Tag Archives: that

#432482 This Week’s Awesome Stories From ...

CYBERNETICS
A Brain-Boosting Prosthesis Moves From Rats to Humans
Robbie Gonzalez | WIRED
“Today, their proof-of-concept prosthetic lives outside a patient’s head and connects to the brain via wires. But in the future, Hampson hopes, surgeons could implant a similar apparatus entirely within a person’s skull, like a neural pacemaker. It could augment all manner of brain functions—not just in victims of dementia and brain injury, but healthy individuals, as well.”

ARTIFICIAL INTELLIGENCE
Here’s How the US Needs to Prepare for the Age of Artificial Intelligence
Will Knight | MIT Technology Review
“The Trump administration has abandoned this vision and has no intention of devising its own AI plan, say those working there. They say there is no need for an AI moonshot, and that minimizing government interference is the best way to make sure the technology flourishes… That looks like a huge mistake. If it essentially ignores such a technological transformation, the US might never make the most of an opportunity to reboot its economy and kick-start both wage growth and job creation. Failure to plan could also cause the birthplace of AI to lose ground to international rivals.”

BIOMIMICRY
Underwater GPS Inspired by Shrimp Eyes
Jeremy Hsu | IEEE Spectrum
“A few years ago, U.S. and Australian researchers developed a special camera inspired by the eyes of mantis shrimp that can see the polarization patterns of light waves, which resemble those in a rope being waved up and down. That means the bio-inspired camera can detect how light polarization patterns change once the light enters the water and gets deflected or scattered.”

POLITICS & TECHNOLOGY
‘The Business of War’: Google Employees Protest Work for the Pentagon
Scott Shane and Daisuke Wakabayashi | The New York Times
“Thousands of Google employees, including dozens of senior engineers, have signed a letter protesting the company’s involvement in a Pentagon program that uses artificial intelligence to interpret video imagery and could be used to improve the targeting of drone strikes.

The letter, which is circulating inside Google and has garnered more than 3,100 signatures, reflects a culture clash between Silicon Valley and the federal government that is likely to intensify as cutting-edge artificial intelligence is increasingly employed for military purposes. ‘We believe that Google should not be in the business of war,’ says the letter, addressed to Sundar Pichai, the company’s chief executive. It asks that Google pull out of Project Maven, a Pentagon pilot program, and announce a policy that it will not ‘ever build warfare technology.’ (Read the text of the letter.)”

CYBERNETICS
MIT’s New Headset Reads the ‘Words in Your Head’
Brian Heater | TechCrunch
“A team at MIT has been working on just such a device, though the hardware design, admittedly, doesn’t go too far toward removing that whole self-consciousness bit from the equation. AlterEgo is a headmounted—or, more properly, jaw-mounted—device that’s capable of reading neuromuscular signals through built-in electrodes. The hardware, as MIT puts it, is capable of reading ‘words in your head.’”



Image Credit: christitzeimaging.com / Shutterstock.com Continue reading

Posted in Human Robots

#432467 Dungeons and Dragons, Not Chess and Go: ...

Everyone had died—not that you’d know it, from how they were laughing about their poor choices and bad rolls of the dice. As a social anthropologist, I study how people understand artificial intelligence (AI) and our efforts towards attaining it; I’m also a life-long fan of Dungeons and Dragons (D&D), the inventive fantasy roleplaying game. During a recent quest, when I was playing an elf ranger, the trainee paladin (or holy knight) acted according to his noble character, and announced our presence at the mouth of a dragon’s lair. The results were disastrous. But while success in D&D means “beating the bad guy,” the game is also a creative sandbox, where failure can count as collective triumph so long as you tell a great tale.

What does this have to do with AI? In computer science, games are frequently used as a benchmark for an algorithm’s “intelligence.” The late Robert Wilensky, a professor at the University of California, Berkeley and a leading figure in AI, offered one reason why this might be. Computer scientists “looked around at who the smartest people were, and they were themselves, of course,” he told the authors of Compulsive Technology: Computers as Culture (1985). “They were all essentially mathematicians by training, and mathematicians do two things—they prove theorems and play chess. And they said, hey, if it proves a theorem or plays chess, it must be smart.” No surprise that demonstrations of AI’s “smarts” have focused on the artificial player’s prowess.

Yet the games that get chosen—like Go, the main battlefield for Google DeepMind’s algorithms in recent years—tend to be tightly bounded, with set objectives and clear paths to victory or defeat. These experiences have none of the open-ended collaboration of D&D. Which got me thinking: do we need a new test for intelligence, where the goal is not simply about success, but storytelling? What would it mean for an AI to “pass” as human in a game of D&D? Instead of the Turing test, perhaps we need an elf ranger test?

Of course, this is just a playful thought experiment, but it does highlight the flaws in certain models of intelligence. First, it reveals how intelligence has to work across a variety of environments. D&D participants can inhabit many characters in many games, and the individual player can “switch” between roles (the fighter, the thief, the healer). Meanwhile, AI researchers know that it’s super difficult to get a well-trained algorithm to apply its insights in even slightly different domains—something that we humans manage surprisingly well.

Second, D&D reminds us that intelligence is embodied. In computer games, the bodily aspect of the experience might range from pressing buttons on a controller in order to move an icon or avatar (a ping-pong paddle; a spaceship; an anthropomorphic, eternally hungry, yellow sphere), to more recent and immersive experiences involving virtual-reality goggles and haptic gloves. Even without these add-ons, games can still produce biological responses associated with stress and fear (if you’ve ever played Alien: Isolation you’ll understand). In the original D&D, the players encounter the game while sitting around a table together, feeling the story and its impact. Recent research in cognitive science suggests that bodily interactions are crucial to how we grasp more abstract mental concepts. But we give minimal attention to the embodiment of artificial agents, and how that might affect the way they learn and process information.

Finally, intelligence is social. AI algorithms typically learn through multiple rounds of competition, in which successful strategies get reinforced with rewards. True, it appears that humans also evolved to learn through repetition, reward and reinforcement. But there’s an important collaborative dimension to human intelligence. In the 1930s, the psychologist Lev Vygotsky identified the interaction of an expert and a novice as an example of what became called “scaffolded” learning, where the teacher demonstrates and then supports the learner in acquiring a new skill. In unbounded games, this cooperation is channelled through narrative. Games of It among small children can evolve from win/lose into attacks by terrible monsters, before shifting again to more complex narratives that explain why the monsters are attacking, who is the hero, and what they can do and why—narratives that aren’t always logical or even internally compatible. An AI that could engage in social storytelling is doubtless on a surer, more multifunctional footing than one that plays chess; and there’s no guarantee that chess is even a step on the road to attaining intelligence of this sort.

In some ways, this failure to look at roleplaying as a technical hurdle for intelligence is strange. D&D was a key cultural touchstone for technologists in the 1980s and the inspiration for many early text-based computer games, as Katie Hafner and Matthew Lyon point out in Where Wizards Stay up Late: The Origins of the Internet (1996). Even today, AI researchers who play games in their free time often mention D&D specifically. So instead of beating adversaries in games, we might learn more about intelligence if we tried to teach artificial agents to play together as we do: as paladins and elf rangers.

This article was originally published at Aeon and has been republished under Creative Commons.

Image Credit:Benny Mazur/Flickr / CC BY 2.0 Continue reading

Posted in Human Robots

#432456 This Planned Solar Farm in Saudi Arabia ...

Right now it only exists on paper, in the form of a memorandum of understanding. But if constructed, the newly-announced solar photovoltaic project in Saudi Arabia would break an astonishing array of records. It’s larger than any solar project currently planned by a factor of 100. When completed, nominally in 2030, it would have a capacity of an astonishing 200 gigawatts (GW). The project is backed by Softbank Group and Saudi Arabia’s new crown prince, Mohammed Bin Salman, and was announced in New York on March 27.

The Tengger Desert Solar Park in China, affectionately known as the “Great Wall of Solar,” is the world’s largest operating solar farm, with a capacity of 1.5 GW. Larger farms are under construction, including the Westlands Solar Park, which plans to finish with 2.7 GW of capacity. But even those that are only in the planning phases are dwarfed by the Saudi project; two early-stage solar parks will have capacity of 7.2 GW, and the plan involves them generating electricity as early as next year.

It makes more sense to compare to slightly larger projects, like nations, or even planets. Saudi Arabia’s current electricity generation capacity is 77 GW. This project would almost triple it. The current total solar photovoltaic generation capacity installed worldwide is 303 GW. In other words, this single solar farm would account for a similar installed capacity as the entire world’s capacity in 2015, and over a thousand times more than we had in 2000.

That’s exponential growth for you, folks.

Of course, practically doubling the world’s solar capacity doesn’t come cheap; the nominal estimate for the budget is around $200 billion (compared to $20 billion for around half a gigawatt of fusion, though, it may not seem so bad.) But the project would help solve a number of pressing problems for Saudi Arabia.

For a start, solar power works well in the desert. The irradiance is high, you have plenty of empty space, and peak demand is driven by air conditioning in the cities and so corresponds with peak supply. Even if oil companies might seem blasé about the global supply of oil running out, individual countries are aware that their own reserves won’t last forever, and they don’t want to miss the energy transition. The country’s Vision 2030 project aims to diversify its heavily oil-dependent economy by that year. If they can construct solar farms on this scale, alongside the $80 billion the government plans to spend on a fleet of nuclear reactors, it seems logical to export that power to other countries in the region, especially given the amount of energy storage that would be required otherwise.

We’ve already discussed a large-scale project to build solar panels in the desert then export the electricity: the DESERTEC initiative in the Sahara. Although DESERTEC planned a range of different demonstration plants on scales of around 500 MW, its ultimate ambition was to “provide 20 percent of Europe’s electricity by 2050.” It seems that this project is similar in scale to what they were planning. Weaning ourselves off fossil fuels is going to be incredibly difficult. Only large-scale nuclear, wind, or solar can really supply the world’s energy needs if consumption is anything like what it is today; in all likelihood, we’ll need a combination of all three.

To make a sizeable contribution to that effort, the renewable projects have to be truly epic in scale. The planned 2 GW solar park at Bulli Creek in Australia would cover 5 square kilometers, so it’s not unreasonable to suggest that, across many farms, this project could cover around 500 square kilometers—around the size of Chicago.

It will come as no surprise that Softbank is involved in this project. The founder, Masayoshi Son, is well-known for large-scale “visionary” investments. This is suggested by the name of his $100 billion VC fund, the Softbank Vision Fund, and the focus of its investments. It has invested millions of dollars in tech companies like Uber, IoT, NVIDIA and ARM, and startups across fields like VR, agritech, and AI.

Of course, Softbank is also the company that bought infamous robot-makers Boston Dynamics from Google when their not-at-all-sinister “Project Replicant” was sidelined. Softbank is famous in Japan in part due to their mascot, Pepper, which is probably the most widespread humanoid robot on the planet. Suffice it to say that Softbank is keen to be a part of any technological development, and they’re not afraid of projects that are truly vast in scope.

Since the Fukushima disaster in 2011 led Japan to turn away from nuclear power, Son has also been focused on green electricity, floating the idea of an Asia Super Grid. Similar to DESERTEC, it aims to get around the main issues with renewable energy (the land use and the intermittency of supply) with a vast super-grid that would connect Mongolia, India, Japan, China, Russia, and South Korea with high-voltage DC power cables. “Since this is such a grandiose project, many people told me it is crazy,” Son said. “They said it is impossible both economically and politically.” The first stage of the project, a demonstration wind farm of 50 megawatts in Mongolia, began operating in October of last year.

Given that Saudi Arabia put up $45 billion of the Vision Fund, it’s also not surprising to see the location of the project; Softbank reportedly had plans to invest $25 billion of the Vision Fund in Saudi Arabia, and $1 billion will be spent on the first solar farms there. Prince Mohammed Bin Salman, 32, who recently consolidated power, is looking to be seen on the global stage as a modernizer. He was effusive about the project. “It’s a huge step in human history,” he said. “It’s bold, risky, and we hope we succeed doing that.”

It is the risk that will keep renewable energy enthusiasts concerned.

Every visionary plan contains the potential for immense disappointment. As yet, the Asian Super Grid and the Saudi power plan are more or less at the conceptual stage. The fact that a memorandum of understanding exists between the Saudi government and Softbank is no guarantee that it will ever be built. Some analysts in the industry are a little skeptical.

“It’s an unprecedented construction effort; it’s an unprecedented financing effort,” said Benjamin Attia, a global solar analyst for Green Tech Media Research. “But there are so many questions, so few details, and a lot of headwinds, like grid instability, the availability of commercial debt, construction, and logistics challenges.”

We have already seen with the DESERTEC initiative that these vast-scale renewable energy projects can fail, despite immense enthusiasm. They are not easy to accomplish. But in a world without fossil fuels, they will be required. This project could be a flagship example for how to run a country on renewable energy—or another example of grand designs and good intentions. We’ll have to wait to find out which.

Image Credit: Love Silhouette / Shutterstock.com Continue reading

Posted in Human Robots

#432431 Why Slowing Down Can Actually Help Us ...

Leah Weiss believes that when we pay attention to how we do our work—our thoughts and feelings about what we do and why we do it—we can tap into a much deeper reservoir of courage, creativity, meaning, and resilience.

As a researcher, educator, and author, Weiss teaches a course called “Leading with Compassion and Mindfulness” at the Stanford Graduate School of Business, one of the most competitive MBA programs in the world, and runs programs at HopeLab.

Weiss is the author of the new book How We Work: Live Your Purpose, Reclaim your Sanity and Embrace the Daily Grind, endorsed by the Dalai Lama, among others. I caught up with Leah to learn more about how the practice of mindfulness can deepen our individual and collective purpose and passion.

Lisa Kay Solomon: We’re hearing a lot about mindfulness these days. What is mindfulness and why is it so important to bring into our work? Can you share some of the basic tenets of the practice?

Leah Weiss, PhD: Mindfulness is, in its most literal sense, “the attention to inattention.” It’s as simple as noticing when you’re not paying attention and then re-focusing. It is prioritizing what is happening right now over internal and external noise.

The ability to work well with difficult coworkers, handle constructive feedback and criticism, regulate emotions at work—all of these things can come from regular mindfulness practice.

Some additional benefits of mindfulness are a greater sense of compassion (both self-compassion and compassion for others) and a way to seek and find purpose in even mundane things (and especially at work). From the business standpoint, mindfulness at work leads to increased productivity and creativity, mostly because when we are focused on one task at a time (as opposed to multitasking), we produce better results.

We spend more time with our co-workers than we do with our families; if our work relationships are negative, we suffer both mentally and physically. Even worse, we take all of those negative feelings home with us at the end of the work day. The antidote to this prescription for unhappiness is to have clear, strong purpose (one third of people do not have purpose at work and this is a major problem in the modern workplace!). We can use mental training to grow as people and as employees.

LKS: What are some recommendations you would make to busy leaders who are working around the clock to change the world?

LW: I think the most important thing is to remember to tend to our relationship with ourselves while trying to change the world. If we’re beating up on ourselves all the time we’ll be depleted.

People passionate about improving the world can get into habits of believing self-care isn’t important. We demand a lot of ourselves. It’s okay to fail, to mess up, to make mistakes—what’s important is how we learn from those mistakes and what we tell ourselves about those instances. What is the “internal script” playing in your own head? Is it positive, supporting, and understanding? It should be. If it isn’t, you can work on it. And the changes you make won’t just improve your quality of life, they’ll make you more resilient to weather life’s inevitable setbacks.

A close second recommendation is to always consider where everyone in an organization fits and help everyone (including yourself) find purpose. When you know what your own purpose is and show others their purpose, you can motivate a team and help everyone on a team gain pride in and at work. To get at this, make sure to ask people on your team what really lights them up. What sucks their energy and depletes them? If we know our own answers to these questions and relate them to the people we work with, we can create more engaged organizations.

LKS: Can you envision a future where technology and mindfulness can work together?

LW: Technology and mindfulness are already starting to work together. Some artificial intelligence companies are considering things like mindfulness and compassion when building robots, and there are numerous apps that target spreading mindfulness meditations in a widely-accessible way.

LKS: Looking ahead at our future generations who seem more attached to their devices than ever, what advice do you have for them?

LW: It’s unrealistic to say “stop using your device so much,” so instead, my suggestion is to make time for doing things like scrolling social media and make the same amount of time for putting your phone down and watching a movie or talking to a friend. No matter what it is that you are doing, make sure you have meta-awareness or clarity about what you’re paying attention to. Be clear about where your attention is and recognize that you can be a steward of attention. Technology can support us in this or pull us away from this; it depends on how we use it.

Image Credit: frankie’s / Shutterstock.com Continue reading

Posted in Human Robots

#432421 Cheetah III robot preps for a role as a ...

If you were to ask someone to name a new technology that emerged from MIT in the 21st century, there's a good chance they would name the robotic cheetah. Developed by the MIT Department of Mechanical Engineering's Biomimetic Robotics Lab under the direction of Associate Professor Sangbae Kim, the quadruped MIT Cheetah has made headlines for its dynamic legged gait, speed, jumping ability, and biomimetic design. Continue reading

Posted in Human Robots