Tag Archives: show

#434643 Sensors and Machine Learning Are Giving ...

According to some scientists, humans really do have a sixth sense. There’s nothing supernatural about it: the sense of proprioception tells you about the relative positions of your limbs and the rest of your body. Close your eyes, block out all sound, and you can still use this internal “map” of your external body to locate your muscles and body parts – you have an innate sense of the distances between them, and the perception of how they’re moving, above and beyond your sense of touch.

This sense is invaluable for allowing us to coordinate our movements. In humans, the brain integrates senses including touch, heat, and the tension in muscle spindles to allow us to build up this map.

Replicating this complex sense has posed a great challenge for roboticists. We can imagine simulating the sense of sight with cameras, sound with microphones, or touch with pressure-pads. Robots with chemical sensors could be far more accurate than us in smell and taste, but building in proprioception, the robot’s sense of itself and its body, is far more difficult, and is a large part of why humanoid robots are so tricky to get right.

Simultaneous localization and mapping (SLAM) software allows robots to use their own senses to build up a picture of their surroundings and environment, but they’d need a keen sense of the position of their own bodies to interact with it. If something unexpected happens, or in dark environments where primary senses are not available, robots can struggle to keep track of their own position and orientation. For human-robot interaction, wearable robotics, and delicate applications like surgery, tiny differences can be extremely important.

Piecemeal Solutions
In the case of hard robotics, this is generally solved by using a series of strain and pressure sensors in each joint, which allow the robot to determine how its limbs are positioned. That works fine for rigid robots with a limited number of joints, but for softer, more flexible robots, this information is limited. Roboticists are faced with a dilemma: a vast, complex array of sensors for every degree of freedom in the robot’s movement, or limited skill in proprioception?

New techniques, often involving new arrays of sensory material and machine-learning algorithms to fill in the gaps, are starting to tackle this problem. Take the work of Thomas George Thuruthel and colleagues in Pisa and San Diego, who draw inspiration from the proprioception of humans. In a new paper in Science Robotics, they describe the use of soft sensors distributed through a robotic finger at random. This placement is much like the constant adaptation of sensors in humans and animals, rather than relying on feedback from a limited number of positions.

The sensors allow the soft robot to react to touch and pressure in many different locations, forming a map of itself as it contorts into complicated positions. The machine-learning algorithm serves to interpret the signals from the randomly-distributed sensors: as the finger moves around, it’s observed by a motion capture system. After training the robot’s neural network, it can associate the feedback from the sensors with the position of the finger detected in the motion-capture system, which can then be discarded. The robot observes its own motions to understand the shapes that its soft body can take, and translate them into the language of these soft sensors.

“The advantages of our approach are the ability to predict complex motions and forces that the soft robot experiences (which is difficult with traditional methods) and the fact that it can be applied to multiple types of actuators and sensors,” said Michael Tolley of the University of California San Diego. “Our method also includes redundant sensors, which improves the overall robustness of our predictions.”

The use of machine learning lets the roboticists come up with a reliable model for this complex, non-linear system of motions for the actuators, something difficult to do by directly calculating the expected motion of the soft-bot. It also resembles the human system of proprioception, built on redundant sensors that change and shift in position as we age.

In Search of a Perfect Arm
Another approach to training robots in using their bodies comes from Robert Kwiatkowski and Hod Lipson of Columbia University in New York. In their paper “Task-agnostic self-modeling machines,” also recently published in Science Robotics, they describe a new type of robotic arm.

Robotic arms and hands are getting increasingly dexterous, but training them to grasp a large array of objects and perform many different tasks can be an arduous process. It’s also an extremely valuable skill to get right: Amazon is highly interested in the perfect robot arm. Google hooked together an array of over a dozen robot arms so that they could share information about grasping new objects, in part to cut down on training time.

Individually training a robot arm to perform every individual task takes time and reduces the adaptability of your robot: either you need an ML algorithm with a huge dataset of experiences, or, even worse, you need to hard-code thousands of different motions. Kwiatkowski and Lipson attempt to overcome this by developing a robotic system that has a “strong sense of self”: a model of its own size, shape, and motions.

They do this using deep machine learning. The robot begins with no prior knowledge of its own shape or the underlying physics of its motion. It then repeats a series of a thousand random trajectories, recording the motion of its arm. Kwiatkowski and Lipson compare this to a baby in the first year of life observing the motions of its own hands and limbs, fascinated by picking up and manipulating objects.

Again, once the robot has trained itself to interpret these signals and build up a robust model of its own body, it’s ready for the next stage. Using that deep-learning algorithm, the researchers then ask the robot to design strategies to accomplish simple pick-up and place and handwriting tasks. Rather than laboriously and narrowly training itself for each individual task, limiting its abilities to a very narrow set of circumstances, the robot can now strategize how to use its arm for a much wider range of situations, with no additional task-specific training.

Damage Control
In a further experiment, the researchers replaced part of the arm with a “deformed” component, intended to simulate what might happen if the robot was damaged. The robot can then detect that something’s up and “reconfigure” itself, reconstructing its self-model by going through the training exercises once again; it was then able to perform the same tasks with only a small reduction in accuracy.

Machine learning techniques are opening up the field of robotics in ways we’ve never seen before. Combining them with our understanding of how humans and other animals are able to sense and interact with the world around us is bringing robotics closer and closer to becoming truly flexible and adaptable, and, eventually, omnipresent.

But before they can get out and shape the world, as these studies show, they will need to understand themselves.

Image Credit: jumbojan / Shutterstock.com Continue reading

Posted in Human Robots

#434580 How Genome Sequencing and Senolytics Can ...

The causes of aging are extremely complex and unclear. With the dramatic demonetization of genome reading and editing over the past decade, and Big Pharma, startups, and the FDA starting to face aging as a disease, we are starting to find practical ways to extend our healthspan.

Here, in Part 2 of a series of blogs on longevity and vitality, I explore how genome sequencing and editing, along with new classes of anti-aging drugs, are augmenting our biology to further extend our healthy lives.

In this blog I’ll cover two classes of emerging technologies:

Genome Sequencing and Editing;
Senolytics, Nutraceuticals & Pharmaceuticals.

Let’s dive in.

Genome Sequencing & Editing
Your genome is the software that runs your body.

A sequence of 3.2 billion letters makes you “you.” These base pairs of A’s, T’s, C’s, and G’s determine your hair color, your height, your personality, your propensity to disease, your lifespan, and so on.

Until recently, it’s been very difficult to rapidly and cheaply “read” these letters—and even more difficult to understand what they mean.

Since 2001, the cost to sequence a whole human genome has plummeted exponentially, outpacing Moore’s Law threefold. From an initial cost of $3.7 billion, it dropped to $10 million in 2006, and to $5,000 in 2012.

Today, the cost of genome sequencing has dropped below $500, and according to Illumina, the world’s leading sequencing company, the process will soon cost about $100 and take about an hour to complete.

This represents one of the most powerful and transformative technology revolutions in healthcare.

When we understand your genome, we’ll be able to understand how to optimize “you.”

We’ll know the perfect foods, the perfect drugs, the perfect exercise regimen, and the perfect supplements, just for you.
We’ll understand what microbiome types, or gut flora, are ideal for you (more on this in a later blog).
We’ll accurately predict how specific sedatives and medicines will impact you.
We’ll learn which diseases and illnesses you’re most likely to develop and, more importantly, how to best prevent them from developing in the first place (rather than trying to cure them after the fact).

CRISPR Gene Editing
In addition to reading the human genome, scientists can now edit a genome using a naturally-occurring biological system discovered in 1987 called CRISPR/Cas9.

Short for Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9, the editing system was adapted from a naturally-occurring defense system found in bacteria.

Here’s how it works:

The bacteria capture snippets of DNA from invading viruses (or bacteriophage) and use them to create DNA segments known as CRISPR arrays.
The CRISPR arrays allow the bacteria to “remember” the viruses (or closely related ones), and defend against future invasions.
If the viruses attack again, the bacteria produce RNA segments from the CRISPR arrays to target the viruses’ DNA. The bacteria then use Cas9 to cut the DNA apart, which disables the virus.

Most importantly, CRISPR is cheap, quick, easy to use, and more accurate than all previous gene editing methods. As a result, CRISPR/Cas9 has swept through labs around the world as the way to edit a genome.

A short search in the literature will show an exponential rise in the number of CRISPR-related publications and patents.

2018: Filled With CRISPR Breakthroughs
Early results are impressive. Researchers from the University of Chicago recently used CRISPR to genetically engineer cocaine resistance into mice.

Researchers at the University of Texas Southwestern Medical Center used CRISPR to reverse the gene defect causing Duchenne muscular dystrophy (DMD) in dogs (DMD is the most common fatal genetic disease in children).

With great power comes great responsibility, and moral and ethical dilemmas.

In 2015, Chinese scientists sparked global controversy when they first edited human embryo cells in the lab with the goal of modifying genes that would make the child resistant to smallpox, HIV, and cholera.

Three years later, in November 2018, researcher He Jiankui informed the world that the first set of CRISPR-engineered female twins had been delivered.

To accomplish his goal, Jiankui deleted a region of a receptor on the surface of white blood cells known as CCR5, introducing a rare, natural genetic variation that makes it more difficult for HIV to infect its favorite target, white blood cells.

Setting aside the significant ethical conversations, CRISPR will soon provide us the tools to eliminate diseases, create hardier offspring, produce new environmentally resistant crops, and even wipe out pathogens.

Senolytics, Nutraceuticals & Pharmaceuticals
Over the arc of your life, the cells in your body divide until they reach what is known as the Hayflick limit, or the number of times a normal human cell population will divide before cell division stops, which is typically about 50 divisions.

What normally follows next is programmed cell death or destruction by the immune system. A very small fraction of cells, however, become senescent cells and evade this fate to linger indefinitely.

These lingering cells secrete a potent mix of molecules that triggers chronic inflammation, damages the surrounding tissue structures, and changes the behavior of nearby cells for the worse.

Senescent cells appear to be one of the root causes of aging, causing everything from fibrosis and blood vessel calcification, to localized inflammatory conditions such as osteoarthritis, to diminished lung function.

Fortunately, both the scientific and entrepreneurial communities have begun to work on senolytic therapies, moving the technology for selectively destroying senescent cells out of the laboratory and into a half-dozen startup companies.

Prominent companies in the field include the following:

Unity Biotechnology is developing senolytic medicines to selectively eliminate senescent cells with an initial focus on delivering localized therapy in osteoarthritis, ophthalmology and pulmonary disease.
Oisin Biotechnologiesis pioneering a programmable gene therapy that can destroy cells based on their internal biochemistry.
SIWA Therapeuticsis working on an immunotherapy approach to the problem of senescent cells.

In recent years, researchers have identified or designed a handful of senolytic compounds that can curb aging by regulating senescent cells. Two of these drugs that have gained mainstay research traction are rapamycin and metformin.

Rapamycin
Originally extracted from bacteria found on Easter Island, Rapamycin acts on the m-TOR (mechanistic target of rapamycin) pathway to selectively block a key protein that facilitates cell division.

Currently, rapamycin derivatives are widely used as immunosuppression in organ and bone marrow transplants. Research now suggests that use results in prolonged lifespan and enhanced cognitive and immune function.

PureTech Health subsidiary resTORbio (which started 2018 by going public) is working on a rapamycin-based drug intended to enhance immunity and reduce infection. Their clinical-stage RTB101 drug works by inhibiting part of the mTOR pathway.

Results of the drug’s recent clinical trial include:

Decreased incidence of infection
Improved influenza vaccination response
A 30.6 percent decrease in respiratory tract infections

Impressive, to say the least.

Metformin
Metformin is a widely-used generic drug for mitigating liver sugar production in Type 2 diabetes patients.

Researchers have found that Metformin also reduces oxidative stress and inflammation, which otherwise increase as we age.

There is strong evidence that Metformin can augment cellular regeneration and dramatically mitigate cellular senescence by reducing both oxidative stress and inflammation.

Over 100 studies registered on ClinicalTrials.gov are currently following up on strong evidence of Metformin’s protective effect against cancer.

Nutraceuticals and NAD+
Beyond cellular senescence, certain critical nutrients and proteins tend to decline as a function of age. Nutraceuticals combat aging by supplementing and replenishing these declining nutrient levels.

NAD+ exists in every cell, participating in every process from DNA repair to creating the energy vital for cellular processes. It’s been shown that NAD+ levels decline as we age.

The Elysium Health Basis supplement aims to elevate NAD+ levels in the body to extend one’s lifespan. Elysium’s clinical study reports that Basis increases NAD+ levels consistently by a sustained 40 percent.

Conclusion
These are just a taste of the tremendous momentum that longevity and aging technology has right now. As artificial intelligence and quantum computing transform how we decode our DNA and how we discover drugs, genetics and pharmaceuticals will become truly personalized.

The next blog in this series will demonstrate how artificial intelligence is converging with genetics and pharmaceuticals to transform how we approach longevity, aging, and vitality.

We are edging closer to a dramatically extended healthspan—where 100 is the new 60. What will you create, where will you explore, and how will you spend your time if you are able to add an additional 40 healthy years to your life?

Join Me
Abundance Digital is my online educational portal and community of abundance-minded entrepreneurs. You’ll find weekly video updates from Peter, a curated newsfeed of exponential news, and a place to share your bold ideas. Click here to learn more and sign up.

Image Credit: ktsdesign / Shutterstock.com Continue reading

Posted in Human Robots

#434492 Black Mirror’s ‘Bandersnatch’ ...

When was the last time you watched a movie where you could control the plot?

Bandersnatch is the first interactive film in the sci fi anthology series Black Mirror. Written by series creator Charlie Brooker and directed by David Slade, the film tells the story of young programmer Stefan Butler, who is adapting a fantasy choose-your-own-adventure novel called Bandersnatch into a video game. Throughout the film, viewers are given the power to influence Butler’s decisions, leading to diverging plots with different endings.

Like many Black Mirror episodes, this film is mind-bending, dark, and thought-provoking. In addition to innovating cinema as we know it, it is a fascinating rumination on free will, parallel realities, and emerging technologies.

Pick Your Own Adventure
With a non-linear script, Bandersnatch is a viewing experience like no other. Throughout the film viewers are given the option of making a decision for the protagonist. In these instances, they have 10 seconds to make a decision until a default decision is made. For example, in the early stage of the plot, Butler is given the choice of accepting or rejecting Tuckersoft’s offer to develop a video game and the viewer gets to decide what he does. The decision then shapes the plot accordingly.

The video game Butler is developing involves moving through a graphical maze of corridors while avoiding a creature called the Pax, and at times making choices through an on-screen instruction (sound familiar?). In other words, it’s a pick-your-own-adventure video game in a pick-your-own-adventure movie.

Many viewers have ended up spending hours exploring all the different branches of the narrative (though the average viewing is 90 minutes). One user on reddit has mapped out an entire flowchart, showing how all the different decisions (and pseudo-decisions) lead to various endings.

However, over time, Butler starts to question his own free will. It’s almost as if he’s beginning to realize that the audience is controlling him. In one branch of the narrative, he is confronted by this reality when the audience indicates to him that he is being controlled in a Netflix show: “I am watching you on Netflix. I make all the decisions for you”. Butler, as you can imagine, is horrified by this message.

But Butler isn’t the only one who has an illusion of choice. We, the seemingly powerful viewers, also appear to operate under the illusion of choice. Despite there being five main endings to the film, they are all more or less the same.

The Science Behind Bandersnatch
The premise of Bandersnatch isn’t based on fantasy, but hard science. Free will has always been a widely-debated issue in neuroscience, with reputable scientists and studies demonstrating that the whole concept may be an illusion.

In the 1970s, a psychologist named Benjamin Libet conducted a series of experiments that studied voluntary decision making in humans. He found that brain activity imitating an action, such as moving your wrist, preceded the conscious awareness of the action.

Psychologist Malcom Gladwell theorizes that while we like to believe we spend a lot of time thinking about our decisions, our mental processes actually work rapidly, automatically, and often subconsciously, from relatively little information. In addition to this, thinking and making decisions are usually a byproduct of several different brain systems, such as the hippocampus, amygdala, and prefrontal cortex working together. You are more conscious of some information processes in the brain than others.

As neuroscientist and philosopher Sam Harris points out in his book Free Will, “You did not pick your parents or the time and place of your birth. You didn’t choose your gender or most of your life experiences. You had no control whatsoever over your genome or the development of your brain. And now your brain is making choices on the basis of preferences and beliefs that have been hammered into it over a lifetime.” Like Butler, we may believe we are operating under full agency of our abilities, but we are at the mercy of many internal and external factors that influence our decisions.

Beyond free will, Bandersnatch also taps into the theory of parallel universes, a facet of the astronomical theory of the multiverse. In astrophysics, there is a theory that there are parallel universes other than our own, where all the choices you made are played out in alternate realities. For instance, if today you had the option of having cereal or eggs for breakfast, and you chose eggs, in a parallel universe, you chose cereal. Human history and our lives may have taken different paths in these parallel universes.

The Future of Cinema
In the future, the viewing experience will no longer be a passive one. Bandersnatch is just a glimpse into how technology is revolutionizing film as we know it and making it a more interactive and personalized experience. All the different scenarios and branches of the plot were scripted and filmed, but in the future, they may be adapted real-time via artificial intelligence.

Virtual reality may allow us to play an even more active role by making us participants or characters in the film. Data from your history of preferences and may be used to create a unique version of the plot that is optimized for your viewing experience.

Let’s also not underestimate the social purpose of advancing film and entertainment. Science fiction gives us the ability to create simulations of the future. Different narratives can allow us to explore how powerful technologies combined with human behavior can result in positive or negative scenarios. Perhaps in the future, science fiction will explore implications of technologies and observe human decision making in novel contexts, via AI-powered films in the virtual world.

Image Credit: andrey_l / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#434324 Big Brother Nation: The Case for ...

Powerful surveillance cameras have crept into public spaces. We are filmed and photographed hundreds of times a day. To further raise the stakes, the resulting video footage is fed to new forms of artificial intelligence software that can recognize faces in real time, read license plates, even instantly detect when a particular pre-defined action or activity takes place in front of a camera.

As most modern cities have quietly become surveillance cities, the law has been slow to catch up. While we wait for robust legal frameworks to emerge, the best way to protect our civil liberties right now is to fight technology with technology. All cities should place local surveillance video into a public cloud-based data trust. Here’s how it would work.

In Public Data We Trust
To democratize surveillance, every city should implement three simple rules. First, anyone who aims a camera at public space must upload that day’s haul of raw video file (and associated camera meta-data) into a cloud-based repository. Second, this cloud-based repository must have open APIs and a publicly-accessible log file that records search histories and tracks who has accessed which video files. And third, everyone in the city should be given the same level of access rights to the stored video data—no exceptions.

This kind of public data repository is called a “data trust.” Public data trusts are not just wishful thinking. Different types of trusts are already in successful use in Estonia and Barcelona, and have been proposed as the best way to store and manage the urban data that will be generated by Alphabet’s planned Sidewalk Labs project in Toronto.

It’s true that few people relish the thought of public video footage of themselves being looked at by strangers and friends, by ex-spouses, potential employers, divorce attorneys, and future romantic prospects. In fact, when I propose this notion when I give talks about smart cities, most people recoil in horror. Some turn red in the face and jeer at my naiveté. Others merely blink quietly in consternation.

The reason we should take this giant step towards extreme transparency is to combat the secrecy that surrounds surveillance. Openness is a powerful antidote to oppression. Edward Snowden summed it up well when he said, “Surveillance is not about public safety, it’s about power. It’s about control.”

Let Us Watch Those Watching Us
If public surveillance video were put back into the hands of the people, citizens could watch their government as it watches them. Right now, government cameras are controlled by the state. Camera locations are kept secret, and only the agencies that control the cameras get to see the footage they generate.

Because of these information asymmetries, civilians have no insight into the size and shape of the modern urban surveillance infrastructure that surrounds us, nor the uses (or abuses) of the video footage it spawns. For example, there is no swift and efficient mechanism to request a copy of video footage from the cameras that dot our downtown. Nor can we ask our city’s police force to show us a map that documents local traffic camera locations.

By exposing all public surveillance videos to the public gaze, cities could give regular people tools to assess the size, shape, and density of their local surveillance infrastructure and neighborhood “digital dragnet.” Using the meta-data that’s wrapped around video footage, citizens could geo-locate individual cameras onto a digital map to generate surveillance “heat maps.” This way people could assess whether their city’s camera density was higher in certain zip codes, or in neighborhoods populated by a dominant ethnic group.

Surveillance heat maps could be used to document which government agencies were refusing to upload their video files, or which neighborhoods were not under surveillance. Given what we already know today about the correlation between camera density, income, and social status, these “dark” camera-free regions would likely be those located near government agencies and in more affluent parts of a city.

Extreme transparency would democratize surveillance. Every city’s data trust would keep a publicly-accessible log of who’s searching for what, and whom. People could use their local data trust’s search history to check whether anyone was searching for their name, face, or license plate. As a result, clandestine spying on—and stalking of—particular individuals would become difficult to hide and simpler to prove.

Protect the Vulnerable and Exonerate the Falsely Accused
Not all surveillance video automatically works against the underdog. As the bungled (and consequently no longer secret) assassination of journalist Jamal Khashoggi demonstrated, one of the unexpected upsides of surveillance cameras has been the fact that even kings become accountable for their crimes. If opened up to the public, surveillance cameras could serve as witnesses to justice.

Video evidence has the power to protect vulnerable individuals and social groups by shedding light onto messy, unreliable (and frequently conflicting) human narratives of who did what to whom, and why. With access to a data trust, a person falsely accused of a crime could prove their innocence. By searching for their own face in video footage or downloading time/date stamped footage from a particular camera, a potential suspect could document their physical absence from the scene of a crime—no lengthy police investigation or high-priced attorney needed.

Given Enough Eyeballs, All Crimes Are Shallow
Placing public surveillance video into a public trust could make cities safer and would streamline routine police work. Linus Torvalds, the developer of open-source operating system Linux, famously observed that “given enough eyeballs, all bugs are shallow.” In the case of public cameras and a common data repository, Torvald’s Law could be restated as “given enough eyeballs, all crimes are shallow.”

If thousands of citizen eyeballs were given access to a city’s public surveillance videos, local police forces could crowdsource the work of solving crimes and searching for missing persons. Unfortunately, at the present time, cities are unable to wring any social benefit from video footage of public spaces. The most formidable barrier is not government-imposed secrecy, but the fact that as cameras and computers have grown cheaper, a large and fast-growing “mom and pop” surveillance state has taken over most of the filming of public spaces.

While we fear spooky government surveillance, the reality is that we’re much more likely to be filmed by security cameras owned by shopkeepers, landlords, medical offices, hotels, homeowners, and schools. These businesses, organizations, and individuals install cameras in public areas for practical reasons—to reduce their insurance costs, to prevent lawsuits, or to combat shoplifting. In the absence of regulations governing their use, private camera owners store video footage in a wide variety of locations, for varying retention periods.

The unfortunate (and unintended) result of this informal and decentralized network of public surveillance is that video files are not easy to access, even for police officers on official business. After a crime or terrorist attack occurs, local police (or attorneys armed with a subpoena) go from door to door to manually collect video evidence. Once they have the videos in hand, their next challenge is searching for the right “codex” to crack the dozens of different file formats they encounter so they can watch and analyze the footage.

The result of these practical barriers is that as it stands today, only people with considerable legal or political clout are able to successfully gain access into a city’s privately-owned, ad-hoc collections of public surveillance videos. Not only are cities missing the opportunity to streamline routine evidence-gathering police work, they’re missing a radically transformative benefit that would become possible once video footage from thousands of different security cameras were pooled into a single repository: the ability to apply the power of citizen eyeballs to the work of improving public safety.

Why We Need Extreme Transparency
When regular people can’t access their own surveillance videos, there can be no data justice. While we wait for the law to catch up with the reality of modern urban life, citizens and city governments should use technology to address the problem that lies at the heart of surveillance: a power imbalance between those who control the cameras and those who don’t.

Cities should permit individuals and organizations to install and deploy as many public-facing cameras as they wish, but with the mandate that camera owners must place all resulting video footage into the mercilessly bright sunshine of an open data trust. This way, cloud computing, open APIs, and artificial intelligence software can help combat abuses of surveillance and give citizens insight into who’s filming us, where, and why.

Image Credit: VladFotoMag / Shutterstock.com Continue reading

Posted in Human Robots

#434311 Understanding the Hidden Bias in ...

Facial recognition technology has progressed to point where it now interprets emotions in facial expressions. This type of analysis is increasingly used in daily life. For example, companies can use facial recognition software to help with hiring decisions. Other programs scan the faces in crowds to identify threats to public safety.

Unfortunately, this technology struggles to interpret the emotions of black faces. My new study, published last month, shows that emotional analysis technology assigns more negative emotions to black men’s faces than white men’s faces.

This isn’t the first time that facial recognition programs have been shown to be biased. Google labeled black faces as gorillas. Cameras identified Asian faces as blinking. Facial recognition programs struggled to correctly identify gender for people with darker skin.

My work contributes to a growing call to better understand the hidden bias in artificial intelligence software.

Measuring Bias
To examine the bias in the facial recognition systems that analyze people’s emotions, I used a data set of 400 NBA player photos from the 2016 to 2017 season, because players are similar in their clothing, athleticism, age and gender. Also, since these are professional portraits, the players look at the camera in the picture.

I ran the images through two well-known types of emotional recognition software. Both assigned black players more negative emotional scores on average, no matter how much they smiled.

For example, consider the official NBA pictures of Darren Collison and Gordon Hayward. Both players are smiling, and, according to the facial recognition and analysis program Face++, Darren Collison and Gordon Hayward have similar smile scores—48.7 and 48.1 out of 100, respectively.

Basketball players Darren Collision (left) and Gordon Hayward (right). basketball-reference.com

However, Face++ rates Hayward’s expression as 59.7 percent happy and 0.13 percent angry and Collison’s expression as 39.2 percent happy and 27 percent angry. Collison is viewed as nearly as angry as he is happy and far angrier than Hayward—despite the facial recognition program itself recognizing that both players are smiling.

In contrast, Microsoft’s Face API viewed both men as happy. Still, Collison is viewed as less happy than Hayward, with 98 and 93 percent happiness scores, respectively. Despite his smile, Collison is even scored with a small amount of contempt, whereas Hayward has none.

Across all the NBA pictures, the same pattern emerges. On average, Face++ rates black faces as twice as angry as white faces. Face API scores black faces as three times more contemptuous than white faces. After matching players based on their smiles, both facial analysis programs are still more likely to assign the negative emotions of anger or contempt to black faces.

Stereotyped by AI
My study shows that facial recognition programs exhibit two distinct types of bias.

First, black faces were consistently scored as angrier than white faces for every smile. Face++ showed this type of bias. Second, black faces were always scored as angrier if there was any ambiguity about their facial expression. Face API displayed this type of disparity. Even if black faces are partially smiling, my analysis showed that the systems assumed more negative emotions as compared to their white counterparts with similar expressions. The average emotional scores were much closer across races, but there were still noticeable differences for black and white faces.

This observation aligns with other research, which suggests that black professionals must amplify positive emotions to receive parity in their workplace performance evaluations. Studies show that people perceive black men as more physically threatening than white men, even when they are the same size.

Some researchers argue that facial recognition technology is more objective than humans. But my study suggests that facial recognition reflects the same biases that people have. Black men’s facial expressions are scored with emotions associated with threatening behaviors more often than white men, even when they are smiling. There is good reason to believe that the use of facial recognition could formalize preexisting stereotypes into algorithms, automatically embedding them into everyday life.

Until facial recognition assesses black and white faces similarly, black people may need to exaggerate their positive facial expressions—essentially smile more—to reduce ambiguity and potentially negative interpretations by the technology.

Although innovative, artificial intelligence can perpetrate and exacerbate existing power dynamics, leading to disparate impact across racial/ethnic groups. Some societal accountability is necessary to ensure fairness to all groups because facial recognition, like most artificial intelligence, is often invisible to the people most affected by its decisions.

Lauren Rhue, Assistant Professor of Information Systems and Analytics, Wake Forest University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Alex_Po / Shutterstock.com Continue reading

Posted in Human Robots