Tag Archives: store

#432882 Why the Discovery of Room-Temperature ...

Superconductors are among the most bizarre and exciting materials yet discovered. Counterintuitive quantum-mechanical effects mean that, below a critical temperature, they have zero electrical resistance. This property alone is more than enough to spark the imagination.

A current that could flow forever without losing any energy means transmission of power with virtually no losses in the cables. When renewable energy sources start to dominate the grid and high-voltage transmission across continents becomes important to overcome intermittency, lossless cables will result in substantial savings.

What’s more, a superconducting wire carrying a current that never, ever diminishes would act as a perfect store of electrical energy. Unlike batteries, which degrade over time, if the resistance is truly zero, you could return to the superconductor in a billion years and find that same old current flowing through it. Energy could be captured and stored indefinitely!

With no resistance, a huge current could be passed through the superconducting wire and, in turn, produce magnetic fields of incredible power.

You could use them to levitate trains and produce astonishing accelerations, thereby revolutionizing the transport system. You could use them in power plants—replacing conventional methods which spin turbines in magnetic fields to generate electricity—and in quantum computers as the two-level system required for a “qubit,” in which the zeros and ones are replaced by current flowing clockwise or counterclockwise in a superconductor.

Arthur C. Clarke famously said that any sufficiently advanced technology is indistinguishable from magic; superconductors can certainly seem like magical devices. So, why aren’t they busy remaking the world? There’s a problem—that critical temperature.

For all known materials, it’s hundreds of degrees below freezing. Superconductors also have a critical magnetic field; beyond a certain magnetic field strength, they cease to work. There’s a tradeoff: materials with an intrinsically high critical temperature can also often provide the largest magnetic fields when cooled well below that temperature.

This has meant that superconductor applications so far have been limited to situations where you can afford to cool the components of your system to close to absolute zero: in particle accelerators and experimental nuclear fusion reactors, for example.

But even as some aspects of superconductor technology become mature in limited applications, the search for higher temperature superconductors moves on. Many physicists still believe a room-temperature superconductor could exist. Such a discovery would unleash amazing new technologies.

The Quest for Room-Temperature Superconductors
After Heike Kamerlingh Onnes discovered superconductivity by accident while attempting to prove Lord Kelvin’s theory that resistance would increase with decreasing temperature, theorists scrambled to explain the new property in the hope that understanding it might allow for room-temperature superconductors to be synthesized.

They came up with the BCS theory, which explained some of the properties of superconductors. It also predicted that the dream of technologists, a room-temperature superconductor, could not exist; the maximum temperature for superconductivity according to BCS theory was just 30 K.

Then, in the 1980s, the field changed again with the discovery of unconventional, or high-temperature, superconductivity. “High temperature” is still very cold: the highest temperature for superconductivity achieved was -70°C for hydrogen sulphide at extremely high pressures. For normal pressures, -140°C is near the upper limit. Unfortunately, high-temperature superconductors—which require relatively cheap liquid nitrogen, rather than liquid helium, to cool—are mostly brittle ceramics, which are expensive to form into wires and have limited application.

Given the limitations of high-temperature superconductors, researchers continue to believe there’s a better option awaiting discovery—an incredible new material that checks boxes like superconductivity approaching room temperature, affordability, and practicality.

Tantalizing Clues
Without a detailed theoretical understanding of how this phenomenon occurs—although incremental progress happens all the time—scientists can occasionally feel like they’re taking educated guesses at materials that might be likely candidates. It’s a little like trying to guess a phone number, but with the periodic table of elements instead of digits.

Yet the prospect remains, in the words of one researcher, tantalizing. A Nobel Prize and potentially changing the world of energy and electricity is not bad for a day’s work.

Some research focuses on cuprates, complex crystals that contain layers of copper and oxygen atoms. Doping cuprates with various different elements, such exotic compounds as mercury barium calcium copper oxide, are amongst the best superconductors known today.

Research also continues into some anomalous but unexplained reports that graphite soaked in water can act as a room-temperature superconductor, but there’s no indication that this could be used for technological applications yet.

In early 2017, as part of the ongoing effort to explore the most extreme and exotic forms of matter we can create on Earth, researchers managed to compress hydrogen into a metal.

The pressure required to do this was more than that at the core of the Earth and thousands of times higher than that at the bottom of the ocean. Some researchers in the field, called condensed-matter physics, doubt that metallic hydrogen was produced at all.

It’s considered possible that metallic hydrogen could be a room-temperature superconductor. But getting the samples to stick around long enough for detailed testing has proved tricky, with the diamonds containing the metallic hydrogen suffering a “catastrophic failure” under the pressure.

Superconductivity—or behavior that strongly resembles it—was also observed in yttrium barium copper oxide (YBCO) at room temperature in 2014. The only catch was that this electron transport lasted for a tiny fraction of a second and required the material to be bombarded with pulsed lasers.

Not very practical, you might say, but tantalizing nonetheless.

Other new materials display enticing properties too. The 2016 Nobel Prize in Physics was awarded for the theoretical work that characterizes topological insulators—materials that exhibit similarly strange quantum behaviors. They can be considered perfect insulators for the bulk of the material but extraordinarily good conductors in a thin layer on the surface.

Microsoft is betting on topological insulators as the key component in their attempt at a quantum computer. They’ve also been considered potentially important components in miniaturized circuitry.

A number of remarkable electronic transport properties have also been observed in new, “2D” structures—like graphene, these are materials synthesized to be as thick as a single atom or molecule. And research continues into how we can utilize the superconductors we’ve already discovered; for example, some teams are trying to develop insulating material that prevents superconducting HVDC cable from overheating.

Room-temperature superconductivity remains as elusive and exciting as it has been for over a century. It is unclear whether a room-temperature superconductor can exist, but the discovery of high-temperature superconductors is a promising indicator that unconventional and highly useful quantum effects may be discovered in completely unexpected materials.

Perhaps in the future—through artificial intelligence simulations or the serendipitous discoveries of a 21st century Kamerlingh Onnes—this little piece of magic could move into the realm of reality.

Image Credit: ktsdesign / Shutterstock.com Continue reading

Posted in Human Robots

#432311 Everyone Is Talking About AI—But Do ...

In 2017, artificial intelligence attracted $12 billion of VC investment. We are only beginning to discover the usefulness of AI applications. Amazon recently unveiled a brick-and-mortar grocery store that has successfully supplanted cashiers and checkout lines with computer vision, sensors, and deep learning. Between the investment, the press coverage, and the dramatic innovation, “AI” has become a hot buzzword. But does it even exist yet?

At the World Economic Forum Dr. Kai-Fu Lee, a Taiwanese venture capitalist and the founding president of Google China, remarked, “I think it’s tempting for every entrepreneur to package his or her company as an AI company, and it’s tempting for every VC to want to say ‘I’m an AI investor.’” He then observed that some of these AI bubbles could burst by the end of 2018, referring specifically to “the startups that made up a story that isn’t fulfillable, and fooled VCs into investing because they don’t know better.”

However, Dr. Lee firmly believes AI will continue to progress and will take many jobs away from workers. So, what is the difference between legitimate AI, with all of its pros and cons, and a made-up story?

If you parse through just a few stories that are allegedly about AI, you’ll quickly discover significant variation in how people define it, with a blurred line between emulated intelligence and machine learning applications.

I spoke to experts in the field of AI to try to find consensus, but the very question opens up more questions. For instance, when is it important to be accurate to a term’s original definition, and when does that commitment to accuracy amount to the splitting of hairs? It isn’t obvious, and hype is oftentimes the enemy of nuance. Additionally, there is now a vested interest in that hype—$12 billion, to be precise.

This conversation is also relevant because world-renowned thought leaders have been publicly debating the dangers posed by AI. Facebook CEO Mark Zuckerberg suggested that naysayers who attempt to “drum up these doomsday scenarios” are being negative and irresponsible. On Twitter, business magnate and OpenAI co-founder Elon Musk countered that Zuckerberg’s understanding of the subject is limited. In February, Elon Musk engaged again in a similar exchange with Harvard professor Steven Pinker. Musk tweeted that Pinker doesn’t understand the difference between functional/narrow AI and general AI.

Given the fears surrounding this technology, it’s important for the public to clearly understand the distinctions between different levels of AI so that they can realistically assess the potential threats and benefits.

As Smart As a Human?
Erik Cambria, an expert in the field of natural language processing, told me, “Nobody is doing AI today and everybody is saying that they do AI because it’s a cool and sexy buzzword. It was the same with ‘big data’ a few years ago.”

Cambria mentioned that AI, as a term, originally referenced the emulation of human intelligence. “And there is nothing today that is even barely as intelligent as the most stupid human being on Earth. So, in a strict sense, no one is doing AI yet, for the simple fact that we don’t know how the human brain works,” he said.

He added that the term “AI” is often used in reference to powerful tools for data classification. These tools are impressive, but they’re on a totally different spectrum than human cognition. Additionally, Cambria has noticed people claiming that neural networks are part of the new wave of AI. This is bizarre to him because that technology already existed fifty years ago.

However, technologists no longer need to perform the feature extraction by themselves. They also have access to greater computing power. All of these advancements are welcomed, but it is perhaps dishonest to suggest that machines have emulated the intricacies of our cognitive processes.

“Companies are just looking at tricks to create a behavior that looks like intelligence but that is not real intelligence, it’s just a mirror of intelligence. These are expert systems that are maybe very good in a specific domain, but very stupid in other domains,” he said.

This mimicry of intelligence has inspired the public imagination. Domain-specific systems have delivered value in a wide range of industries. But those benefits have not lifted the cloud of confusion.

Assisted, Augmented, or Autonomous
When it comes to matters of scientific integrity, the issue of accurate definitions isn’t a peripheral matter. In a 1974 commencement address at the California Institute of Technology, Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” In that same speech, Feynman also said, “You should not fool the layman when you’re talking as a scientist.” He opined that scientists should bend over backwards to show how they could be wrong. “If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing—and if they don’t want to support you under those circumstances, then that’s their decision.”

In the case of AI, this might mean that professional scientists have an obligation to clearly state that they are developing extremely powerful, controversial, profitable, and even dangerous tools, which do not constitute intelligence in any familiar or comprehensive sense.

The term “AI” may have become overhyped and confused, but there are already some efforts underway to provide clarity. A recent PwC report drew a distinction between “assisted intelligence,” “augmented intelligence,” and “autonomous intelligence.” Assisted intelligence is demonstrated by the GPS navigation programs prevalent in cars today. Augmented intelligence “enables people and organizations to do things they couldn’t otherwise do.” And autonomous intelligence “establishes machines that act on their own,” such as autonomous vehicles.

Roman Yampolskiy is an AI safety researcher who wrote the book “Artificial Superintelligence: A Futuristic Approach.” I asked him whether the broad and differing meanings might present difficulties for legislators attempting to regulate AI.

Yampolskiy explained, “Intelligence (artificial or natural) comes on a continuum and so do potential problems with such technology. We typically refer to AI which one day will have the full spectrum of human capabilities as artificial general intelligence (AGI) to avoid some confusion. Beyond that point it becomes superintelligence. What we have today and what is frequently used in business is narrow AI. Regulating anything is hard, technology is no exception. The problem is not with terminology but with complexity of such systems even at the current level.”

When asked if people should fear AI systems, Dr. Yampolskiy commented, “Since capability comes on a continuum, so do problems associated with each level of capability.” He mentioned that accidents are already reported with AI-enabled products, and as the technology advances further, the impact could spread beyond privacy concerns or technological unemployment. These concerns about the real-world effects of AI will likely take precedence over dictionary-minded quibbles. However, the issue is also about honesty versus deception.

Is This Buzzword All Buzzed Out?
Finally, I directed my questions towards a company that is actively marketing an “AI Virtual Assistant.” Carl Landers, the CMO at Conversica, acknowledged that there are a multitude of explanations for what AI is and isn’t.

He said, “My definition of AI is technology innovation that helps solve a business problem. I’m really not interested in talking about the theoretical ‘can we get machines to think like humans?’ It’s a nice conversation, but I’m trying to solve a practical business problem.”

I asked him if AI is a buzzword that inspires publicity and attracts clients. According to Landers, this was certainly true three years ago, but those effects have already started to wane. Many companies now claim to have AI in their products, so it’s less of a differentiator. However, there is still a specific intention behind the word. Landers hopes to convey that previously impossible things are now possible. “There’s something new here that you haven’t seen before, that you haven’t heard of before,” he said.

According to Brian Decker, founder of Encom Lab, machine learning algorithms only work to satisfy their preexisting programming, not out of an interior drive for better understanding. Therefore, he views AI as an entirely semantic argument.

Decker stated, “A marketing exec will claim a photodiode controlled porch light has AI because it ‘knows when it is dark outside,’ while a good hardware engineer will point out that not one bit in a register in the entire history of computing has ever changed unless directed to do so according to the logic of preexisting programming.”

Although it’s important for everyone to be on the same page regarding specifics and underlying meaning, AI-powered products are already powering past these debates by creating immediate value for humans. And ultimately, humans care more about value than they do about semantic distinctions. In an interview with Quartz, Kai-Fu Lee revealed that algorithmic trading systems have already given him an 8X return over his private banking investments. “I don’t trade with humans anymore,” he said.

Image Credit: vrender / Shutterstock.com Continue reading

Posted in Human Robots

#432271 Your Shopping Experience Is on the Verge ...

Exponential technologies (AI, VR, 3D printing, and networks) are radically reshaping traditional retail.

E-commerce giants (Amazon, Walmart, Alibaba) are digitizing the retail industry, riding the exponential growth of computation.

Many brick-and-mortar stores have already gone bankrupt, or migrated their operations online.

Massive change is occurring in this arena.

For those “real-life stores” that survive, an evolution is taking place from a product-centric mentality to an experience-based business model by leveraging AI, VR/AR, and 3D printing.

Let’s dive in.

E-Commerce Trends
Last year, 3.8 billion people were connected online. By 2024, thanks to 5G, stratospheric and space-based satellites, we will grow to 8 billion people online, each with megabit to gigabit connection speeds.

These 4.2 billion new digital consumers will begin buying things online, a potential bonanza for the e-commerce world.

At the same time, entrepreneurs seeking to service these four-billion-plus new consumers can now skip the costly steps of procuring retail space and hiring sales clerks.

Today, thanks to global connectivity, contract production, and turnkey pack-and-ship logistics, an entrepreneur can go from an idea to building and scaling a multimillion-dollar business from anywhere in the world in record time.

And while e-commerce sales have been exploding (growing from $34 billion in Q1 2009 to $115 billion in Q3 2017), e-commerce only accounted for about 10 percent of total retail sales in 2017.

In 2016, global online sales totaled $1.8 trillion. Remarkably, this $1.8 trillion was spent by only 1.5 billion people — a mere 20 percent of Earth’s global population that year.

There’s plenty more room for digital disruption.

AI and the Retail Experience
For the business owner, AI will demonetize e-commerce operations with automated customer service, ultra-accurate supply chain modeling, marketing content generation, and advertising.

In the case of customer service, imagine an AI that is trained by every customer interaction, learns how to answer any consumer question perfectly, and offers feedback to product designers and company owners as a result.

Facebook’s handover protocol allows live customer service representatives and language-learning bots to work within the same Facebook Messenger conversation.

Taking it one step further, imagine an AI that is empathic to a consumer’s frustration, that can take any amount of abuse and come back with a smile every time. As one example, meet Ava. “Ava is a virtual customer service agent, to bring a whole new level of personalization and brand experience to that customer experience on a day-to-day basis,” says Greg Cross, CEO of Ava’s creator, an Austrian company called Soul Machines.

Predictive modeling and machine learning are also optimizing product ordering and the supply chain process. For example, Skubana, a platform for online sellers, leverages data analytics to provide entrepreneurs constant product performance feedback and maintain optimal warehouse stock levels.

Blockchain is set to follow suit in the retail space. ShipChain and Ambrosus plan to introduce transparency and trust into shipping and production, further reducing costs for entrepreneurs and consumers.

Meanwhile, for consumers, personal shopping assistants are shifting the psychology of the standard shopping experience.

Amazon’s Alexa marks an important user interface moment in this regard.

Alexa is in her infancy with voice search and vocal controls for smart homes. Already, Amazon’s Alexa users, on average, spent more on Amazon.com when purchasing than standard Amazon Prime customers — $1,700 versus $1,400.

As I’ve discussed in previous posts, the future combination of virtual reality shopping, coupled with a personalized, AI-enabled fashion advisor will make finding, selecting, and ordering products fast and painless for consumers.

But let’s take it one step further.

Imagine a future in which your personal AI shopper knows your desires better than you do. Possible? I think so. After all, our future AIs will follow us, watch us, and observe our interactions — including how long we glance at objects, our facial expressions, and much more.

In this future, shopping might be as easy as saying, “Buy me a new outfit for Saturday night’s dinner party,” followed by a surprise-and-delight moment in which the outfit that arrives is perfect.

In this future world of AI-enabled shopping, one of the most disruptive implications is that advertising is now dead.

In a world where an AI is buying my stuff, and I’m no longer in the decision loop, why would a big brand ever waste money on a Super Bowl advertisement?

The dematerialization, demonetization, and democratization of personalized shopping has only just begun.

The In-Store Experience: Experiential Retailing
In 2017, over 6,700 brick-and-mortar retail stores closed their doors, surpassing the former record year for store closures set in 2008 during the financial crisis. Regardless, business is still booming.

As shoppers seek the convenience of online shopping, brick-and-mortar stores are tapping into the power of the experience economy.

Rather than focusing on the practicality of the products they buy, consumers are instead seeking out the experience of going shopping.

The Internet of Things, artificial intelligence, and computation are exponentially improving the in-person consumer experience.

As AI dominates curated online shopping, AI and data analytics tools are also empowering real-life store owners to optimize staffing, marketing strategies, customer relationship management, and inventory logistics.

In the short term,retail store locations will serve as the next big user interface for production 3D printing (custom 3D printed clothes at the Ministry of Supply), virtual and augmented reality (DIY skills clinics), and the Internet of Things (checkout-less shopping).

In the long term,we’ll see how our desire for enhanced productivity and seamless consumption balances with our preference for enjoyable real-life consumer experiences — all of which will be driven by exponential technologies.

One thing is certain: the nominal shopping experience is on the verge of a major transformation.

The convergence of exponential technologies has already revamped how and where we shop, how we use our time, and how much we pay.

Twenty years ago, Amazon showed us how the web could offer each of us the long tail of available reading material, and since then, the world of e-commerce has exploded.

And yet we still haven’t experienced the cost savings coming our way from drone delivery, the Internet of Things, tokenized ecosystems, the impact of truly powerful AI, or even the other major applications for 3D printing and AR/VR.

Perhaps nothing will be more transformed than today’s $20 trillion retail sector.

Hold on, stay tuned, and get your AI-enabled cryptocurrency ready.

Join Me
Abundance Digital Online Community: I’ve created a digital/online community of bold, abundance-minded entrepreneurs called Abundance Digital.

Abundance Digital is my ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Zapp2Photo / Shutterstock.com Continue reading

Posted in Human Robots

#432181 Putting AI in Your Pocket: MIT Chip Cuts ...

Neural networks are powerful things, but they need a lot of juice. Engineers at MIT have now developed a new chip that cuts neural nets’ power consumption by up to 95 percent, potentially allowing them to run on battery-powered mobile devices.

Smartphones these days are getting truly smart, with ever more AI-powered services like digital assistants and real-time translation. But typically the neural nets crunching the data for these services are in the cloud, with data from smartphones ferried back and forth.

That’s not ideal, as it requires a lot of communication bandwidth and means potentially sensitive data is being transmitted and stored on servers outside the user’s control. But the huge amounts of energy needed to power the GPUs neural networks run on make it impractical to implement them in devices that run on limited battery power.

Engineers at MIT have now designed a chip that cuts that power consumption by up to 95 percent by dramatically reducing the need to shuttle data back and forth between a chip’s memory and processors.

Neural nets consist of thousands of interconnected artificial neurons arranged in layers. Each neuron receives input from multiple neurons in the layer below it, and if the combined input passes a certain threshold it then transmits an output to multiple neurons above it. The strength of the connection between neurons is governed by a weight, which is set during training.

This means that for every neuron, the chip has to retrieve the input data for a particular connection and the connection weight from memory, multiply them, store the result, and then repeat the process for every input. That requires a lot of data to be moved around, expending a lot of energy.

The new MIT chip does away with that, instead computing all the inputs in parallel within the memory using analog circuits. That significantly reduces the amount of data that needs to be shoved around and results in major energy savings.

The approach requires the weights of the connections to be binary rather than a range of values, but previous theoretical work had suggested this wouldn’t dramatically impact accuracy, and the researchers found the chip’s results were generally within two to three percent of the conventional non-binary neural net running on a standard computer.

This isn’t the first time researchers have created chips that carry out processing in memory to reduce the power consumption of neural nets, but it’s the first time the approach has been used to run powerful convolutional neural networks popular for image-based AI applications.

“The results show impressive specifications for the energy-efficient implementation of convolution operations with memory arrays,” Dario Gil, vice president of artificial intelligence at IBM, said in a statement.

“It certainly will open the possibility to employ more complex convolutional neural networks for image and video classifications in IoT [the internet of things] in the future.”

It’s not just research groups working on this, though. The desire to get AI smarts into devices like smartphones, household appliances, and all kinds of IoT devices is driving the who’s who of Silicon Valley to pile into low-power AI chips.

Apple has already integrated its Neural Engine into the iPhone X to power things like its facial recognition technology, and Amazon is rumored to be developing its own custom AI chips for the next generation of its Echo digital assistant.

The big chip companies are also increasingly pivoting towards supporting advanced capabilities like machine learning, which has forced them to make their devices ever more energy-efficient. Earlier this year ARM unveiled two new chips: the Arm Machine Learning processor, aimed at general AI tasks from translation to facial recognition, and the Arm Object Detection processor for detecting things like faces in images.

Qualcomm’s latest mobile chip, the Snapdragon 845, features a GPU and is heavily focused on AI. The company has also released the Snapdragon 820E, which is aimed at drones, robots, and industrial devices.

Going a step further, IBM and Intel are developing neuromorphic chips whose architectures are inspired by the human brain and its incredible energy efficiency. That could theoretically allow IBM’s TrueNorth and Intel’s Loihi to run powerful machine learning on a fraction of the power of conventional chips, though they are both still highly experimental at this stage.

Getting these chips to run neural nets as powerful as those found in cloud services without burning through batteries too quickly will be a big challenge. But at the current pace of innovation, it doesn’t look like it will be too long before you’ll be packing some serious AI power in your pocket.

Image Credit: Blue Planet Studio / Shutterstock.com Continue reading

Posted in Human Robots

#431999 Brain-Like Chips Now Beat the Human ...

Move over, deep learning. Neuromorphic computing—the next big thing in artificial intelligence—is on fire.

Just last week, two studies individually unveiled computer chips modeled after information processing in the human brain.

The first, published in Nature Materials, found a perfect solution to deal with unpredictability at synapses—the gap between two neurons that transmit and store information. The second, published in Science Advances, further amped up the system’s computational power, filling synapses with nanoclusters of supermagnetic material to bolster information encoding.

The result? Brain-like hardware systems that compute faster—and more efficiently—than the human brain.

“Ultimately we want a chip as big as a fingernail to replace one big supercomputer,” said Dr. Jeehwan Kim, who led the first study at MIT in Cambridge, Massachusetts.

Experts are hopeful.

“The field’s full of hype, and it’s nice to see quality work presented in an objective way,” said Dr. Carver Mead, an engineer at the California Institute of Technology in Pasadena not involved in the work.

Software to Hardware
The human brain is the ultimate computational wizard. With roughly 100 billion neurons densely packed into the size of a small football, the brain can deftly handle complex computation at lightning speed using very little energy.

AI experts have taken note. The past few years saw brain-inspired algorithms that can identify faces, falsify voices, and play a variety of games at—and often above—human capability.

But software is only part of the equation. Our current computers, with their transistors and binary digital systems, aren’t equipped to run these powerful algorithms.

That’s where neuromorphic computing comes in. The idea is simple: fabricate a computer chip that mimics the brain at the hardware level. Here, data is both processed and stored within the chip in an analog manner. Each artificial synapse can accumulate and integrate small bits of information from multiple sources and fire only when it reaches a threshold—much like its biological counterpart.

Experts believe the speed and efficiency gains will be enormous.

For one, the chips will no longer have to transfer data between the central processing unit (CPU) and storage blocks, which wastes both time and energy. For another, like biological neural networks, neuromorphic devices can support neurons that run millions of streams of parallel computation.

A “Brain-on-a-chip”
Optimism aside, reproducing the biological synapse in hardware form hasn’t been as easy as anticipated.

Neuromorphic chips exist in many forms, but often look like a nanoscale metal sandwich. The “bread” pieces are generally made of conductive plates surrounding a switching medium—a conductive material of sorts that acts like the gap in a biological synapse.

When a voltage is applied, as in the case of data input, ions move within the switching medium, which then creates conductive streams to stimulate the downstream plate. This change in conductivity mimics the way biological neurons change their “weight,” or the strength of connectivity between two adjacent neurons.

But so far, neuromorphic synapses have been rather unpredictable. According to Kim, that’s because the switching medium is often comprised of material that can’t channel ions to exact locations on the downstream plate.

“Once you apply some voltage to represent some data with your artificial neuron, you have to erase and be able to write it again in the exact same way,” explains Kim. “But in an amorphous solid, when you write again, the ions go in different directions because there are lots of defects.”

In his new study, Kim and colleagues swapped the jelly-like switching medium for silicon, a material with only a single line of defects that acts like a channel to guide ions.

The chip starts with a thin wafer of silicon etched with a honeycomb-like pattern. On top is a layer of silicon germanium—something often present in transistors—in the same pattern. This creates a funnel-like dislocation, a kind of Grand Canal that perfectly shuttles ions across the artificial synapse.

The researchers then made a neuromorphic chip containing these synapses and shot an electrical zap through them. Incredibly, the synapses’ response varied by only four percent—much higher than any neuromorphic device made with an amorphous switching medium.

In a computer simulation, the team built a multi-layer artificial neural network using parameters measured from their device. After tens of thousands of training examples, their neural network correctly recognized samples 95 percent of the time, just 2 percent lower than state-of-the-art software algorithms.

The upside? The neuromorphic chip requires much less space than the hardware that runs deep learning algorithms. Forget supercomputers—these chips could one day run complex computations right on our handheld devices.

A Magnetic Boost
Meanwhile, in Boulder, Colorado, Dr. Michael Schneider at the National Institute of Standards and Technology also realized that the standard switching medium had to go.

“There must be a better way to do this, because nature has figured out a better way to do this,” he says.

His solution? Nanoclusters of magnetic manganese.

Schneider’s chip contained two slices of superconducting electrodes made out of niobium, which channel electricity with no resistance. When researchers applied different magnetic fields to the synapse, they could control the alignment of the manganese “filling.”

The switch gave the chip a double boost. For one, by aligning the switching medium, the team could predict the ion flow and boost uniformity. For another, the magnetic manganese itself adds computational power. The chip can now encode data in both the level of electrical input and the direction of the magnetisms without bulking up the synapse.

It seriously worked. At one billion times per second, the chips fired several orders of magnitude faster than human neurons. Plus, the chips required just one ten-thousandth of the energy used by their biological counterparts, all the while synthesizing input from nine different sources in an analog manner.

The Road Ahead
These studies show that we may be nearing a benchmark where artificial synapses match—or even outperform—their human inspiration.

But to Dr. Steven Furber, an expert in neuromorphic computing, we still have a ways before the chips go mainstream.

Many of the special materials used in these chips require specific temperatures, he says. Magnetic manganese chips, for example, require temperatures around absolute zero to operate, meaning they come with the need for giant cooling tanks filled with liquid helium—obviously not practical for everyday use.

Another is scalability. Millions of synapses are necessary before a neuromorphic device can be used to tackle everyday problems such as facial recognition. So far, no deal.

But these problems may in fact be a driving force for the entire field. Intense competition could push teams into exploring different ideas and solutions to similar problems, much like these two studies.

If so, future chips may come in diverse flavors. Similar to our vast array of deep learning algorithms and operating systems, the computer chips of the future may also vary depending on specific requirements and needs.

It is worth developing as many different technological approaches as possible, says Furber, especially as neuroscientists increasingly understand what makes our biological synapses—the ultimate inspiration—so amazingly efficient.

Image Credit: arakio / Shutterstock.com Continue reading

Posted in Human Robots