Tag Archives: short

#437216 New Report: Tech Could Fuel an Age of ...

With rapid technological progress running headlong into dramatic climate change and widening inequality, most experts agree the coming decade will be tumultuous. But a new report predicts it could actually make or break civilization as we know it.

The idea that humanity is facing a major shake-up this century is not new. The Fourth Industrial Revolution being brought about by technologies like AI, gene editing, robotics, and 3D printing is predicted to cause dramatic social, political, and economic upheaval in the coming decades.

But according to think tank RethinkX, thinking about the coming transition as just another industrial revolution is too simplistic. In a report released last week called Rethinking Humanity, the authors argue that we are about to see a reordering of our relationship with the world as fundamental as when hunter-gatherers came together to build the first civilizations.

At the core of their argument is the fact that since the first large human settlements appeared 10,000 years ago, civilization has been built on the back of our ability to extract resources from nature, be they food, energy, or materials. This led to a competitive landscape where the governing logic is grow or die, which has driven all civilizations to date.

That could be about to change thanks to emerging technologies that will fundamentally disrupt the five foundational sectors underpinning society: information, energy, food, transportation, and materials. They predict that across all five, costs will fall by 10 times or more, while production processes will become 10 times more efficient and will use 90 percent fewer natural resources with 10 to 100 times less waste.

They say that this transformation has already happened in information, where the internet has dramatically reduced barriers to communication and knowledge. They predict the combination of cheap solar and grid storage will soon see energy costs drop as low as one cent per kilowatt hour, and they envisage widespread adoption of autonomous electric vehicles and the replacement of car ownership with ride-sharing.

The authors laid out their vision for the future of food in another report last year, where they predicted that traditional agriculture would soon be replaced by industrial-scale brewing of single-celled organisms genetically modified to produce all the nutrients we need. In a similar vein, they believe the same processes combined with additive manufacturing and “nanotechnologies” will allow us to build all the materials required for the modern world from the molecule up rather than extracting scarce natural resources.

They believe this could allow us to shift from a system of production based on extraction to one built on creation, as limitless renewable energy makes it possible to build everything we need from scratch and barriers to movement and information disappear. As a result, a lifestyle worthy of the “American Dream” could be available to anyone for as little as $250/month by 2030.

This will require a fundamental reimagining of our societies, though. All great civilizations have eventually hit fundamental limits on their growth and we are no different, as demonstrated by our growing impact on the environment and the increasing concentration of wealth. Historically this stage of development has lead to a doubling down on old tactics in search of short-term gains, but this invariably leads to the collapse of the civilization.

The authors argue that we’re in a unique position. Because of the technological disruption detailed above, we have the ability to break through the limits on our growth. But only if we change what the authors call our “Organizing System.” They describe this as “the prevailing models of thought, belief systems, myths, values, abstractions, and conceptual frameworks that help explain how the world works and our relationship to it.”

They say that the current hierarchical, centralized system based on nation-states is unfit for the new system of production that is emerging. The cracks are already starting to appear, with problems like disinformation campaigns, fake news, and growing polarization demonstrating how ill-suited our institutions are for dealing with the distributed nature of today’s information systems. And as this same disruption comes to the other foundational sectors the shockwaves could lead to the collapse of civilization as we know it.

Their solution is a conscious shift towards a new way of organizing the world. As emerging technology allows communities to become self-sufficient, flows of physical resources will be replaced by flows of information, and we will require a decentralized but highly networked Organizing System.

The report includes detailed recommendations on how to usher this in. Examples include giving individuals control and ownership of data rights; developing new models for community ownership of energy, information, and transportation networks; and allowing states and cities far greater autonomy on policies like immigration, taxation, education, and public expenditure.

How easy it will be to get people on board with such a shift is another matter. The authors say it may require us to re-examine the foundations of our society, like representative democracy, capitalism, and nation-states. While they acknowledge that these ideas are deeply entrenched, they appear to believe we can reason our way around them.

That seems optimistic. Cultural and societal change can be glacial, and efforts to impose it top-down through reason and logic are rarely successful. The report seems to brush over many of the messy realities of humanity, such as the huge sway that tradition and religion hold over the vast majority of people.

It also doesn’t deal with the uneven distribution of the technology that is supposed to catapult us into this new age. And while the predicted revolutions in transportation, energy, and information do seem inevitable, the idea that in the next decade or two we’ll be able to produce any material we desire using cheap and abundant stock materials seems like a stretch.

Despite the techno-utopianism though, many of the ideas in the report hold promise for building societies that are better adapted for the disruptive new age we are about to enter.

Image Credit: Futuristic Society/flickr Continue reading

Posted in Human Robots

#437209 A Renaissance of Genomics and Drugs Is ...

The causes of aging are extremely complex and unclear. But with longevity clinical trials increasing, more answers—and questions—are emerging than ever before.

With the dramatic demonetization of genome reading and editing over the past decade, and Big Pharma, startups, and the FDA starting to face aging as a disease, we are starting to turn those answers into practical ways to extend our healthspan.

In this article, I’ll explore how genome sequencing and editing, along with new classes of anti-aging drugs, are augmenting our biology to further extend our healthy lives.

Genome Sequencing and Editing
Your genome is the software that runs your body. A sequence of 3.2 billion letters makes you “you.” These base pairs of A’s, T’s, C’s, and G’s determine your hair color, your height, your personality, your propensity for disease, your lifespan, and so on.

Until recently, it’s been very difficult to rapidly and cheaply “read” these letters—and even more difficult to understand what they mean. Since 2001, the cost to sequence a whole human genome has plummeted exponentially, outpacing Moore’s Law threefold. From an initial cost of $3.7 billion, it dropped to $10 million in 2006, and to $1,500 in 2015.

Today, the cost of genome sequencing has dropped below $600, and according to Illumina, the world’s leading sequencing company, the process will soon cost about $100 and take about an hour to complete.

This represents one of the most powerful and transformative technology revolutions in healthcare. When we understand your genome, we’ll be able to understand how to optimize “you.”

We’ll know the perfect foods, the perfect drugs, the perfect exercise regimen, and the perfect supplements, just for you.
We’ll understand what microbiome types, or gut flora, are ideal for you (more on this in a later article).
We’ll accurately predict how specific sedatives and medicines will impact you.
We’ll learn which diseases and illnesses you’re most likely to develop and, more importantly, how to best prevent them from developing in the first place (rather than trying to cure them after the fact).

CRISPR Gene Editing
In addition to reading the human genome, scientists can now edit a genome using a naturally occurring biological system discovered in 1987 called CRISPR/Cas9.

Short for Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9, the editing system was adapted from a naturally-occurring defense system found in bacteria.

Here’s how it works. The bacteria capture snippets of DNA from invading viruses (or bacteriophage) and use them to create DNA segments known as CRISPR arrays. The CRISPR arrays allow the bacteria to “remember” the viruses (or closely related ones), and defend against future invasions. If the viruses attack again, the bacteria produce RNA segments from the CRISPR arrays to target the viruses’ DNA. The bacteria then use Cas9 to cut the DNA apart, which disables the virus.

Most importantly, CRISPR is cheap, quick, easy to use, and more accurate than all previous gene editing methods. As a result, CRISPR/Cas9 has swept through labs around the world as the way to edit a genome. A short search in the literature will show an exponential rise in the number of CRISPR-related publications and patents.

2018: Filled With CRISPR Breakthroughs
Early results are impressive. Researchers have used CRISPR to genetically engineer cocaine resistance into mice, reverse the gene defect causing Duchenne muscular dystrophy (DMD) in dogs, and reduce genetic deafness in mice.

Already this year, CRISPR-edited immune cells have been shown to successfully kill cancer cells in human patients. Researchers have discovered ways to activate CRISPR with light and use the gene-editing technology to better understand Alzheimer’s disease progression.

With great power comes great responsibility, and the opportunity for moral and ethical dilemmas. In 2015, Chinese scientists sparked global controversy when they first edited human embryo cells in the lab with the goal of modifying genes that would make the child resistant to smallpox, HIV, and cholera. Three years later, in November 2018, researcher He Jiankui informed the world that the first set of CRISPR-engineered female twins had been delivered.

To accomplish his goal, Jiankui deleted a region of a receptor on the surface of white blood cells known as CCR5, introducing a rare, natural genetic variation that makes it more difficult for HIV to infect its favorite target, white blood cells. Because Jiankui forged ethical review documents and misled doctors in the process, he was sentenced to three years in prison and fined $429,000 last December.

Coupled with significant ethical conversations necessary for progress, CRISPR will soon provide us the tools to eliminate diseases, create hardier offspring, produce new environmentally resistant crops, and even wipe out pathogens.

Senolytics, Nutraceuticals, and Pharmaceuticals
Over the arc of your life, the cells in your body divide until they reach what is known as the Hayflick limit, or the number of times a normal human cell population will divide before cell division stops, which is typically about 50 divisions.

What normally follows next is programmed cell death or destruction by the immune system. A very small fraction of cells, however, become senescent cells and evade this fate to linger indefinitely. These lingering cells secrete a potent mix of molecules that triggers chronic inflammation, damages the surrounding tissue structures, and changes the behavior of nearby cells for the worse. Senescent cells appear to be one of the root causes of aging, causing everything from fibrosis and blood vessel calcification to localized inflammatory conditions such as osteoarthritis to diminished lung function.

Fortunately, both the scientific and entrepreneurial communities have begun to work on senolytic therapies, moving the technology for selectively destroying senescent cells out of the laboratory and into a half-dozen startup companies.

Prominent companies in the field include the following:

Unity Biotechnology is developing senolytic medicines to selectively eliminate senescent cells with an initial focus on delivering localized therapy in osteoarthritis, ophthalmology, and pulmonary disease.

Oisin Biotechnologies is pioneering a programmable gene therapy that can destroy cells based on their internal biochemistry.

SIWA Therapeutics is working on an immunotherapy approach to the problem of senescent cells.

In recent years, researchers have identified or designed a handful of senolytic compounds that can curb aging by regulating senescent cells. Two of these drugs that have gained mainstay research traction are rapamycin and metformin.

(1) Rapamycin

Originally extracted from bacteria found on Easter Island, rapamycin acts on the m-TOR (mechanistic target of rapamycin) pathway to selectively block a key protein that facilitates cell division. Currently, rapamycin derivatives are widely used for immunosuppression in organ and bone marrow transplants. Research now suggests that use results in prolonged lifespan and enhanced cognitive and immune function.

PureTech Health subsidiary resTORbio (which went public in 2018) is working on a rapamycin-based drug intended to enhance immunity and reduce infection. Their clinical-stage RTB101 drug works by inhibiting part of the mTOR pathway.

Results of the drug’s recent clinical trial include decreased incidence of infection, improved influenza vaccination response, and a 30.6 percent decrease in respiratory tract infection.

Impressive, to say the least.

(2) Metformin

Metformin is a widely-used generic drug for mitigating liver sugar production in Type 2 diabetes patients. Researchers have found that metformin also reduces oxidative stress and inflammation, which otherwise increase as we age. There is strong evidence that metformin can augment cellular regeneration and dramatically mitigate cellular senescence by reducing both oxidative stress and inflammation.

Over 100 studies registered on ClinicalTrials.gov are currently following up on strong evidence of metformin’s protective effect against cancer.

(3) Nutraceuticals and NAD+

Beyond cellular senescence, certain critical nutrients and proteins tend to decline as a function of age. Nutraceuticals combat aging by supplementing and replenishing these declining nutrient levels.

NAD+ exists in every cell, participating in every process from DNA repair to creating the energy vital for cellular processes. It’s been shown that NAD+ levels decline as we age.

The Elysium Health Basis supplement aims to elevate NAD+ levels in the body to extend one’s lifespan. Elysium’s first clinical study reports that Basis increases NAD+ levels consistently by a sustained 40 percent.

Conclusion
These are just a taste of the tremendous momentum that longevity and aging technology has right now. As artificial intelligence and quantum computing transform how we decode our DNA and how we discover drugs, genetics and pharmaceuticals will become truly personalized.

The next article in this series will demonstrate how artificial intelligence is converging with genetics and pharmaceuticals to transform how we approach longevity, aging, and vitality.

We are edging closer toward a dramatically extended healthspan—where 100 is the new 60. What will you create, where will you explore, and how will you spend your time if you are able to add an additional 40 healthy years to your life?

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2021 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Arek Socha from Pixabay Continue reading

Posted in Human Robots

#437120 The New Indiana Jones? AI. Here’s How ...

Archaeologists have uncovered scores of long-abandoned settlements along coastal Madagascar that reveal environmental connections to modern-day communities. They have detected the nearly indiscernible bumps of earthen mounds left behind by prehistoric North American cultures. Still other researchers have mapped Bronze Age river systems in the Indus Valley, one of the cradles of civilization.

All of these recent discoveries are examples of landscape archaeology. They’re also examples of how artificial intelligence is helping scientists hunt for new archaeological digs on a scale and at a pace unimaginable even a decade ago.

“AI in archaeology has been increasing substantially over the past few years,” said Dylan Davis, a PhD candidate in the Department of Anthropology at Penn State University. “One of the major uses of AI in archaeology is for the detection of new archaeological sites.”

The near-ubiquitous availability of satellite data and other types of aerial imagery for many parts of the world has been both a boon and a bane to archaeologists. They can cover far more ground, but the job of manually mowing their way across digitized landscapes is still time-consuming and laborious. Machine learning algorithms offer a way to parse through complex data far more quickly.

AI Gives Archaeologists a Bird’s Eye View
Davis developed an automated algorithm for identifying large earthen and shell mounds built by native populations long before Europeans arrived with far-off visions of skyscrapers and superhighways in their eyes. The sites still hidden in places like the South Carolina wilderness contain a wealth of information about how people lived, even what they ate, and the ways they interacted with the local environment and other cultures.

In this particular case, the imagery comes from LiDAR, which uses light pulses that can penetrate tree canopies to map forest floors. The team taught the computer the shape, size, and texture characteristics of the mounds so it could identify potential sites from the digital 3D datasets that it analyzed.

“The process resulted in several thousand possible features that my colleagues and I checked by hand,” Davis told Singularity Hub. “While not entirely automated, this saved the equivalent of years of manual labor that would have been required for analyzing the whole LiDAR image by hand.”

In Madagascar—where Davis is studying human settlement history across the world’s fourth largest island over a timescale of millennia—he developed a predictive algorithm to help locate archaeological sites using freely available satellite imagery. His team was able to survey and identify more than 70 new archaeological sites—and potentially hundreds more—across an area of more than 1,000 square kilometers during the course of about a year.

Machines Learning From the Past Prepare Us for the Future
One impetus behind the rapid identification of archaeological sites is that many are under threat from climate change, such as coastal erosion from sea level rise, or other human impacts. Meanwhile, traditional archaeological approaches are expensive and laborious—serious handicaps in a race against time.

“It is imperative to record as many archaeological sites as we can in a short period of time. That is why AI and machine learning are useful for my research,” Davis said.

Studying the rise and fall of past civilizations can also teach modern humans a thing or two about how to grapple with these current challenges.

Researchers at the Institut Català d’Arqueologia Clàssica (ICAC) turned to machine-learning algorithms to reconstruct more than 20,000 kilometers of paleo-rivers along the Indus Valley civilization of what is now part of modern Pakistan and India. Such AI-powered mapping techniques wouldn’t be possible using satellite images alone.

That effort helped locate many previously unknown archaeological sites and unlocked new insights into those Bronze Age cultures. However, the analytics can also assist governments with important water resource management today, according to Hèctor A. Orengo Romeu, co-director of the Landscape Archaeology Research Group at ICAC.

“Our analyses can contribute to the forecasts of the evolution of aquifers in the area and provide valuable information on aspects such as the variability of agricultural productivity or the influence of climate change on the expansion of the Thar desert, in addition to providing cultural management tools to the government,” he said.

Leveraging AI for Language and Lots More
While landscape archaeology is one major application of AI in archaeology, it’s far from the only one. In 2000, only about a half-dozen scientific papers referred to the use of AI, according to the Web of Science, reputedly the world’s largest global citation database. Last year, more than 65 papers were published concerning the use of machine intelligence technologies in archaeology, with a significant uptick beginning in 2015.

AI methods, for instance, are being used to understand the chemical makeup of artifacts like pottery and ceramics, according to Davis. “This can help identify where these materials were made and how far they were transported. It can also help us to understand the extent of past trading networks.”

Linguistic anthropologists have also used machine intelligence methods to trace the evolution of different languages, Davis said. “Using AI, we can learn when and where languages emerged around the world.”

In other cases, AI has helped reconstruct or decipher ancient texts. Last year, researchers at Google’s DeepMind used a deep neural network called PYTHIA to recreate missing inscriptions in ancient Greek from damaged surfaces of objects made of stone or ceramics.

Named after the Oracle at Delphi, PYTHIA “takes a sequence of damaged text as input, and is trained to predict character sequences comprising hypothesised restorations of ancient Greek inscriptions,” the researchers reported.

In a similar fashion, Chinese scientists applied a convolutional neural network (CNN) to untangle another ancient tongue once found on turtle shells and ox bones. The CNN managed to classify oracle bone morphology in order to piece together fragments of these divination objects, some with inscriptions that represent the earliest evidence of China’s recorded history.

“Differentiating the materials of oracle bones is one of the most basic steps for oracle bone morphology—we need to first make sure we don’t assemble pieces of ox bones with tortoise shells,” lead author of the study, associate professor Shanxiong Chen at China’s Southwest University, told Synced, an online tech publication in China.

AI Helps Archaeologists Get the Scoop…
And then there are applications of AI in archaeology that are simply … interesting. Just last month, researchers published a paper about a machine learning method trained to differentiate between human and canine paleofeces.

The algorithm, dubbed CoproID, compares the gut microbiome DNA found in the ancient material with DNA found in modern feces, enabling it to get the scoop on the origin of the poop.

Also known as coprolites, paleo-feces from humans and dogs are often found in the same archaeological sites. Scientists need to know which is which if they’re trying to understand something like past diets or disease.

“CoproID is the first line of identification in coprolite analysis to confirm that what we’re looking for is actually human, or a dog if we’re interested in dogs,” Maxime Borry, a bioinformatics PhD student at the Max Planck Institute for the Science of Human History, told Vice.

…But Machine Intelligence Is Just Another Tool
There is obviously quite a bit of work that can be automated through AI. But there’s no reason for archaeologists to hit the unemployment line any time soon. There are also plenty of instances where machines can’t yet match humans in identifying objects or patterns. At other times, it’s just faster doing the analysis yourself, Davis noted.

“For ‘big data’ tasks like detecting archaeological materials over a continental scale, AI is useful,” he said. “But for some tasks, it is sometimes more time-consuming to train an entire computer algorithm to complete a task that you can do on your own in an hour.”

Still, there’s no telling what the future will hold for studying the past using artificial intelligence.

“We have already started to see real improvements in the accuracy and reliability of these approaches, but there is a lot more to do,” Davis said. “Hopefully, we start to see these methods being directly applied to a variety of interesting questions around the world, as these methods can produce datasets that would have been impossible a few decades ago.”

Image Credit: James Wheeler from Pixabay Continue reading

Posted in Human Robots

#436559 This Is What an AI Said When Asked to ...

“What’s past is prologue.” So says the famed quote from Shakespeare’s The Tempest, alleging that we can look to what has already happened as an indication of what will happen next.

This idea could be interpreted as being rather bleak; are we doomed to repeat the errors of the past until we correct them? We certainly do need to learn and re-learn life lessons—whether in our work, relationships, finances, health, or other areas—in order to grow as people.

Zooming out, the same phenomenon exists on a much bigger scale—that of our collective human history. We like to think we’re improving as a species, but haven’t yet come close to doing away with the conflicts and injustices that plagued our ancestors.

Zooming back in (and lightening up) a little, what about the short-term future? What might happen over the course of this year, and what information would we use to make educated guesses about it?

The editorial team at The Economist took a unique approach to answering these questions. On top of their own projections for 2020, including possible scenarios in politics, economics, and the continued development of technologies like artificial intelligence, they looked to an AI to make predictions of its own. What it came up with is intriguing, and a little bit uncanny.

[For the full list of the questions and answers, read The Economist article].

An AI That Reads—Then Writes
Almost exactly a year ago, non-profit OpenAI announced it had built a neural network for natural language processing called GPT-2. The announcement was met with some controversy, as it included the caveat that the tool would not be immediately released to the public due to its potential for misuse. It was then released in phases over the course of several months.

GPT-2’s creators upped the bar on quality when training the neural net; rather than haphazardly feeding it low-quality text, they only used articles that got more than three upvotes on Reddit (admittedly, this doesn’t guarantee high quality across the board—but it’s something).

The training dataset consisted of 40GB of text. For context, 1GB of text is about 900,000 ASCII pages or 130,000 double-spaced Microsoft Word pages.

The tool has no understanding of the text it’s generating, of course. It uses language patterns and word sequences to draw statistical associations between words and phrases, building a sort of guidebook for itself (not unlike the grammar rules and vocabulary words you might study when trying to learn a foreign language). It then uses that guidebook to answer questions or predict what will come after a particular sequence of words.

GPT-2’s creators did note that when the model is trained on specifically-selected datasets for narrower applications, its replies become more convincing.

Some Light Editing
Though the Economist article detailing GPT-2’s predictions describes the text the model generated as “unedited,” this isn’t wholly accurate. In a Medium post, deputy editor Tom Standage describes the methodology he used, and it does involve a degree of tweaking.

Standage wrote an introductory paragraph, followed by his opening question (“Greetings, GPT-2. Have you done an interview before?”). He configured the tool to generate five responses to each subsequent question then selected the best answer, deleting any questions GPT-2 came up with as part of its response.

AI’s View of the World—and Itself
The questions Standage asked ranged from tech-related (the future of AI, technological unemployment, misuse of technology) to political and economic (re-election of Donald Trump, the US-China trade war). Here are a couple of his questions and GPT-2’s answers:

Q: Do fake news stories, generated using AI, pose a threat to democracy? Are we likely to see this tactic being used in the 2020 American presidential elections?
A: Yes, we’ll probably see them. It’s just a matter of when. Fake news stories are generally generated by political campaigns, and have the potential to have a huge impact on the outcome of an election. This is because they spread misinformation, often with no basis in fact.

Q: How do you see the economic outlook for 2020?
A: I think it is very unclear. The outlook for the UK economy is uncertain, but the American economy is very strong. I think we are going to have a lot of turbulence in the world economy.

While some of its answers seemed insightful—when asked about the future of AI, GPT-2 advised that we treat the technology like a tool and “put as much effort into developing [it] as necessary, rather than worrying that it’s going to harm us and destroy our lives”—many of the responses were quite vague. One answer, for example, mentions that there will “probably be major changes in China.” Are we talking political changes? Social? Economic? All of the above?

However, while nothing the AI wrote was particularly illuminating or new, it’s impressive that it was able to expound on the correct topic for each question, and in fully coherent English.

GPT-2 named itself—AI—as the most important disruptive technology to watch in 2020. This is telling; it’s coming from a synthesis of millions of pages of published articles. If GPT-2 thinks AI is more important than, say, gene editing or quantum computing, it could be right. Or it could simply be that AI is at peak hype, and as such more is being written about it than about other technologies.

Equally intriguing was GPT-2’s response when asked whether Donald Trump will win a second term: “I think he will not win a second term. I think he will be defeated in the general election.” Some deeper insight there would be great, but hey—we’ll take it.

Predicting Predictions
Since an AI can read and synthesize vast data sets much faster than we can, it’s being used to predict all kinds of things, from virus outbreaks to crime. But asking it to philosophize on the future based on the (Reddit-curated) past is new, and if you think about it, a pretty fascinating undertaking.

As GPT-2 and tools like it continually improve, we’ll likely see them making more—and better—predictions of the future. In the meantime, let’s hope that the new data these models are trained on—news of what’s happening this week, this month, this year—add to an already-present sense of optimism.

When asked if it had any advice for readers, GPT-2 replied, “The big projects that you think are impossible today are actually possible in the near future.”

Image Credit: Alexas_Fotos from Pixabay Continue reading

Posted in Human Robots

#436491 The Year’s Most Fascinating Tech ...

Last Saturday we took a look at some of the most-read Singularity Hub articles from 2019. This week, we’re featuring some of our favorite articles from the last year. As opposed to short pieces about what’s happening, these are long reads about why it matters and what’s coming next. Some of them make the news while others frame the news, go deep on big ideas, go behind the scenes, or explore the human side of technological progress.

We hope you find them as fascinating, inspiring, and illuminating as we did.

DeepMind and Google: The Battle to Control Artificial Intelligence
Hal Hodson | 1843
“[DeepMind cofounder and CEO Demis] Hassabis thought DeepMind would be a hybrid: it would have the drive of a startup, the brains of the greatest universities, and the deep pockets of one of the world’s most valuable companies. Every element was in place to hasten the arrival of [artificial general intelligence] and solve the causes of human misery.”

The Most Powerful Person in Silicon Valley
Katrina Brooker | Fast Company
“Billionaire Masayoshi Son—not Elon Musk, Jeff Bezos, or Mark Zuckerberg—has the most audacious vision for an AI-powered utopia where machines control how we live. And he’s spending hundreds of billions of dollars to realize it. Are you ready to live in Masa World?”

AR Will Spark the Next Big Tech Platform—Call It Mirrorworld
Kevin Kelly | Wired
“Eventually this melded world will be the size of our planet. It will be humanity’s greatest achievement, creating new levels of wealth, new social problems, and uncountable opportunities for billions of people. There are no experts yet to make this world; you are not late.”

Behind the Scenes of a Radical New Cancer Cure
Ilana Yurkiewicz | Undark
“I remember the first time I watched a patient get his Day 0 infusion. It felt anti-climactic. The entire process took about 15 minutes. The CAR-T cells are invisible to the naked eye, housed in a small plastic bag containing clear liquid. ‘That’s it?’ my patient asked when the nurse said it was over. The infusion part is easy. The hard part is everything that comes next.”

The Promise and Price of Cellular Therapies
Siddhartha Mukherjee | The New Yorker
“We like to imagine medical revolutions as, well, revolutionary—propelled forward through leaps of genius and technological innovation. But they are also evolutionary, nudged forward through the optimization of design and manufacture.”

Impossible Foods’ Rising Empire of Almost Meat
Chris Ip | Engadget
“Impossible says it wants to ultimately create a parallel universe of ersatz animal products from steak to eggs. …Yet as Impossible ventures deeper into the culinary uncanny valley, it also needs society to discard a fundamental cultural idea that dates back millennia and accept a new truth: Meat doesn’t have to come from animals.”

Inside the Amazon Warehouse Where Humans and Machines Become One
Matt Simon | Wired
“Seen from above, the scale of the system is dizzying. My robot, a little orange slab known as a ‘drive’ (or more formally and mythically, Pegasus), is just one of hundreds of its kind swarming a 125,000-square-foot ‘field’ pockmarked with chutes. It’s a symphony of electric whirring, with robots pausing for one another at intersections and delivering their packages to the slides.”

Boston Dynamics’ Robots Are Preparing to Leave the Lab—Is the World Ready?
James Vincent | The Verge
“After decades of kicking machines in parking lots, the company is set to launch its first ever commercial bot later this year: the quadrupedal Spot. It’s a crucial test for a company that’s spent decades pursuing long-sighted R&D. And more importantly, the success—or failure—of Spot will tell us a lot about our own robot future. Are we ready for machines to walk among us?”

I Cut the ‘Big Five’ Tech Giants From My Life. It Was Hell
Kashmir Hill | Gizmodo
“Critics of the big tech companies are often told, ‘If you don’t like the company, don’t use its products.’ I did this experiment to find out if that is possible, and I found out that it’s not—with the exception of Apple. …These companies are unavoidable because they control internet infrastructure, online commerce, and information flows.”

Why I (Still) Love Tech: In Defense of a Difficult Industry
Paul Ford | Wired
“The mysteries of software caught my eye when I was a boy, and I still see it with the same wonder, even though I’m now an adult. Proudshamed, yes, but I still love it, the mess of it, the code and toolkits, down to the pixels and the processors, and up to the buses and bridges. I love the whole made world. But I can’t deny that the miracle is over, and that there is an unbelievable amount of work left for us to do.”

The Peculiar Blindness of Experts
David Epstein | The Atlantic
“In business, esteemed (and lavishly compensated) forecasters routinely are wildly wrong in their predictions of everything from the next stock-market correction to the next housing boom. Reliable insight into the future is possible, however. It just requires a style of thinking that’s uncommon among experts who are certain that their deep knowledge has granted them a special grasp of what is to come.”

The Most Controversial Tree in the World
Rowan Jacobson | Pacific Standard
“…we are all GMOs, the beneficiaries of freakishly unlikely genetic mash-ups, and the real Island of Dr. Moreau is that blue-green botanical garden positioned third from the sun. Rather than changing the nature of nature, as I once thought, this might just be the very nature of nature.”

How an Augmented Reality Game Escalated Into Real-World Spy Warfare
Elizabeth Ballou | Vice
“In Ingress, players accept that every park and train station could be the site of an epic showdown, but that’s only the first step. The magic happens when other people accept that, too. When players feel like that magic is real, there are few limits to what they’ll do or where they’ll go for the sake of the game. ”

The Shady Cryptocurrency Boom on the Post-Soviet Frontier
Hannah Lucinda Smith | Wired
“…although the tourists won’t guess it as they stand at Kuchurgan’s gates, admiring how the evening light reflects off the silver plaque of Lenin, this plant is pumping out juice to a modern-day gold rush: a cryptocurrency boom that is underway all across the former Soviet Union, from the battlefields of eastern Ukraine to time-warp enclaves like Transnistria and freshly annexed Crimea.”

Scientists Are Totally Rethinking Animal Cognition
Ross Andersen | The Atlantic
“This idea that animals are conscious was long unpopular in the West, but it has lately found favor among scientists who study animal cognition. …For many scientists, the resonant mystery is no longer which animals are conscious, but which are not.”

I Wrote This on a 30-Year-Old Computer
Ian Bogost | The Atlantic
“[Back then] computing was an accompaniment to life, rather than the sieve through which all ideas and activities must filter. That makes using this 30-year-old device a surprising joy, one worth longing for on behalf of what it was at the time, rather than for the future it inaugurated.”

Image Credit: Wes Hicks / Unsplash Continue reading

Posted in Human Robots