Tag Archives: store

#431906 Low-Cost Soft Robot Muscles Can Lift 200 ...

Jerky mechanical robots are staples of science fiction, but to seamlessly integrate into everyday life they’ll need the precise yet powerful motor control of humans. Now scientists have created a new class of artificial muscles that could soon make that a reality.
The advance is the latest breakthrough in the field of soft robotics. Scientists are increasingly designing robots using soft materials that more closely resemble biological systems, which can be more adaptable and better suited to working in close proximity to humans.
One of the main challenges has been creating soft components that match the power and control of the rigid actuators that drive mechanical robots—things like motors and pistons. Now researchers at the University of Colorado Boulder have built a series of low-cost artificial muscles—as little as 10 cents per device—using soft plastic pouches filled with electrically insulating liquids that contract with the force and speed of mammalian skeletal muscles when a voltage is applied to them.

Three different designs of the so-called hydraulically amplified self-healing electrostatic (HASEL) actuators were detailed in two papers in the journals Science and Science Robotics last week. They could carry out a variety of tasks, from gently picking up delicate objects like eggs or raspberries to lifting objects many times their own weight, such as a gallon of water, at rapid repetition rates.
“We draw our inspiration from the astonishing capabilities of biological muscle,” Christoph Keplinger, an assistant professor at UC Boulder and senior author of both papers, said in a press release. “Just like biological muscle, HASEL actuators can reproduce the adaptability of an octopus arm, the speed of a hummingbird and the strength of an elephant.”
The artificial muscles work by applying a voltage to hydrogel electrodes on either side of pouches filled with liquid insulators, which can be as simple as canola oil. This creates an attraction between the two electrodes, pulling them together and displacing the liquid. This causes a change of shape that can push or pull levers, arms or any other articulated component.
The design is essentially a synthesis of two leading approaches to actuating soft robots. Pneumatic and hydraulic actuators that pump fluids around have been popular due to their high forces, easy fabrication and ability to mimic a variety of natural motions. But they tend to be bulky and relatively slow.
Dielectric elastomer actuators apply an electric field across a solid insulating layer to make it flex. These can mimic the responsiveness of biological muscle. But they are not very versatile and can also fail catastrophically, because the high voltages required can cause a bolt of electricity to blast through the insulator, destroying it. The likelihood of this happening increases in line with the size of their electrodes, which makes it hard to scale them up. By combining the two approaches, researchers get the best of both worlds, with the power, versatility and easy fabrication of a fluid-based system and the responsiveness of electrically-powered actuators.
One of the designs holds particular promise for robotics applications, as it behaves a lot like biological muscle. The so-called Peano-HASEL actuators are made up of multiple rectangular pouches connected in series, which allows them to contract linearly, just like real muscle. They can lift more than 200 times their weight, but being electrically powered, they exceed the flexing speed of human muscle.
As the name suggests, the HASEL actuators are also self-healing. They are still prone to the same kind of electrical damage as dielectric elastomer actuators, but the liquid insulator is able to immediately self-heal by redistributing itself and regaining its insulating properties.
The muscles can even monitor the amount of strain they’re under to provide the same kind of feedback biological systems would. The muscle’s capacitance—its ability to store an electric charge—changes as the device stretches, which makes it possible to power the arm while simultaneously measuring what position it’s in.
The researchers say this could imbue robots with a similar sense of proprioception or body-awareness to that found in plants and animals. “Self-sensing allows for the development of closed-loop feedback controllers to design highly advanced and precise robots for diverse applications,” Shane Mitchell, a PhD student in Keplinger’s lab and an author on both papers, said in an email.
The researchers say the high voltages required are an ongoing challenge, though they’ve already designed devices in the lab that use a fifth of the voltage of those features in the recent papers.
In most of their demonstrations, these soft actuators were being used to power rigid arms and levers, pointing to the fact that future robots are likely to combine both rigid and soft components, much like animals do. The potential applications for the technology range from more realistic prosthetics to much more dextrous robots that can work easily alongside humans.
It will take some work before these devices appear in commercial robots. But the combination of high-performance with simple and inexpensive fabrication methods mean other researchers are likely to jump in, so innovation could be rapid.
Image Credit: Keplinger Research Group/University of Colorado Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431178 Soft Robotics Releases Development Kit ...

Cambridge, MA – Soft Robotics Inc, which has built a fundamentally new class of robotic grippers, announced the release of its expanded and upgraded Soft Robotics Development Kit; SRDK 2.0.

The Soft Robotics Development Kit 2.0 comes complete with:

Robot tool flange mounting plate
4, 5 and 6 position hub plates
Tool Center Point
Soft Robotics Control Unit G2
6 rail mounted, 4 accordion actuator modules
Custom pneumatic manifold
Mounting hardware and accessories

Where the SRDK 1.0 included 5 four accordion actuator modules and the opportunity to create a gripper containing two to five actuators, The SRDK 2.0 contains 6 four accordion actuator modules plus the addition of a six position hub allowing users the ability to configure six actuator test tools. This expands use of the Development Kit to larger product applications, such as: large bagged and pouched items, IV bags, bags of nuts, bread and other food items.

SRDK 2.0 also contains an upgraded Soft Robotics Control Unit (SRCU G2) – the proprietary system that controls all software and hardware with one turnkey pneumatic operation. The upgraded SRCU features new software with a cleaner, user friendly interface and an IP65 rating. Highly intuitive, the software is able to store up to eight grip profiles and allows for very precise adjustments to actuation and vacuum.

Also new with the release of SRDK 2.0, is the introduction of several accessory kits that will allow for an expanded number of configurations and product applications available for testing.

Accessory Kit 1 – For SRDK 1.0 users only – includes the six position hub and 4 accordion actuators now included in SRDK 2.0
Accessory Kit 2 – For SRDK 1.0 or 2.0 users – includes 2 accordion actuators
Accessory Kit 3 – For SRDK 1.0 or 2.0 users – includes 3 accordion actuators

The shorter 2 and 3 accordion actuators provide increased stability for high-speed applications, increased placement precision, higher grip force capabilities and are optimized for gripping small, shallow objects.

Designed to plug and play with any existing robot currently in the market, the Soft Robotics Development Kit 2.0 allows end-users and OEM Integrators the ability to customize, test and validate their ideal Soft Robotics solution, with their own equipment, in their own environment.

Once an ideal solution has been found, the Soft Robotics team will take those exact specifications and build a production-grade tool for implementation into the manufacturing line. And, it doesn’t end there. Created to be fully reusable, the process – configure, test, validate, build, production – can start over again as many times as needed.

See the new SRDK 2.0 on display for the first time at PACK EXPO Las Vegas, September 25 – 27, 2017 in Soft Robotics booth S-5925.

Learn more about the Soft Robotics Development Kit at www.softroboticsinc.com/srdk.
Photo Credit: Soft Robotics – www.softroboticsinc.com
###
About Soft Robotics
Soft Robotics designs and builds soft robotic gripping systems and automation solutions
that can grasp and manipulate items of varying size, shape and weight. Spun out of the
Whitesides Group at Harvard University, Soft Robotics is the only company to be
commercializing this groundbreaking and proprietary technology platform. Today, the
company is a global enterprise solving previously off-limits automation challenges for
customers in food & beverage, advanced manufacturing and ecommerce. Soft Robotics’
engineers are building an ecosystem of robots, control systems, data and machine
learning to enable the workplace of the future. For more information, please visit
www.softroboticsinc.com.

Media contact:
Jennie Kondracki
The Kondracki Group, LLC
262-501-4507
jennie@kondrackigroup.com
The post Soft Robotics Releases Development Kit 2.0 appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431155 What It Will Take for Quantum Computers ...

Quantum computers could give the machine learning algorithms at the heart of modern artificial intelligence a dramatic speed up, but how far off are we? An international group of researchers has outlined the barriers that still need to be overcome.
This year has seen a surge of interest in quantum computing, driven in part by Google’s announcement that it will demonstrate “quantum supremacy” by the end of 2017. That means solving a problem beyond the capabilities of normal computers, which the company predicts will take 49 qubits—the quantum computing equivalent of bits.
As impressive as such a feat would be, the demonstration is likely to be on an esoteric problem that stacks the odds heavily in the quantum processor’s favor, and getting quantum computers to carry out practically useful calculations will take a lot more work.
But these devices hold great promise for solving problems in fields as diverse as cryptography or weather forecasting. One application people are particularly excited about is whether they could be used to supercharge the machine learning algorithms already transforming the modern world.
The potential is summarized in a recent review paper in the journal Nature written by a group of experts from the emerging field of quantum machine learning.
“Classical machine learning methods such as deep neural networks frequently have the feature that they can both recognize statistical patterns in data and produce data that possess the same statistical patterns: they recognize the patterns that they produce,” they write.
“This observation suggests the following hope. If small quantum information processors can produce statistical patterns that are computationally difficult for a classical computer to produce, then perhaps they can also recognize patterns that are equally difficult to recognize classically.”
Because of the way quantum computers work—taking advantage of strange quantum mechanical effects like entanglement and superposition—algorithms running on them should in principle be able to solve problems much faster than the best known classical algorithms, a phenomenon known as quantum speedup.
Designing these algorithms is tricky work, but the authors of the review note that there has been significant progress in recent years. They highlight multiple quantum algorithms exhibiting quantum speedup that could act as subroutines, or building blocks, for quantum machine learning programs.
We still don’t have the hardware to implement these algorithms, but according to the researchers the challenge is a technical one and clear paths to overcoming them exist. More challenging, they say, are four fundamental conceptual problems that could limit the applicability of quantum machine learning.
The first two are the input and output problems. Quantum computers, unsurprisingly, deal with quantum data, but the majority of the problems humans want to solve relate to the classical world. Translating significant amounts of classical data into the quantum systems can take so much time it can cancel out the benefits of the faster processing speeds, and the same is true of reading out the solution at the end.
The input problem could be mitigated to some extent by the development of quantum random access memory (qRAM)—the equivalent to RAM in a conventional computer used to provide the machine with quick access to its working memory. A qRAM can be configured to store classical data but allow the quantum computers to access all that information simultaneously as a superposition, which is required for a variety of quantum algorithms. But the authors note this is still a considerable engineering challenge and may not be sustainable for big data problems.
Closely related to the input/output problem is the costing problem. At present, the authors say very little is known about how many gates—or operations—a quantum machine learning algorithm will require to solve a given problem when operated on real-world devices. It’s expected that on highly complex problems they will offer considerable improvements over classical computers, but it’s not clear how big problems have to be before this becomes apparent.
Finally, whether or when these advantages kick in may be hard to prove, something the authors call the benchmarking problem. Claiming that a quantum algorithm can outperform any classical machine learning approach requires extensive testing against these other techniques that may not be feasible.
They suggest that this could be sidestepped by lowering the standards quantum machine learning algorithms are currently held to. This makes sense, as it doesn’t really matter whether an algorithm is intrinsically faster than all possible classical ones, as long as it’s faster than all the existing ones.
Another way of avoiding some of these problems is to apply these techniques directly to quantum data, the actual states generated by quantum systems and processes. The authors say this is probably the most promising near-term application for quantum machine learning and has the added benefit that any insights can be fed back into the design of better hardware.
“This would enable a virtuous cycle of innovation similar to that which occurred in classical computing, wherein each generation of processors is then leveraged to design the next-generation processors,” they conclude.
Image Credit: archy13 / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431142 Will Privacy Survive the Future?

Technological progress has radically transformed our concept of privacy. How we share information and display our identities has changed as we’ve migrated to the digital world.
As the Guardian states, “We now carry with us everywhere devices that give us access to all the world’s information, but they can also offer almost all the world vast quantities of information about us.” We are all leaving digital footprints as we navigate through the internet. While sometimes this information can be harmless, it’s often valuable to various stakeholders, including governments, corporations, marketers, and criminals.
The ethical debate around privacy is complex. The reality is that our definition and standards for privacy have evolved over time, and will continue to do so in the next few decades.
Implications of Emerging Technologies
Protecting privacy will only become more challenging as we experience the emergence of technologies such as virtual reality, the Internet of Things, brain-machine interfaces, and much more.
Virtual reality headsets are already gathering information about users’ locations and physical movements. In the future all of our emotional experiences, reactions, and interactions in the virtual world will be able to be accessed and analyzed. As virtual reality becomes more immersive and indistinguishable from physical reality, technology companies will be able to gather an unprecedented amount of data.
It doesn’t end there. The Internet of Things will be able to gather live data from our homes, cities and institutions. Drones may be able to spy on us as we live our everyday lives. As the amount of genetic data gathered increases, the privacy of our genes, too, may be compromised.
It gets even more concerning when we look farther into the future. As companies like Neuralink attempt to merge the human brain with machines, we are left with powerful implications for privacy. Brain-machine interfaces by nature operate by extracting information from the brain and manipulating it in order to accomplish goals. There are many parties that can benefit and take advantage of the information from the interface.
Marketing companies, for instance, would take an interest in better understanding how consumers think and consequently have their thoughts modified. Employers could use the information to find new ways to improve productivity or even monitor their employees. There will notably be risks of “brain hacking,” which we must take extreme precaution against. However, it is important to note that lesser versions of these risks currently exist, i.e., by phone hacking, identify fraud, and the like.
A New Much-Needed Definition of Privacy
In many ways we are already cyborgs interfacing with technology. According to theories like the extended mind hypothesis, our technological devices are an extension of our identities. We use our phones to store memories, retrieve information, and communicate. We use powerful tools like the Hubble Telescope to extend our sense of sight. In parallel, one can argue that the digital world has become an extension of the physical world.
These technological tools are a part of who we are. This has led to many ethical and societal implications. Our Facebook profiles can be processed to infer secondary information about us, such as sexual orientation, political and religious views, race, substance use, intelligence, and personality. Some argue that many of our devices may be mapping our every move. Your browsing history could be spied on and even sold in the open market.
While the argument to protect privacy and individuals’ information is valid to a certain extent, we may also have to accept the possibility that privacy will become obsolete in the future. We have inherently become more open as a society in the digital world, voluntarily sharing our identities, interests, views, and personalities.

“The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental?”

There also seems to be a contradiction with the positive trend towards mass transparency and the need to protect privacy. Many advocate for a massive decentralization and openness of information through mechanisms like blockchain.
The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental? We want to live in a world of fewer secrets, but also don’t want to live in a world where our every move is followed (not to mention our every feeling, thought and interaction). So, how do we find a balance?
Traditionally, privacy is used synonymously with secrecy. Many are led to believe that if you keep your personal information secret, then you’ve accomplished privacy. Danny Weitzner, director of the MIT Internet Policy Research Initiative, rejects this notion and argues that this old definition of privacy is dead.
From Witzner’s perspective, protecting privacy in the digital age means creating rules that require governments and businesses to be transparent about how they use our information. In other terms, we can’t bring the business of data to an end, but we can do a better job of controlling it. If these stakeholders spy on our personal information, then we should have the right to spy on how they spy on us.
The Role of Policy and Discourse
Almost always, policy has been too slow to adapt to the societal and ethical implications of technological progress. And sometimes the wrong laws can do more harm than good. For instance, in March, the US House of Representatives voted to allow internet service providers to sell your web browsing history on the open market.
More often than not, the bureaucratic nature of governance can’t keep up with exponential growth. New technologies are emerging every day and transforming society. Can we confidently claim that our world leaders, politicians, and local representatives are having these conversations and debates? Are they putting a focus on the ethical and societal implications of emerging technologies? Probably not.
We also can’t underestimate the role of public awareness and digital activism. There needs to be an emphasis on educating and engaging the general public about the complexities of these issues and the potential solutions available. The current solution may not be robust or clear, but having these discussions will get us there.
Stock Media provided by blasbike / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430854 Get a Live Look Inside Singularity ...

Singularity University’s (SU) second annual Global Summit begins today in San Francisco, and the Singularity Hub team will be there to give you a live look inside the event, exclusive speaker interviews, and articles on great talks.
Whereas SU’s other summits each focus on a specific field or industry, Global Summit is a broad look at emerging technologies and how they can help solve the world’s biggest challenges.
Talks will cover the latest in artificial intelligence, the brain and technology, augmented and virtual reality, space exploration, the future of work, the future of learning, and more.
We’re bringing three full days of live Facebook programming, streaming on Singularity Hub’s Facebook page, complete with 30+ speaker interviews, tours of the EXPO innovation hall, and tech demos. You can also livestream main stage talks at Singularity University’s Facebook page.
Interviews include Peter Diamandis, cofounder and chairman of Singularity University; Sylvia Earle, National Geographic explorer-in-residence; Esther Wojcicki, founder of the Palo Alto High Media Arts Center; Bob Richards, founder and CEO of Moon Express; Matt Oehrlein, cofounder of MegaBots; and Craig Newmark, founder of Craigslist and the Craig Newmark Foundation.
Pascal Finette, SU vice president of startup solutions, and Alison Berman, SU staff writer and digital producer, will host the show, and Lisa Kay Solomon, SU chair of transformational practices, will put on a special daily segment on exponential leadership with thought leaders.
Make sure you don’t miss anything by ‘liking’ the Singularity Hub and Singularity University Facebook pages and turn on notifications from both pages so you know when we go live. And to get a taste of what’s in store, check out the below selection of stories from last year’s event.
Are We at the Edge of a Second Sexual Revolution?By Vanessa Bates Ramirez
“Brace yourself, because according to serial entrepreneur Martin Varsavsky, all our existing beliefs about procreation are about to be shattered again…According to Varsavsky, the second sexual revolution will decouple procreation from sex, because sex will no longer be the best way to make babies.”
VR Pioneer Chris Milk: Virtual Reality Will Mirror Life Like Nothing Else BeforeBy Jason Ganz
“Milk is already a legend in the VR community…But [he] is just getting started. His company Within has plans to help shape the language we use for virtual reality storytelling. Because let’s be clear, VR storytelling is still very much in its infancy. This fact makes it even crazier there are already VR films out there that can inspire and captivate on such a profound level. And we’re only going up from here.”
7 Key Factors Driving the Artificial Intelligence RevolutionBy David Hill
“Jacobstein calmly and optimistically assures that this revolution isn’t going to disrupt humans completely, but usher in a future in which there’s a symbiosis between human and machine intelligence. He highlighted 7 factors driving this revolution.”
Are There Other Intelligent Civilizations Out There? Two Views on the Fermi ParadoxBy Alison Berman
“Cliché or not, when I stare up at the sky, I still wonder if we’re alone in the galaxy. Could there be another technologically advanced civilization out there? During a panel discussion on space exploration at Singularity University’s Global Summit, Jill Tarter, the Bernard M. Oliver chair at the SETI Institute, was asked to explain the Fermi paradox and her position on it. Her answer was pretty brilliant.”
Engineering Will Soon Be ‘More Parenting Than Programming’By Sveta McShane
“In generative design, the user states desired goals and constraints and allows the computer to generate entire designs, iterations and solution sets based on those constraints. It is, in fact, a lot like parents setting boundaries for their children’s activities. The user basically says, ‘Yes, it’s ok to do this, but it’s not ok to do that.’ The resulting solutions are ones you might never have thought of on your own.”
Biohacking Will Let You Connect Your Body to Anything You WantBy Vanessa Bates Ramirez
“How many cyborgs did you see during your morning commute today? I would guess at least five. Did they make you nervous? Probably not; you likely didn’t even realize they were there…[Hannes] Sjoblad said that the cyborgs we see today don’t look like Hollywood prototypes; they’re regular people who have integrated technology into their bodies to improve or monitor some aspect of their health.”
Peter Diamandis: We’ll Radically Extend Our Lives With New TechnologiesBy Jason Dorrier
“[Diamandis] said humans aren’t the longest-lived animals. Other species have multi-hundred-year lifespans. Last year, a study “dating” Greenland sharks found they can live roughly 400 years. Though the technique isn’t perfectly precise, they estimated one shark to be about 392. Its approximate birthday was 1624…Diamandis said he asked himself: If these animals can live centuries—why can’t I?” Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment