Tag Archives: story

#434623 The Great Myth of the AI Skills Gap

One of the most contentious debates in technology is around the question of automation and jobs. At issue is whether advances in automation, specifically with regards to artificial intelligence and robotics, will spell trouble for today’s workers. This debate is played out in the media daily, and passions run deep on both sides of the issue. In the past, however, automation has created jobs and increased real wages.

A widespread concern with the current scenario is that the workers most likely to be displaced by technology lack the skills needed to do the new jobs that same technology will create.

Let’s look at this concern in detail. Those who fear automation will hurt workers start by pointing out that there is a wide range of jobs, from low-pay, low-skill to high-pay, high-skill ones. This can be represented as follows:

They then point out that technology primarily creates high-paying jobs, like geneticists, as shown in the diagram below.

Meanwhile, technology destroys low-wage, low-skill jobs like those in fast food restaurants, as shown below:

Then, those who are worried about this dynamic often pose the question, “Do you really think a fast-food worker is going to become a geneticist?”

They worry that we are about to face a huge amount of systemic permanent unemployment, as the unskilled displaced workers are ill-equipped to do the jobs of tomorrow.

It is important to note that both sides of the debate are in agreement at this point. Unquestionably, technology destroys low-skilled, low-paying jobs while creating high-skilled, high-paying ones.

So, is that the end of the story? As a society are we destined to bifurcate into two groups, those who have training and earn high salaries in the new jobs, and those with less training who see their jobs vanishing to machines? Is this latter group forever locked out of economic plenty because they lack training?

No.

The question, “Can a fast food worker become a geneticist?” is where the error comes in. Fast food workers don’t become geneticists. What happens is that a college biology professor becomes a geneticist. Then a high-school biology teacher gets the college job. Then the substitute teacher gets hired on full-time to fill the high school teaching job. All the way down.

The question is not whether those in the lowest-skilled jobs can do the high-skilled work. Instead the question is, “Can everyone do a job just a little harder than the job they have today?” If so, and I believe very deeply that this is the case, then every time technology creates a new job “at the top,” everyone gets a promotion.

This isn’t just an academic theory—it’s 200 years of economic history in the west. For 200 years, with the exception of the Great Depression, unemployment in the US has been between 2 percent and 13 percent. Always. Europe’s range is a bit wider, but not much.

If I took 200 years of unemployment rates and graphed them, and asked you to find where the assembly line took over manufacturing, or where steam power rapidly replaced animal power, or the lightning-fast adoption of electricity by industry, you wouldn’t be able to find those spots. They aren’t even blips in the unemployment record.

You don’t even have to look back as far as the assembly line to see this happening. It has happened non-stop for 200 years. Every fifty years, we lose about half of all jobs, and this has been pretty steady since 1800.

How is it that for 200 years we have lost half of all jobs every half century, but never has this process caused unemployment? Not only has it not caused unemployment, but during that time, we have had full employment against the backdrop of rising wages.

How can wages rise while half of all jobs are constantly being destroyed? Simple. Because new technology always increases worker productivity. It creates new jobs, like web designer and programmer, while destroying low-wage backbreaking work. When this happens, everyone along the way gets a better job.

Our current situation isn’t any different than the past. The nature of technology has always been to create high-skilled jobs and increase worker productivity. This is good news for everyone.

People often ask me what their children should study to make sure they have a job in the future. I usually say it doesn’t really matter. If I knew everything I know now and went back to the mid 1980s, what could I have taken in high school to make me better prepared for today? There is only one class, and it wasn’t computer science. It was typing. Who would have guessed?

The great skill is to be able to learn new things, and luckily, we all have that. In fact, that is our singular ability as a species. What I do in my day-to-day job consists largely of skills I have learned as the years have passed. In my experience, if you ask people at all job levels,“Would you like a little more challenging job to make a little more money?” almost everyone says yes.

That’s all it has taken for us to collectively get here today, and that’s all we need going forward.

Image Credit: Lightspring / Shutterstock.com Continue reading

Posted in Human Robots

#434585 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
The World’s Fastest Supercomputer Breaks an AI Record
Tom Simonite | Wired
“Summit, which occupies an area equivalent to two tennis courts, used more than 27,000 powerful graphics processors in the project. It tapped their power to train deep-learning algorithms, the technology driving AI’s frontier, chewing through the exercise at a rate of a billion billion operations per second, a pace known in supercomputing circles as an exaflop.”

ROBOTICS
iRobot Finally Announces Awesome New Terra Robotic Lawnmower
Evan Ackerman | IEEE Spectrum
“Since the first Roomba came out in 2002, it has seemed inevitable that one day iRobot would develop a robotic lawn mower. After all, a robot mower is basically just a Roomba that works outside, right? Of course, it’s not nearly that simple, as iRobot has spent the last decade or so discovering, but they’ve finally managed to pull it off.”

3D Printing
Watch This Super Speedy 3D Printer Make Objects Suddenly Appear
Erin Winick | MIT Technology Review
“The new machine—which the team nicknamed the ‘replicator’ after the machine from Star Trek—instead forms the entire item all in one go. It does this by shining light onto specific spots in a rotating resin that solidifies when exposed to a certain light level.”

GENETICS
The DIY Designer Baby Project Funded With Bitcoin
Antonio Regalado | MIT Technology Review
“i‘Is DIY bio anywhere close to making a CRISPR baby? No, not remotely,’ David Ishee says. ‘But if some rich guy pays a scientist to do the work, it’s going to happen.’ He adds: ‘What you are reporting on isn’t Bryan—it’s the unseen middle space, a layer of gray-market biotech and freelance science where people with resources can get things done.’i”

SCIENCE
The Complete Cancer Cure Story Is Both Bogus and Tragic
Megan Molteni | Wired
“You’d think creators and consumers of news would have learned their lesson by now. But the latest version of the fake cancer cure story is even more flagrantly flawed than usual. The public’s cancer cure–shaped amnesia, and media outlets’ willingness to exploit it for clicks, are as bottomless as ever. Hope, it would seem, trumps history.”

BOOKS
An AI Reading List—From Practical Primers to Sci-Fi Short Stories
James Vincent | The Verge
“The Verge has assembled a reading list: a brief but diverse compendium of books, short stories, and blogs, all chosen by leading figures in the AI world to help you better understand artificial intelligence.”

Image Credit: Katya Havok / Shutterstock.com Continue reading

Posted in Human Robots

#434492 Black Mirror’s ‘Bandersnatch’ ...

When was the last time you watched a movie where you could control the plot?

Bandersnatch is the first interactive film in the sci fi anthology series Black Mirror. Written by series creator Charlie Brooker and directed by David Slade, the film tells the story of young programmer Stefan Butler, who is adapting a fantasy choose-your-own-adventure novel called Bandersnatch into a video game. Throughout the film, viewers are given the power to influence Butler’s decisions, leading to diverging plots with different endings.

Like many Black Mirror episodes, this film is mind-bending, dark, and thought-provoking. In addition to innovating cinema as we know it, it is a fascinating rumination on free will, parallel realities, and emerging technologies.

Pick Your Own Adventure
With a non-linear script, Bandersnatch is a viewing experience like no other. Throughout the film viewers are given the option of making a decision for the protagonist. In these instances, they have 10 seconds to make a decision until a default decision is made. For example, in the early stage of the plot, Butler is given the choice of accepting or rejecting Tuckersoft’s offer to develop a video game and the viewer gets to decide what he does. The decision then shapes the plot accordingly.

The video game Butler is developing involves moving through a graphical maze of corridors while avoiding a creature called the Pax, and at times making choices through an on-screen instruction (sound familiar?). In other words, it’s a pick-your-own-adventure video game in a pick-your-own-adventure movie.

Many viewers have ended up spending hours exploring all the different branches of the narrative (though the average viewing is 90 minutes). One user on reddit has mapped out an entire flowchart, showing how all the different decisions (and pseudo-decisions) lead to various endings.

However, over time, Butler starts to question his own free will. It’s almost as if he’s beginning to realize that the audience is controlling him. In one branch of the narrative, he is confronted by this reality when the audience indicates to him that he is being controlled in a Netflix show: “I am watching you on Netflix. I make all the decisions for you”. Butler, as you can imagine, is horrified by this message.

But Butler isn’t the only one who has an illusion of choice. We, the seemingly powerful viewers, also appear to operate under the illusion of choice. Despite there being five main endings to the film, they are all more or less the same.

The Science Behind Bandersnatch
The premise of Bandersnatch isn’t based on fantasy, but hard science. Free will has always been a widely-debated issue in neuroscience, with reputable scientists and studies demonstrating that the whole concept may be an illusion.

In the 1970s, a psychologist named Benjamin Libet conducted a series of experiments that studied voluntary decision making in humans. He found that brain activity imitating an action, such as moving your wrist, preceded the conscious awareness of the action.

Psychologist Malcom Gladwell theorizes that while we like to believe we spend a lot of time thinking about our decisions, our mental processes actually work rapidly, automatically, and often subconsciously, from relatively little information. In addition to this, thinking and making decisions are usually a byproduct of several different brain systems, such as the hippocampus, amygdala, and prefrontal cortex working together. You are more conscious of some information processes in the brain than others.

As neuroscientist and philosopher Sam Harris points out in his book Free Will, “You did not pick your parents or the time and place of your birth. You didn’t choose your gender or most of your life experiences. You had no control whatsoever over your genome or the development of your brain. And now your brain is making choices on the basis of preferences and beliefs that have been hammered into it over a lifetime.” Like Butler, we may believe we are operating under full agency of our abilities, but we are at the mercy of many internal and external factors that influence our decisions.

Beyond free will, Bandersnatch also taps into the theory of parallel universes, a facet of the astronomical theory of the multiverse. In astrophysics, there is a theory that there are parallel universes other than our own, where all the choices you made are played out in alternate realities. For instance, if today you had the option of having cereal or eggs for breakfast, and you chose eggs, in a parallel universe, you chose cereal. Human history and our lives may have taken different paths in these parallel universes.

The Future of Cinema
In the future, the viewing experience will no longer be a passive one. Bandersnatch is just a glimpse into how technology is revolutionizing film as we know it and making it a more interactive and personalized experience. All the different scenarios and branches of the plot were scripted and filmed, but in the future, they may be adapted real-time via artificial intelligence.

Virtual reality may allow us to play an even more active role by making us participants or characters in the film. Data from your history of preferences and may be used to create a unique version of the plot that is optimized for your viewing experience.

Let’s also not underestimate the social purpose of advancing film and entertainment. Science fiction gives us the ability to create simulations of the future. Different narratives can allow us to explore how powerful technologies combined with human behavior can result in positive or negative scenarios. Perhaps in the future, science fiction will explore implications of technologies and observe human decision making in novel contexts, via AI-powered films in the virtual world.

Image Credit: andrey_l / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#434336 These Smart Seafaring Robots Have a ...

Drones. Self-driving cars. Flying robo taxis. If the headlines of the last few years are to be believed, terrestrial transportation in the future will someday be filled with robotic conveyances and contraptions that will require little input from a human other than to download an app.

But what about the other 70 percent of the planet’s surface—the part that’s made up of water?

Sure, there are underwater drones that can capture 4K video for the next BBC documentary. Remotely operated vehicles (ROVs) are capable of diving down thousands of meters to investigate ocean vents or repair industrial infrastructure.

Yet most of the robots on or below the water today still lean heavily on the human element to operate. That’s not surprising given the unstructured environment of the seas and the poor communication capabilities for anything moving below the waves. Autonomous underwater vehicles (AUVs) are probably the closest thing today to smart cars in the ocean, but they generally follow pre-programmed instructions.

A new generation of seafaring robots—leveraging artificial intelligence, machine vision, and advanced sensors, among other technologies—are beginning to plunge into the ocean depths. Here are some of the latest and most exciting ones.

The Transformer of the Sea
Nic Radford, chief technology officer of Houston Mechatronics Inc. (HMI), is hesitant about throwing around the word “autonomy” when talking about his startup’s star creation, Aquanaut. He prefers the term “shared control.”

Whatever you want to call it, Aquanaut seems like something out of the script of a Transformers movie. The underwater robot begins each mission in a submarine-like shape, capable of autonomously traveling up to 200 kilometers on battery power, depending on the assignment.

When Aquanaut reaches its destination—oil and gas is the primary industry HMI hopes to disrupt to start—its four specially-designed and built linear actuators go to work. Aquanaut then unfolds into a robot with a head, upper torso, and two manipulator arms, all while maintaining proper buoyancy to get its job done.

The lightbulb moment of how to engineer this transformation from submarine to robot came one day while Aquanaut’s engineers were watching the office’s stand-up desks bob up and down. The answer to the engineering challenge of the hull suddenly seemed obvious.

“We’re just gonna build a big, gigantic, underwater stand-up desk,” Radford told Singularity Hub.

Hardware wasn’t the only problem the team, comprised of veteran NASA roboticists like Radford, had to solve. In order to ditch the expensive support vessels and large teams of humans required to operate traditional ROVs, Aquanaut would have to be able to sense its environment in great detail and relay that information back to headquarters using an underwater acoustics communications system that harkens back to the days of dial-up internet connections.

To tackle that problem of low bandwidth, HMI equipped Aquanaut with a machine vision system comprised of acoustic, optical, and laser-based sensors. All of that dense data is compressed using in-house designed technology and transmitted to a single human operator who controls Aquanaut with a few clicks of a mouse. In other words, no joystick required.

“I don’t know of anyone trying to do this level of autonomy as it relates to interacting with the environment,” Radford said.

HMI got $20 million earlier this year in Series B funding co-led by Transocean, one of the world’s largest offshore drilling contractors. That should be enough money to finish the Aquanaut prototype, which Radford said is about 99.8 percent complete. Some “high-profile” demonstrations are planned for early next year, with commercial deployments as early as 2020.

“What just gives us an incredible advantage here is that we have been born and bred on doing robotic systems for remote locations,” Radford noted. “This is my life, and I’ve bet the farm on it, and it takes this kind of fortitude and passion to see these things through, because these are not easy problems to solve.”

On Cruise Control
Meanwhile, a Boston-based startup is trying to solve the problem of making ships at sea autonomous. Sea Machines is backed by about $12.5 million in capital venture funding, with Toyota AI joining the list of investors in a $10 million Series A earlier this month.

Sea Machines is looking to the self-driving industry for inspiration, developing what it calls “vessel intelligence” systems that can be retrofitted on existing commercial vessels or installed on newly-built working ships.

For instance, the startup announced a deal earlier this year with Maersk, the world’s largest container shipping company, to deploy a system of artificial intelligence, computer vision, and LiDAR on the Danish company’s new ice-class container ship. The technology works similar to advanced driver-assistance systems found in automobiles to avoid hazards. The proof of concept will lay the foundation for a future autonomous collision avoidance system.

It’s not just startups making a splash in autonomous shipping. Radford noted that Rolls Royce—yes, that Rolls Royce—is leading the way in the development of autonomous ships. Its Intelligence Awareness system pulls in nearly every type of hyped technology on the market today: neural networks, augmented reality, virtual reality, and LiDAR.

In augmented reality mode, for example, a live feed video from the ship’s sensors can detect both static and moving objects, overlaying the scene with details about the types of vessels in the area, as well as their distance, heading, and other pertinent data.

While safety is a primary motivation for vessel automation—more than 1,100 ships have been lost over the past decade—these new technologies could make ships more efficient and less expensive to operate, according to a story in Wired about the Rolls Royce Intelligence Awareness system.

Sea Hunt Meets Science
As Singularity Hub noted in a previous article, ocean robots can also play a critical role in saving the seas from environmental threats. One poster child that has emerged—or, invaded—is the spindly lionfish.

A venomous critter endemic to the Indo-Pacific region, the lionfish is now found up and down the east coast of North America and beyond. And it is voracious, eating up to 30 times its own stomach volume and reducing juvenile reef fish populations by nearly 90 percent in as little as five weeks, according to the Ocean Support Foundation.

That has made the colorful but deadly fish Public Enemy No. 1 for many marine conservationists. Both researchers and startups are developing autonomous robots to hunt down the invasive predator.

At the Worcester Polytechnic Institute, for example, students are building a spear-carrying robot that uses machine learning and computer vision to distinguish lionfish from other aquatic species. The students trained the algorithms on thousands of different images of lionfish. The result: a lionfish-killing machine that boasts an accuracy of greater than 95 percent.

Meanwhile, a small startup called the American Marine Research Corporation out of Pensacola, Florida is applying similar technology to seek and destroy lionfish. Rather than spearfishing, the AMRC drone would stun and capture the lionfish, turning a profit by selling the creatures to local seafood restaurants.

Lionfish: It’s what’s for dinner.

Water Bots
A new wave of smart, independent robots are diving, swimming, and cruising across the ocean and its deepest depths. These autonomous systems aren’t necessarily designed to replace humans, but to venture where we can’t go or to improve safety at sea. And, perhaps, these latest innovations may inspire the robots that will someday plumb the depths of watery planets far from Earth.

Image Credit: Houston Mechatronics, Inc. Continue reading

Posted in Human Robots

#434297 How Can Leaders Ensure Humanity in a ...

It’s hard to avoid the prominence of AI in our lives, and there is a plethora of predictions about how it will influence our future. In their new book Solomon’s Code: Humanity in a World of Thinking Machines, co-authors Olaf Groth, Professor of Strategy, Innovation and Economics at HULT International Business School and CEO of advisory network Cambrian.ai, and Mark Nitzberg, Executive Director of UC Berkeley’s Center for Human-Compatible AI, believe that the shift in balance of power between intelligent machines and humans is already here.

I caught up with the authors about how the continued integration between technology and humans, and their call for a “Digital Magna Carta,” a broadly-accepted charter developed by a multi-stakeholder congress that would help guide the development of advanced technologies to harness their power for the benefit of all humanity.

Lisa Kay Solomon: Your new book, Solomon’s Code, explores artificial intelligence and its broader human, ethical, and societal implications that all leaders need to consider. AI is a technology that’s been in development for decades. Why is it so urgent to focus on these topics now?

Olaf Groth and Mark Nitzberg: Popular perception always thinks of AI in terms of game-changing narratives—for instance, Deep Blue beating Gary Kasparov at chess. But it’s the way these AI applications are “getting into our heads” and making decisions for us that really influences our lives. That’s not to say the big, headline-grabbing breakthroughs aren’t important; they are.

But it’s the proliferation of prosaic apps and bots that changes our lives the most, by either empowering or counteracting who we are and what we do. Today, we turn a rapidly growing number of our decisions over to these machines, often without knowing it—and even more often without understanding the second- and third-order effects of both the technologies and our decisions to rely on them.

There is genuine power in what we call a “symbio-intelligent” partnership between human, machine, and natural intelligences. These relationships can optimize not just economic interests, but help improve human well-being, create a more purposeful workplace, and bring more fulfillment to our lives.

However, mitigating the risks while taking advantage of the opportunities will require a serious, multidisciplinary consideration of how AI influences human values, trust, and power relationships. Whether or not we acknowledge their existence in our everyday life, these questions are no longer just thought exercises or fodder for science fiction.

In many ways, these technologies can challenge what it means to be human, and their ramifications already affect us in real and often subtle ways. We need to understand how

LKS: There is a lot of hype and misconceptions about AI. In your book, you provide a useful distinction between the cognitive capability that we often associate with AI processes, and the more human elements of consciousness and conscience. Why are these distinctions so important to understand?

OG & MN: Could machines take over consciousness some day as they become more powerful and complex? It’s hard to say. But there’s little doubt that, as machines become more capable, humans will start to think of them as something conscious—if for no other reason than our natural inclination to anthropomorphize.

Machines are already learning to recognize our emotional states and our physical health. Once they start talking that back to us and adjusting their behavior accordingly, we will be tempted to develop a certain rapport with them, potentially more trusting or more intimate because the machine recognizes us in our various states.

Consciousness is hard to define and may well be an emergent property, rather than something you can easily create or—in turn—deduce to its parts. So, could it happen as we put more and more elements together, from the realms of AI, quantum computing, or brain-computer interfaces? We can’t exclude that possibility.

Either way, we need to make sure we’re charting out a clear path and guardrails for this development through the Three Cs in machines: cognition (where AI is today); consciousness (where AI could go); and conscience (what we need to instill in AI before we get there). The real concern is that we reach machine consciousness—or what humans decide to grant as consciousness—without a conscience. If that happens, we will have created an artificial sociopath.

LKS: We have been seeing major developments in how AI is influencing product development and industry shifts. How is the rise of AI changing power at the global level?

OG & MN: Both in the public and private sectors, the data holder has the power. We’ve already seen the ascendance of about 10 “digital barons” in the US and China who sit on huge troves of data, massive computing power, and the resources and money to attract the world’s top AI talent. With these gaps already open between the haves and the have-nots on the technological and corporate side, we’re becoming increasingly aware that similar inequalities are forming at a societal level as well.

Economic power flows with data, leaving few options for socio-economically underprivileged populations and their corrupt, biased, or sparse digital footprints. By concentrating power and overlooking values, we fracture trust.

We can already see this tension emerging between the two dominant geopolitical models of AI. China and the US have emerged as the most powerful in both technological and economic terms, and both remain eager to drive that influence around the world. The EU countries are more contained on these economic and geopolitical measures, but they’ve leaped ahead on privacy and social concerns.

The problem is, no one has yet combined leadership on all three critical elements of values, trust, and power. The nations and organizations that foster all three of these elements in their AI systems and strategies will lead the future. Some are starting to recognize the need for the combination, but we found just 13 countries that have created significant AI strategies. Countries that wait too long to join them risk subjecting themselves to a new “data colonialism” that could change their economies and societies from the outside.

LKS: Solomon’s Code looks at AI from a variety of perspectives, considering both positive and potentially dangerous effects. You caution against the rising global threat and weaponization of AI and data, suggesting that “biased or dirty data is more threatening than nuclear arms or a pandemic.” For global leaders, entrepreneurs, technologists, policy makers and social change agents reading this, what specific strategies do you recommend to ensure ethical development and application of AI?

OG & MN: We’ve surrendered many of our most critical decisions to the Cult of Data. In most cases, that’s a great thing, as we rely more on scientific evidence to understand our world and our way through it. But we swing too far in other instances, assuming that datasets and algorithms produce a complete story that’s unsullied by human biases or intellectual shortcomings. We might choose to ignore it, but no one is blind to the dangers of nuclear war or pandemic disease. Yet, we willfully blind ourselves to the threat of dirty data, instead believing it to be pristine.

So, what do we do about it? On an individual level, it’s a matter of awareness, knowing who controls your data and how outsourcing of decisions to thinking machines can present opportunities and threats alike.

For business, government, and political leaders, we need to see a much broader expansion of ethics committees with transparent criteria with which to evaluate new products and services. We might consider something akin to clinical trials for pharmaceuticals—a sort of testing scheme that can transparently and independently measure the effects on humans of algorithms, bots, and the like. All of this needs to be multidisciplinary, bringing in expertise from across technology, social systems, ethics, anthropology, psychology, and so on.

Finally, on a global level, we need a new charter of rights—a Digital Magna Carta—that formalizes these protections and guides the development of new AI technologies toward all of humanity’s benefit. We’ve suggested the creation of a multi-stakeholder Cambrian Congress (harkening back to the explosion of life during the Cambrian period) that can not only begin to frame benefits for humanity, but build the global consensus around principles for a basic code-of-conduct, and ideas for evaluation and enforcement mechanisms, so we can get there without any large-scale failures or backlash in society. So, it’s not one or the other—it’s both.

Image Credit: whiteMocca / Shutterstock.com Continue reading

Posted in Human Robots