Tag Archives: Space

#434843 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Open AI’s Dota 2 AI Steamrolls World Champion e-Sports Team With Back-to-Back Victories
Nick Statt | The Verge
“…[OpenAI cofounder and CEO, Sam Altman] tells me there probably does not exist a video game out there right now that a system like OpenAI Five can’t eventually master at a level beyond human capability. For the broader AI industry, mastering video games may soon become passé, simple table stakes required to prove your system can learn fast and act in a way required to tackle tougher, real-world tasks with more meaningful benefits.”

ROBOTICS
Boston Dynamics Debuts the Production Version of SpotMini
Brian Heater, Catherine Shu | TechCrunch
“SpotMini is the first commercial robot Boston Dynamics is set to release, but as we learned earlier, it certainly won’t be the last. The company is looking to its wheeled Handle robot in an effort to push into the logistics space. It’s a super-hot category for robotics right now. Notably, Amazon recently acquired Colorado-based start up Canvas to add to its own arm of fulfillment center robots.”

NEUROSCIENCE
Scientists Restore Some Brain Cell Functions in Pigs Four Hours After Death
Joel Achenbach | The Washington Post
“The ethicists say this research can blur the line between life and death, and could complicate the protocols for organ donation, which rely on a clear determination of when a person is dead and beyond resuscitation.”

BIOTECH
How Scientists 3D Printed a Tiny Heart From Human Cells
Yasmin Saplakoglu | Live Science
“Though the heart is much smaller than a human’s (it’s only the size of a rabbit’s), and there’s still a long way to go until it functions like a normal heart, the proof-of-concept experiment could eventually lead to personalized organs or tissues that could be used in the human body…”

SPACE
The Next Clash of Silicon Valley Titans Will Take Place in Space
Luke Dormehl | Digital Trends
“With bold plans that call for thousands of new satellites being put into orbit and astronomical costs, it’s going to be fascinating to observe the next phase of the tech platform battle being fought not on our desktops or mobile devices in our pockets, but outside of Earth’s atmosphere.”

FUTURE HISTORY
The Images That Could Help Rebuild Notre-Dame Cathedral
Alexis C. Madrigal | The Atlantic
“…in 2010, [Andrew] Tallon, an art professor at Vassar, took a Leica ScanStation C10 to Notre-Dame and, with the assistance of Columbia’s Paul Blaer, began to painstakingly scan every piece of the structure, inside and out. …Over five days, they positioned the scanner again and again—50 times in all—to create an unmatched record of the reality of one of the world’s most awe-inspiring buildings, represented as a series of points in space.”

AUGMENTED REALITY
Mapping Our World in 3D Will Let Us Paint Streets With Augmented Reality
Charlotte Jee | MIT Technology Review
“Scape wants to use its location services to become the underlying infrastructure upon which driverless cars, robotics, and augmented-reality services sit. ‘Our end goal is a one-to-one map of the world covering everything,’ says Miller. ‘Our ambition is to be as invisible as GPS is today.’i”

Image Credit: VAlex / Shutterstock.com Continue reading

Posted in Human Robots

#434837 In Defense of Black Box AI

Deep learning is powering some amazing new capabilities, but we find it hard to scrutinize the workings of these algorithms. Lack of interpretability in AI is a common concern and many are trying to fix it, but is it really always necessary to know what’s going on inside these “black boxes”?

In a recent perspective piece for Science, Elizabeth Holm, a professor of materials science and engineering at Carnegie Mellon University, argued in defense of the black box algorithm. I caught up with her last week to find out more.

Edd Gent: What’s your experience with black box algorithms?

Elizabeth Holm: I got a dual PhD in materials science and engineering and scientific computing. I came to academia about six years ago and part of what I wanted to do in making this career change was to refresh and revitalize my computer science side.

I realized that computer science had changed completely. It used to be about algorithms and making codes run fast, but now it’s about data and artificial intelligence. There are the interpretable methods like random forest algorithms, where we can tell how the machine is making its decisions. And then there are the black box methods, like convolutional neural networks.

Once in a while we can find some information about their inner workings, but most of the time we have to accept their answers and kind of probe around the edges to figure out the space in which we can use them and how reliable and accurate they are.

EG: What made you feel like you had to mount a defense of these black box algorithms?

EH: When I started talking with my colleagues, I found that the black box nature of many of these algorithms was a real problem for them. I could understand that because we’re scientists, we always want to know why and how.

It got me thinking as a bit of a contrarian, “Are black boxes all bad? Must we reject them?” Surely not, because human thought processes are fairly black box. We often rely on human thought processes that the thinker can’t necessarily explain.

It’s looking like we’re going to be stuck with these methods for a while, because they’re really helpful. They do amazing things. And so there’s a very pragmatic realization that these are the best methods we’ve got to do some really important problems, and we’re not right now seeing alternatives that are interpretable. We’re going to have to use them, so we better figure out how.

EG: In what situations do you think we should be using black box algorithms?

EH: I came up with three rules. The simplest rule is: when the cost of a bad decision is small and the value of a good decision is high, it’s worth it. The example I gave in the paper is targeted advertising. If you send an ad no one wants it doesn’t cost a lot. If you’re the receiver it doesn’t cost a lot to get rid of it.

There are cases where the cost is high, and that’s then we choose the black box if it’s the best option to do the job. Things get a little trickier here because we have to ask “what are the costs of bad decisions, and do we really have them fully characterized?” We also have to be very careful knowing that our systems may have biases, they may have limitations in where you can apply them, they may be breakable.

But at the same time, there are certainly domains where we’re going to test these systems so extensively that we know their performance in virtually every situation. And if their performance is better than the other methods, we need to do it. Self driving vehicles are a significant example—it’s almost certain they’re going to have to use black box methods, and that they’re going to end up being better drivers than humans.

The third rule is the more fun one for me as a scientist, and that’s the case where the black box really enlightens us as to a new way to look at something. We have trained a black box to recognize the fracture energy of breaking a piece of metal from a picture of the broken surface. It did a really good job, and humans can’t do this and we don’t know why.

What the computer seems to be seeing is noise. There’s a signal in that noise, and finding it is very difficult, but if we do we may find something significant to the fracture process, and that would be an awesome scientific discovery.

EG: Do you think there’s been too much emphasis on interpretability?

EH: I think the interpretability problem is a fundamental, fascinating computer science grand challenge and there are significant issues where we need to have an interpretable model. But how I would frame it is not that there’s too much emphasis on interpretability, but rather that there’s too much dismissiveness of uninterpretable models.

I think that some of the current social and political issues surrounding some very bad black box outcomes have convinced people that all machine learning and AI should be interpretable because that will somehow solve those problems.

Asking humans to explain their rationale has not eliminated bias, or stereotyping, or bad decision-making in humans. Relying too much on interpreted ability perhaps puts the responsibility in the wrong place for getting better results. I can make a better black box without knowing exactly in what way the first one was bad.

EG: Looking further into the future, do you think there will be situations where humans will have to rely on black box algorithms to solve problems we can’t get our heads around?

EH: I do think so, and it’s not as much of a stretch as we think it is. For example, humans don’t design the circuit map of computer chips anymore. We haven’t for years. It’s not a black box algorithm that designs those circuit boards, but we’ve long since given up trying to understand a particular computer chip’s design.

With the billions of circuits in every computer chip, the human mind can’t encompass it, either in scope or just the pure time that it would take to trace every circuit. There are going to be cases where we want a system so complex that only the patience that computers have and their ability to work in very high-dimensional spaces is going to be able to do it.

So we can continue to argue about interpretability, but we need to acknowledge that we’re going to need to use black boxes. And this is our opportunity to do our due diligence to understand how to use them responsibly, ethically, and with benefits rather than harm. And that’s going to be a social conversation as well as as a scientific one.

*Responses have been edited for length and style

Image Credit: Chingraph / Shutterstock.com Continue reading

Posted in Human Robots

#434827 AI and Robotics Are Transforming ...

During the past 50 years, the frequency of recorded natural disasters has surged nearly five-fold.

In this blog, I’ll be exploring how converging exponential technologies (AI, robotics, drones, sensors, networks) are transforming the future of disaster relief—how we can prevent them in the first place and get help to victims during that first golden hour wherein immediate relief can save lives.

Here are the three areas of greatest impact:

AI, predictive mapping, and the power of the crowd
Next-gen robotics and swarm solutions
Aerial drones and immediate aid supply

Let’s dive in!

Artificial Intelligence and Predictive Mapping
When it comes to immediate and high-precision emergency response, data is gold.

Already, the meteoric rise of space-based networks, stratosphere-hovering balloons, and 5G telecommunications infrastructure is in the process of connecting every last individual on the planet.

Aside from democratizing the world’s information, however, this upsurge in connectivity will soon grant anyone the ability to broadcast detailed geo-tagged data, particularly those most vulnerable to natural disasters.

Armed with the power of data broadcasting and the force of the crowd, disaster victims now play a vital role in emergency response, turning a historically one-way blind rescue operation into a two-way dialogue between connected crowds and smart response systems.

With a skyrocketing abundance of data, however, comes a new paradigm: one in which we no longer face a scarcity of answers. Instead, it will be the quality of our questions that matters most.

This is where AI comes in: our mining mechanism.

In the case of emergency response, what if we could strategically map an almost endless amount of incoming data points? Or predict the dynamics of a flood and identify a tsunami’s most vulnerable targets before it even strikes? Or even amplify critical signals to trigger automatic aid by surveillance drones and immediately alert crowdsourced volunteers?

Already, a number of key players are leveraging AI, crowdsourced intelligence, and cutting-edge visualizations to optimize crisis response and multiply relief speeds.

Take One Concern, for instance. Born out of Stanford under the mentorship of leading AI expert Andrew Ng, One Concern leverages AI through analytical disaster assessment and calculated damage estimates.

Partnering with the cities of Los Angeles, San Francisco, and numerous cities in San Mateo County, the platform assigns verified, unique ‘digital fingerprints’ to every element in a city. Building robust models of each system, One Concern’s AI platform can then monitor site-specific impacts of not only climate change but each individual natural disaster, from sweeping thermal shifts to seismic movement.

This data, combined with that of city infrastructure and former disasters, are then used to predict future damage under a range of disaster scenarios, informing prevention methods and structures in need of reinforcement.

Within just four years, One Concern can now make precise predictions with an 85 percent accuracy rate in under 15 minutes.

And as IoT-connected devices and intelligent hardware continue to boom, a blooming trillion-sensor economy will only serve to amplify AI’s predictive capacity, offering us immediate, preventive strategies long before disaster strikes.

Beyond natural disasters, however, crowdsourced intelligence, predictive crisis mapping, and AI-powered responses are just as formidable a triage in humanitarian disasters.

One extraordinary story is that of Ushahidi. When violence broke out after the 2007 Kenyan elections, one local blogger proposed a simple yet powerful question to the web: “Any techies out there willing to do a mashup of where the violence and destruction is occurring and put it on a map?”

Within days, four ‘techies’ heeded the call, building a platform that crowdsourced first-hand reports via SMS, mined the web for answers, and—with over 40,000 verified reports—sent alerts back to locals on the ground and viewers across the world.

Today, Ushahidi has been used in over 150 countries, reaching a total of 20 million people across 100,000+ deployments. Now an open-source crisis-mapping software, its V3 (or “Ushahidi in the Cloud”) is accessible to anyone, mining millions of Tweets, hundreds of thousands of news articles, and geo-tagged, time-stamped data from countless sources.

Aggregating one of the longest-running crisis maps to date, Ushahidi’s Syria Tracker has proved invaluable in the crowdsourcing of witness reports. Providing real-time geographic visualizations of all verified data, Syria Tracker has enabled civilians to report everything from missing people and relief supply needs to civilian casualties and disease outbreaks— all while evading the government’s cell network, keeping identities private, and verifying reports prior to publication.

As mobile connectivity and abundant sensors converge with AI-mined crowd intelligence, real-time awareness will only multiply in speed and scale.

Imagining the Future….

Within the next 10 years, spatial web technology might even allow us to tap into mesh networks.

As I’ve explored in a previous blog on the implications of the spatial web, while traditional networks rely on a limited set of wired access points (or wireless hotspots), a wireless mesh network can connect entire cities via hundreds of dispersed nodes that communicate with each other and share a network connection non-hierarchically.

In short, this means that individual mobile users can together establish a local mesh network using nothing but the computing power in their own devices.

Take this a step further, and a local population of strangers could collectively broadcast countless 360-degree feeds across a local mesh network.

Imagine a scenario in which armed attacks break out across disjointed urban districts, each cluster of eye witnesses and at-risk civilians broadcasting an aggregate of 360-degree videos, all fed through photogrammetry AIs that build out a live hologram in real time, giving family members and first responders complete information.

Or take a coastal community in the throes of torrential rainfall and failing infrastructure. Now empowered by a collective live feed, verification of data reports takes a matter of seconds, and richly-layered data informs first responders and AI platforms with unbelievable accuracy and specificity of relief needs.

By linking all the right technological pieces, we might even see the rise of automated drone deliveries. Imagine: crowdsourced intelligence is first cross-referenced with sensor data and verified algorithmically. AI is then leveraged to determine the specific needs and degree of urgency at ultra-precise coordinates. Within minutes, once approved by personnel, swarm robots rush to collect the requisite supplies, equipping size-appropriate drones with the right aid for rapid-fire delivery.

This brings us to a second critical convergence: robots and drones.

While cutting-edge drone technology revolutionizes the way we deliver aid, new breakthroughs in AI-geared robotics are paving the way for superhuman emergency responses in some of today’s most dangerous environments.

Let’s explore a few of the most disruptive examples to reach the testing phase.

First up….

Autonomous Robots and Swarm Solutions
As hardware advancements converge with exploding AI capabilities, disaster relief robots are graduating from assistance roles to fully autonomous responders at a breakneck pace.

Born out of MIT’s Biomimetic Robotics Lab, the Cheetah III is but one of many robots that may form our first line of defense in everything from earthquake search-and-rescue missions to high-risk ops in dangerous radiation zones.

Now capable of running at 6.4 meters per second, Cheetah III can even leap up to a height of 60 centimeters, autonomously determining how to avoid obstacles and jump over hurdles as they arise.

Initially designed to perform spectral inspection tasks in hazardous settings (think: nuclear plants or chemical factories), the Cheetah’s various iterations have focused on increasing its payload capacity, range of motion, and even a gripping function with enhanced dexterity.

Cheetah III and future versions are aimed at saving lives in almost any environment.

And the Cheetah III is not alone. Just this February, Tokyo’s Electric Power Company (TEPCO) has put one of its own robots to the test. For the first time since Japan’s devastating 2011 tsunami, which led to three nuclear meltdowns in the nation’s Fukushima nuclear power plant, a robot has successfully examined the reactor’s fuel.

Broadcasting the process with its built-in camera, the robot was able to retrieve small chunks of radioactive fuel at five of the six test sites, offering tremendous promise for long-term plans to clean up the still-deadly interior.

Also out of Japan, Mitsubishi Heavy Industries (MHi) is even using robots to fight fires with full autonomy. In a remarkable new feat, MHi’s Water Cannon Bot can now put out blazes in difficult-to-access or highly dangerous fire sites.

Delivering foam or water at 4,000 liters per minute and 1 megapascal (MPa) of pressure, the Cannon Bot and its accompanying Hose Extension Bot even form part of a greater AI-geared system to conduct reconnaissance and surveillance on larger transport vehicles.

As wildfires grow ever more untameable, high-volume production of such bots could prove a true lifesaver. Paired with predictive AI forest fire mapping and autonomous hauling vehicles, not only will solutions like MHi’s Cannon Bot save numerous lives, but avoid population displacement and paralyzing damage to our natural environment before disaster has the chance to spread.

But even in cases where emergency shelter is needed, groundbreaking (literally) robotics solutions are fast to the rescue.

After multiple iterations by Fastbrick Robotics, the Hadrian X end-to-end bricklaying robot can now autonomously build a fully livable, 180-square-meter home in under three days. Using a laser-guided robotic attachment, the all-in-one brick-loaded truck simply drives to a construction site and directs blocks through its robotic arm in accordance with a 3D model.

Meeting verified building standards, Hadrian and similar solutions hold massive promise in the long-term, deployable across post-conflict refugee sites and regions recovering from natural catastrophes.

But what if we need to build emergency shelters from local soil at hand? Marking an extraordinary convergence between robotics and 3D printing, the Institute for Advanced Architecture of Catalonia (IAAC) is already working on a solution.

In a major feat for low-cost construction in remote zones, IAAC has found a way to convert almost any soil into a building material with three times the tensile strength of industrial clay. Offering myriad benefits, including natural insulation, low GHG emissions, fire protection, air circulation, and thermal mediation, IAAC’s new 3D printed native soil can build houses on-site for as little as $1,000.

But while cutting-edge robotics unlock extraordinary new frontiers for low-cost, large-scale emergency construction, novel hardware and computing breakthroughs are also enabling robotic scale at the other extreme of the spectrum.

Again, inspired by biological phenomena, robotics specialists across the US have begun to pilot tiny robotic prototypes for locating trapped individuals and assessing infrastructural damage.

Take RoboBees, tiny Harvard-developed bots that use electrostatic adhesion to ‘perch’ on walls and even ceilings, evaluating structural damage in the aftermath of an earthquake.

Or Carnegie Mellon’s prototyped Snakebot, capable of navigating through entry points that would otherwise be completely inaccessible to human responders. Driven by AI, the Snakebot can maneuver through even the most densely-packed rubble to locate survivors, using cameras and microphones for communication.

But when it comes to fast-paced reconnaissance in inaccessible regions, miniature robot swarms have good company.

Next-Generation Drones for Instantaneous Relief Supplies
Particularly in the case of wildfires and conflict zones, autonomous drone technology is fundamentally revolutionizing the way we identify survivors in need and automate relief supply.

Not only are drones enabling high-resolution imagery for real-time mapping and damage assessment, but preliminary research shows that UAVs far outpace ground-based rescue teams in locating isolated survivors.

As presented by a team of electrical engineers from the University of Science and Technology of China, drones could even build out a mobile wireless broadband network in record time using a “drone-assisted multi-hop device-to-device” program.

And as shown during Houston’s Hurricane Harvey, drones can provide scores of predictive intel on everything from future flooding to damage estimates.

Among multiple others, a team led by Texas A&M computer science professor and director of the university’s Center for Robot-Assisted Search and Rescue Dr. Robin Murphy flew a total of 119 drone missions over the city, from small-scale quadcopters to military-grade unmanned planes. Not only were these critical for monitoring levee infrastructure, but also for identifying those left behind by human rescue teams.

But beyond surveillance, UAVs have begun to provide lifesaving supplies across some of the most remote regions of the globe. One of the most inspiring examples to date is Zipline.

Created in 2014, Zipline has completed 12,352 life-saving drone deliveries to date. While drones are designed, tested, and assembled in California, Zipline primarily operates in Rwanda and Tanzania, hiring local operators and providing over 11 million people with instant access to medical supplies.

Providing everything from vaccines and HIV medications to blood and IV tubes, Zipline’s drones far outpace ground-based supply transport, in many instances providing life-critical blood cells, plasma, and platelets in under an hour.

But drone technology is even beginning to transcend the limited scale of medical supplies and food.

Now developing its drones under contracts with DARPA and the US Marine Corps, Logistic Gliders, Inc. has built autonomously-navigating drones capable of carrying 1,800 pounds of cargo over unprecedented long distances.

Built from plywood, Logistic’s gliders are projected to cost as little as a few hundred dollars each, making them perfect candidates for high-volume remote aid deliveries, whether navigated by a pilot or self-flown in accordance with real-time disaster zone mapping.

As hardware continues to advance, autonomous drone technology coupled with real-time mapping algorithms pose no end of abundant opportunities for aid supply, disaster monitoring, and richly layered intel previously unimaginable for humanitarian relief.

Concluding Thoughts
Perhaps one of the most consequential and impactful applications of converging technologies is their transformation of disaster relief methods.

While AI-driven intel platforms crowdsource firsthand experiential data from those on the ground, mobile connectivity and drone-supplied networks are granting newfound narrative power to those most in need.

And as a wave of new hardware advancements gives rise to robotic responders, swarm technology, and aerial drones, we are fast approaching an age of instantaneous and efficiently-distributed responses in the midst of conflict and natural catastrophes alike.

Empowered by these new tools, what might we create when everyone on the planet has the same access to relief supplies and immediate resources? In a new age of prevention and fast recovery, what futures can you envision?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Arcansel / Shutterstock.com Continue reading

Posted in Human Robots

#434812 This Week’s Awesome Stories From ...

FUTURE OF FOOD
Behold the ‘Beefless Impossible Whopper’
Nathaniel Popper | The New York Times
“Burger King is introducing a Whopper made with a vegetarian patty from the start-up Impossible Foods. The deal is a big step toward the mainstream for start-ups trying to mimic and replace meat.”

ARTIFICIAL INTELLIGENCE
The Animal-AI Olympics Is Going to Treat AI Like a Lab Rat
Oscar Schwartz | MIT Technology Review
“What is being tested is not a particular type of intelligence but the ability for a single agent to adapt to diverse environments. This would demonstrate a limited form of generalized intelligence—a type of common sense that AI will need if it is ever to succeed in our homes or in our daily lives.”

SPACE
Falcon Heavy’s First Real Launch on Sunday Is the Dawn of a New Heavy-Lift Era in Space
Devin Coldewey | TechCrunch
“The Falcon Heavy has flown before, but now it’s got a payload that matters and competitors nipping at its heels. It’s the first of a new generation of launch vehicles that can take huge payloads to space cheaply and frequently, opening up a new frontier in the space race.”

ROBOTICS
Self-Driving Harvesting Robot Suctions the Fruit Off Trees
Luke Dormehl | Digital Trends
“[Abundant Robotics] has developed a cutting edge solution to the apple-picking problem in the form of an autonomous tractor-style vehicle which can navigate through orchards using Lidar. Once it spots the apples it seeks, it’s able to detect their ripeness using image recognition technology. It can then reach out and literally suction its chosen apples off the trees and into an on-board storage bin.”

CRYPTOCURRENCY
Amid Bitcoin Uncertainty ‘the Smart Money Knows That Crypto Is Not Ready’
Nathaniel Popper | The New York Times
“Some cryptocurrency enthusiasts had hoped that the entrance of Wall Street institutions would give them legitimacy with traditional investors. But their struggles—and waning interest—illustrate the difficulty in bringing Bitcoin from the fringes of the internet into the mainstream financial world.”

SCIENCE
Sorry, Graphene—Borophene Is the New Wonder Material That’s Got Everyone Excited
Emerging Technology from the arXiv | MIT Technology Review
“Stronger and more flexible than graphene, a single-atom layer of boron could revolutionize sensors, batteries, and catalytic chemistry.”

Image Credit: JoeZ / Shutterstock.com Continue reading

Posted in Human Robots

#434797 This Week’s Awesome Stories From ...

GENE EDITING
Genome Engineers Made More Than 13,000 Genome Edits in a Single Cell
Antonio Regalado | MIT Technology Review
“The group, led by gene technologist George Church, wants to rewrite genomes at a far larger scale than has currently been possible, something it says could ultimately lead to the ‘radical redesign’ of species—even humans.”

ROBOTICS
Inside Google’s Rebooted Robotics Program
Cade Metz | The New York Times
“Google’s new lab is indicative of a broader effort to bring so-called machine learning to robotics. …Many believe that machine learning—not extravagant new devices—will be the key to developing robotics for manufacturing, warehouse automation, transportation and many other tasks.

VIDEOS
Boston Dynamics Builds the Warehouse Robot of Jeff Bezos’ Dreams
Luke Dormehl | Digital Trends
“…for anyone wondering what the future of warehouse operation is likely to look like, this offers a far more practical glimpse of the years to come than, say, a dancing dog robot. As Boston Dynamics moves toward commercializing its creations for the first time, this could turn out to be a lot closer than you might think.”

TECHNOLOGY
Europe Is Splitting the Internet Into Three
Casey Newton | The Verge
“The internet had previously been divided into two: the open web, which most of the world could access; and the authoritarian web of countries like China, which is parceled out stingily and heavily monitored. As of today, though, the web no longer feels truly worldwide. Instead we now have the American internet, the authoritarian internet, and the European internet. How does the EU Copyright Directive change our understanding of the web?”

VIRTUAL REALITY
No Man’s Sky’s Next Update Will Let You Explore Infinite Space in Virtual Reality
Taylor Hatmaker | TechCrunch
“Assuming the game runs well enough, No Man’s Sky Virtual Reality will be a far cry from gimmicky VR games that lack true depth, offering one of the most expansive—if not the most expansive—VR experiences to date.”

3D PRINTING
3D Metal Printing Tries to Break Into the Manufacturing Mainstream
Mark Anderson | IEEE Spectrum
“It’s been five or so years since 3D printing was at peak hype. Since then, the technology has edged its way into a new class of materials and started to break into more applications. Today, 3D printers are being seriously considered as a means to produce stainless steel 5G smartphones, high-strength alloy gas-turbine blades, and other complex metal parts.”

Image Credit: ale de sun / Shutterstock.com Continue reading

Posted in Human Robots