

In the next 30 years, virtually all net population growth will occur in urban regions of developing countries. At the same time, worldwide food production will become increasingly limited by the availability of land, water, and energy. These constraints will be further worsened by climate change and the expected addition of two billion people to today’s four billion now living in urban regions. Meanwhile, current urban food ecosystems in the developing world are inefficient and critically inadequate to meet the challenges of the future.

Combined, these trends could have catastrophic economic and political consequences. A new path forward for urban food ecosystems needs to be found. But what is that path?

New technologies, coupled with new business models and supportive government policies, can create more resilient urban food ecosystems in the coming decades. These tech-enabled systems can sustainably link rural, peri-urban (areas just outside cities), and urban producers and consumers, increase overall food production, and generate opportunities for new businesses and jobs (Figure 1).

Figure 1: The urban food value chain nodes from rural, peri-urban and urban producers
to servicing end customers in urban and peri-urban markets.
Here’s a glimpse of the changes technology may bring to the systems feeding cities in the future.

A technology-linked urban food ecosystem would create unprecedented opportunities for small farms to reach wider markets and progress from subsistence farming to commercially producing niche cash crops and animal protein, such as poultry, fish, pork, and insects.

Meanwhile, new opportunities within cities will appear with the creation of vertical farms and other controlled-environment agricultural systems as well as production of plant-based and 3D printed foods and cultured meat. Uberized facilitation of production and distribution of food will reduce bottlenecks and provide new business opportunities and jobs. Off-the-shelf precision agriculture technology will increasingly be the new norm, from smallholders to larger producers.

As part of Agricultural Revolution 4.0, all this will be integrated into the larger collaborative economy—connected by digital platforms, the cloud, and the Internet of Things and powered by artificial intelligence. It will more efficiently and effectively use resources and people to connect the nexus of food, water, energy, nutrition, and human health. It will also aid in the development of a circular economy that is designed to be restorative and regenerative, minimizing waste and maximizing recycling and reuse to build economic, natural, and social capital.

In short, technology will enable transformation of urban food ecosystems, from expanded production in cities to more efficient and inclusive distribution and closer connections with rural farmers. Here’s a closer look at seven tech-driven trends that will help feed tomorrow’s cities.

1. Worldwide Connectivity: Information, Learning, and Markets
Connectivity from simple cell phone SMS communication to internet-enabled smartphones and cloud services are providing platforms for the increasingly powerful technologies enabling development of a new agricultural revolution. Internet connections currently reach more than 4 billion people, about 55% of the global population. That number will grow fast in coming years.

These information and communications technologies connect food producers to consumers with just-in-time data, enhanced good agricultural practices, mobile money and credit, telecommunications, market information and merchandising, and greater transparency and traceability of goods and services throughout the value chain. Text messages on mobile devices have become the one-stop-shop for small farmers to place orders, gain technology information for best management practices, and access market information to increase profitability.

Hershey’s CocoaLink in Ghana, for example, uses text and voice messages with cocoa industry experts and small farm producers. Digital Green is a technology-enabled communication system in Asia and Africa to bring needed agricultural and management practices to small farmers in their own language by filming and recording successful farmers in their own communities. MFarm is a mobile app that connects Kenyan farmers with urban markets via text messaging.

2. Blockchain Technology: Greater Access to Basic Financial Services and Enhanced Food Safety
Gaining access to credit and executing financial transactions have been persistent constraints for small farm producers. Blockchain promises to help the unbanked access basic financial services.

The Gates Foundation has released an open source platform, Mojaloop, to allow software developers and banks and financial service providers to build secure digital payment platforms at scale. Mojaloop software uses more secure blockchain technology to enable urban food system players in the developing world to conduct business and trade. The free software reduces complexity and cost in building payment platforms to connect small farmers with customers, merchants, banks, and mobile money providers. Such digital financial services will allow small farm producers in the developing world to conduct business without a brick-and-mortar bank.

Blockchain is also important for traceability and transparency requirements to meet food regulatory and consumer requirement during the production, post-harvest, shipping, processing and distribution to consumers. Combining blockchain with RFID technologies also will enhance food safety.

3. Uberized Services: On-Demand Equipment, Storage, and More
Uberized services can advance development of the urban food ecosystem across the spectrum, from rural to peri-urban to urban food production and distribution. Whereas Uber and Airbnb enable sharing of rides and homes, the model can be extended in the developing world to include on-demand use of expensive equipment, such as farm machinery, or storage space.

This includes uberization of planting and harvesting equipment (Hello Tractor), transportation vehicles, refrigeration facilities for temporary storage of perishable product, and “cloud kitchens” (EasyAppetite in Nigeria, FoodCourt in Rwanda, and Swiggy and Zomto in India) that produce fresh meals to be delivered to urban customers, enabling young people with motorbikes and cell phones to become entrepreneurs or contractors delivering meals to urban customers.

Another uberized service is marketing and distributing “ugly food” or imperfect produce to reduce food waste. About a third of the world’s food goes to waste, often because of appearance; this is enough to feed two billion people. Such services supply consumers with cheaper, nutritious, tasty, healthy fruits and vegetables that would normally be discarded as culls due to imperfections in shape or size.

4. Technology for Producing Plant-Based Foods in Cities
We need to change diet choices through education and marketing and by developing tasty plant-based substitutes. This is not only critical for environmental sustainability, but also offers opportunities for new businesses and services. It turns out that current agricultural production systems for “red meat” have a far greater detrimental impact on the environment than automobiles.

There have been great advances in plant-based foods, like the Impossible Burger and Beyond Meat, that can satisfy the consumer’s experience and perception of meat. Rather than giving up the experience of eating red meat, technology is enabling marketable, attractive plant-based products that can potentially drastically reduce world per capita consumption of red meat.

5. Cellular Agriculture, Lab-Grown Meat, and 3D Printed Food
Lab-grown meat, literally meat grown from cultured cells, may radically change where and how protein and food is produced, including the cities where it is consumed. There is a wide range of innovative alternatives to traditional meats that can supplement the need for livestock, farms, and butchers. The history of innovation is about getting rid of the bottleneck in the system, and with meat, the bottleneck is the animal. Finless Foods is a new company trying to replicate fish fillets, for example, while Memphis meats is working on beef and poultry.

3D printing or additive manufacturing is a “general purpose technology” used for making, plastic toys, human tissues, aircraft parts, and buildings. 3D printing can also be used to convert alternative ingredients such as proteins from algae, beet leaves, or insects into tasty and healthy products that can be produced by small, inexpensive printers in home kitchens. The food can be customized for individual health needs as well as preferences. 3D printing can also contribute to the food ecosystem by making possible on-demand replacement parts—which are badly needed in the developing world for tractors, pumps, and other equipment. Catapult Design 3D prints tractor replacement parts as well as corn shellers, cart designs, prosthetic limbs, and rolling water barrels for the Indian market.

6. Alt Farming: Vertical Farms to Produce Food in Urban Centers
Urban food ecosystem production systems will rely not only on field-grown crops, but also on production of food within cities. There are a host of new, alternative production systems using “controlled environmental agriculture.” These include low-cost, protected poly hoop houses, greenhouses, roof-top and sack/container gardens, and vertical farming in buildings using artificial lighting. Vertical farms enable year-round production of selected crops, regardless of weather—which will be increasingly important in response to climate change—and without concern for deteriorating soil conditions that affect crop quality and productivity. AeroFarms claims 390 times more productivity per square foot than normal field production.

7. Biotechnology and Nanotechnology for Sustainable Intensification of Agriculture
CRISPR is a promising gene editing technology that can be used to enhance crop productivity while avoiding societal concerns about GMOs. CRISPR can accelerate traditional breeding and selection programs for developing new climate and disease-resistant, higher-yielding, nutritious crops and animals.

Plant-derived coating materials, developed with nanotechnology, can decrease waste, extend shelf-life and transportability of fruits and vegetables, and significantly reduce post-harvest crop loss in developing countries that lack adequate refrigeration. Nanotechnology is also used in polymers to coat seeds to increase their shelf-life and increase their germination success and production for niche, high-value crops.

Putting It All Together
The next generation “urban food industry” will be part of the larger collaborative economy that is connected by digital platforms, the cloud, and the Internet of Things. A tech-enabled urban food ecosystem integrated with new business models and smart agricultural policies offers the opportunity for sustainable intensification (doing more with less) of agriculture to feed a rapidly growing global urban population—while also creating viable economic opportunities for rural and peri-urban as well as urban producers and value-chain players.

Image Credit: Akarawut / Shutterstock.com Continue reading

Posted in Human Robots

#433282 The 4 Waves of AI: Who Will Own the ...

Recently, I picked up Kai-Fu Lee’s newest book, AI Superpowers.

Kai-Fu Lee is one of the most plugged-in AI investors on the planet, managing over $2 billion between six funds and over 300 portfolio companies in the US and China.

Drawing from his pioneering work in AI, executive leadership at Microsoft, Apple, and Google (where he served as founding president of Google China), and his founding of VC fund Sinovation Ventures, Lee shares invaluable insights about:

The four factors driving today’s AI ecosystems;
China’s extraordinary inroads in AI implementation;
Where autonomous systems are headed;
How we’ll need to adapt.

With a foothold in both Beijing and Silicon Valley, Lee looks at the power balance between Chinese and US tech behemoths—each turbocharging new applications of deep learning and sweeping up global markets in the process.

In this post, I’ll be discussing Lee’s “Four Waves of AI,” an excellent framework for discussing where AI is today and where it’s going. I’ll also be featuring some of the hottest Chinese tech companies leading the charge, worth watching right now.

I’m super excited that this Tuesday, I’ve scored the opportunity to sit down with Kai-Fu Lee to discuss his book in detail via a webinar.

With Sino-US competition heating up, who will own the future of technology?

Let’s dive in.

The First Wave: Internet AI
In this first stage of AI deployment, we’re dealing primarily with recommendation engines—algorithmic systems that learn from masses of user data to curate online content personalized to each one of us.

Think Amazon’s spot-on product recommendations, or that “Up Next” YouTube video you just have to watch before getting back to work, or Facebook ads that seem to know what you’ll buy before you do.

Powered by the data flowing through our networks, internet AI leverages the fact that users automatically label data as we browse. Clicking versus not clicking; lingering on a web page longer than we did on another; hovering over a Facebook video to see what happens at the end.

These cascades of labeled data build a detailed picture of our personalities, habits, demands, and desires: the perfect recipe for more tailored content to keep us on a given platform.

Currently, Lee estimates that Chinese and American companies stand head-to-head when it comes to deployment of internet AI. But given China’s data advantage, he predicts that Chinese tech giants will have a slight lead (60-40) over their US counterparts in the next five years.

While you’ve most definitely heard of Alibaba and Baidu, you’ve probably never stumbled upon Toutiao.

Starting out as a copycat of America’s wildly popular Buzzfeed, Toutiao reached a valuation of $20 billion by 2017, dwarfing Buzzfeed’s valuation by more than a factor of 10. But with almost 120 million daily active users, Toutiao doesn’t just stop at creating viral content.

Equipped with natural-language processing and computer vision, Toutiao’s AI engines survey a vast network of different sites and contributors, rewriting headlines to optimize for user engagement, and processing each user’s online behavior—clicks, comments, engagement time—to curate individualized news feeds for millions of consumers.

And as users grow more engaged with Toutiao’s content, the company’s algorithms get better and better at recommending content, optimizing headlines, and delivering a truly personalized feed.

It’s this kind of positive feedback loop that fuels today’s AI giants surfing the wave of internet AI.

The Second Wave: Business AI
While internet AI takes advantage of the fact that netizens are constantly labeling data via clicks and other engagement metrics, business AI jumps on the data that traditional companies have already labeled in the past.

Think banks issuing loans and recording repayment rates; hospitals archiving diagnoses, imaging data, and subsequent health outcomes; or courts noting conviction history, recidivism, and flight.

While we humans make predictions based on obvious root causes (strong features), AI algorithms can process thousands of weakly correlated variables (weak features) that may have much more to do with a given outcome than the usual suspects.

By scouting out hidden correlations that escape our linear cause-and-effect logic, business AI leverages labeled data to train algorithms that outperform even the most veteran of experts.

Apply these data-trained AI engines to banking, insurance, and legal sentencing, and you get minimized default rates, optimized premiums, and plummeting recidivism rates.

While Lee confidently places America in the lead (90-10) for business AI, China’s substantial lag in structured industry data could actually work in its favor going forward.

In industries where Chinese startups can leapfrog over legacy systems, China has a major advantage.

Take Chinese app Smart Finance, for instance.

While Americans embraced credit and debit cards in the 1970s, China was still in the throes of its Cultural Revolution, largely missing the bus on this technology.

Fast forward to 2017, and China’s mobile payment spending outnumbered that of Americans’ by a ratio of 50 to 1. Without the competition of deeply entrenched credit cards, mobile payments were an obvious upgrade to China’s cash-heavy economy, embraced by 70 percent of China’s 753 million smartphone users by the end of 2017.

But by leapfrogging over credit cards and into mobile payments, China largely left behind the notion of credit.

And here’s where Smart Finance comes in.

An AI-powered app for microfinance, Smart Finance depends almost exclusively on its algorithms to make millions of microloans. For each potential borrower, the app simply requests access to a portion of the user’s phone data.

On the basis of variables as subtle as your typing speed and battery percentage, Smart Finance can predict with astounding accuracy your likelihood of repaying a $300 loan.

Such deployments of business AI and internet AI are already revolutionizing our industries and individual lifestyles. But still on the horizon lie two even more monumental waves— perception AI and autonomous AI.

The Third Wave: Perception AI
In this wave, AI gets an upgrade with eyes, ears, and myriad other senses, merging the digital world with our physical environments.

As sensors and smart devices proliferate through our homes and cities, we are on the verge of entering a trillion-sensor economy.

Companies like China’s Xiaomi are putting out millions of IoT-connected devices, and teams of researchers have already begun prototyping smart dust—solar cell- and sensor-geared particulates that can store and communicate troves of data anywhere, anytime.

As Kai-Fu explains, perception AI “will bring the convenience and abundance of the online world into our offline reality.” Sensor-enabled hardware devices will turn everything from hospitals to cars to schools into online-merge-offline (OMO) environments.

Imagine walking into a grocery store, scanning your face to pull up your most common purchases, and then picking up a virtual assistant (VA) shopping cart. Having pre-loaded your data, the cart adjusts your usual grocery list with voice input, reminds you to get your spouse’s favorite wine for an upcoming anniversary, and guides you through a personalized store route.

While we haven’t yet leveraged the full potential of perception AI, China and the US are already making incredible strides. Given China’s hardware advantage, Lee predicts China currently has a 60-40 edge over its American tech counterparts.

Now the go-to city for startups building robots, drones, wearable technology, and IoT infrastructure, Shenzhen has turned into a powerhouse for intelligent hardware, as I discussed last week. Turbocharging output of sensors and electronic parts via thousands of factories, Shenzhen’s skilled engineers can prototype and iterate new products at unprecedented scale and speed.

With the added fuel of Chinese government support and a relaxed Chinese attitude toward data privacy, China’s lead may even reach 80-20 in the next five years.

Jumping on this wave are companies like Xiaomi, which aims to turn bathrooms, kitchens, and living rooms into smart OMO environments. Having invested in 220 companies and incubated 29 startups that produce its products, Xiaomi surpassed 85 million intelligent home devices by the end of 2017, making it the world’s largest network of these connected products.

One KFC restaurant in China has even teamed up with Alipay (Alibaba’s mobile payments platform) to pioneer a ‘pay-with-your-face’ feature. Forget cash, cards, and cell phones, and let OMO do the work.

The Fourth Wave: Autonomous AI
But the most monumental—and unpredictable—wave is the fourth and final: autonomous AI.

Integrating all previous waves, autonomous AI gives machines the ability to sense and respond to the world around them, enabling AI to move and act productively.

While today’s machines can outperform us on repetitive tasks in structured and even unstructured environments (think Boston Dynamics’ humanoid Atlas or oncoming autonomous vehicles), machines with the power to see, hear, touch and optimize data will be a whole new ballgame.

Think: swarms of drones that can selectively spray and harvest entire farms with computer vision and remarkable dexterity, heat-resistant drones that can put out forest fires 100X more efficiently, or Level 5 autonomous vehicles that navigate smart roads and traffic systems all on their own.

While autonomous AI will first involve robots that create direct economic value—automating tasks on a one-to-one replacement basis—these intelligent machines will ultimately revamp entire industries from the ground up.

Kai-Fu Lee currently puts America in a commanding lead of 90-10 in autonomous AI, especially when it comes to self-driving vehicles. But Chinese government efforts are quickly ramping up the competition.

Already in China’s Zhejiang province, highway regulators and government officials have plans to build China’s first intelligent superhighway, outfitted with sensors, road-embedded solar panels and wireless communication between cars, roads and drivers.

Aimed at increasing transit efficiency by up to 30 percent while minimizing fatalities, the project may one day allow autonomous electric vehicles to continuously charge as they drive.

A similar government-fueled project involves Beijing’s new neighbor Xiong’an. Projected to take in over $580 billion in infrastructure spending over the next 20 years, Xiong’an New Area could one day become the world’s first city built around autonomous vehicles.

Baidu is already working with Xiong’an’s local government to build out this AI city with an environmental focus. Possibilities include sensor-geared cement, computer vision-enabled traffic lights, intersections with facial recognition, and parking lots-turned parks.

Lastly, Lee predicts China will almost certainly lead the charge in autonomous drones. Already, Shenzhen is home to premier drone maker DJI—a company I’ll be visiting with 24 top executives later this month as part of my annual China Platinum Trip.

Named “the best company I have ever encountered” by Chris Anderson, DJI owns an estimated 50 percent of the North American drone market, supercharged by Shenzhen’s extraordinary maker movement.

While the long-term Sino-US competitive balance in fourth wave AI remains to be seen, one thing is certain: in a matter of decades, we will witness the rise of AI-embedded cityscapes and autonomous machines that can interact with the real world and help solve today’s most pressing grand challenges.

Join Me
Webinar with Dr. Kai-Fu Lee: Dr. Kai-Fu Lee — one of the world’s most respected experts on AI — and I will discuss his latest book AI Superpowers: China, Silicon Valley, and the New World Order. Artificial Intelligence is reshaping the world as we know it. With U.S.-Sino competition heating up, who will own the future of technology? Register here for the free webinar on September 4th, 2018 from 11:00am–12:30pm PST.

Image Credit: Elena11 / Shutterstock.com Continue reading

Posted in Human Robots