Tag Archives: see

#430814 The Age of Cyborgs Has Arrived

How many cyborgs did you see during your morning commute today? I would guess at least five. Did they make you nervous? Probably not; you likely didn’t even realize they were there.
In a presentation titled “Biohacking and the Connected Body” at Singularity University Global Summit, Hannes Sjoblad informed the audience that we’re already living in the age of cyborgs. Sjoblad is co-founder of the Sweden-based biohacker network Bionyfiken, a chartered non-profit that unites DIY-biologists, hackers, makers, body modification artists and health and performance devotees to explore human-machine integration.
Sjoblad said the cyborgs we see today don’t look like Hollywood prototypes; they’re regular people who have integrated technology into their bodies to improve or monitor some aspect of their health. Sjoblad defined biohacking as applying hacker ethic to biological systems. Some biohackers experiment with their biology with the goal of taking the human body’s experience beyond what nature intended.
Smart insulin monitoring systems, pacemakers, bionic eyes, and Cochlear implants are all examples of biohacking, according to Sjoblad. He told the audience, “We live in a time where, thanks to technology, we can make the deaf hear, the blind see, and the lame walk.” He is convinced that while biohacking could conceivably end up having Brave New World-like dystopian consequences, it can also be leveraged to improve and enhance our quality of life in multiple ways.
The field where biohacking can make the most positive impact is health. In addition to pacemakers and insulin monitors, several new technologies are being developed with the goal of improving our health and simplifying access to information about our bodies.
Ingestibles are a type of smart pill that use wireless technology to monitor internal reactions to medications, helping doctors determine optimum dosage levels and tailor treatments to different people. Your body doesn’t absorb or process medication exactly as your neighbor’s does, so shouldn’t you each have a treatment that works best with your unique system? Colonoscopies and endoscopies could one day be replaced by miniature pill-shaped video cameras that would collect and transmit images as they travel through the digestive tract.
Singularity University Global Summit is the culmination of the Exponential Conference Series and the definitive place to witness converging exponential technologies and understand how they’ll impact the world.
Security is another area where biohacking could be beneficial. One example Sjoblad gave was personalization of weapons: an invader in your house couldn’t fire your gun because it will have been matched to your fingerprint or synced with your body so that it only responds to you.
Biohacking can also simplify everyday tasks. In an impressive example of walking the walk rather than just talking the talk, Sjoblad had an NFC chip implanted in his hand. The chip contains data from everything he used to have to carry around in his pockets: credit and bank card information, key cards to enter his office building and gym, business cards, and frequent shopper loyalty cards. When he’s in line for a morning coffee or rushing to get to the office on time, he doesn’t have to root around in his pockets or bag to find the right card or key; he just waves his hand in front of a sensor and he’s good to go.
Evolved from radio frequency identification (RFID)—an old and widely distributed technology—NFC chips are activated by another chip, and small amounts of data can be transferred back and forth. No wireless connection is necessary. Sjoblad sees his NFC implant as a personal key to the Internet of Things, a simple way for him to talk to the smart, connected devices around him.
Sjoblad isn’t the only person who feels a need for connection.

When British science writer Frank Swain realized he was going to go deaf, he decided to hack his hearing to be able to hear Wi-Fi. Swain developed software that tunes into wireless communication fields and uses an inbuilt Wi-Fi sensor to pick up router name, encryption modes and distance from the device. This data is translated into an audio stream where distant signals click or pop, and strong signals sound their network ID in a looped melody. Swain hears it all through an upgraded hearing aid.
Global datastreams can also become sensory experiences. Spanish artist Moon Ribas developed and implanted a chip in her elbow that is connected to the global monitoring system for seismographic sensors; each time there’s an earthquake, she feels it through vibrations in her arm.
You can feel connected to our planet, too: North Sense makes a “standalone artificial sensory organ” that connects to your body and vibrates whenever you’re facing north. It’s a built-in compass; you’ll never get lost again.
Biohacking applications are likely to proliferate in the coming years, some of them more useful than others. But there are serious ethical questions that can’t be ignored during development and use of this technology. To what extent is it wise to tamper with nature, and who gets to decide?
Most of us are probably ok with waiting in line an extra 10 minutes or occasionally having to pull up a maps app on our phone if it means we don’t need to implant computer chips into our forearms. If it’s frightening to think of criminals stealing our wallets, imagine them cutting a chunk of our skin out to have instant access to and control over our personal data. The physical invasiveness and potential for something to go wrong seems to far outweigh the benefits the average person could derive from this technology.
But that may not always be the case. It’s worth noting the miniaturization of technology continues at a quick rate, and the smaller things get, the less invasive (and hopefully more useful) they’ll be. Even today, there are people already sensibly benefiting from biohacking. If you look closely enough, you’ll spot at least a couple cyborgs on your commute tomorrow morning.
Image Credit:Movement Control Laboratory/University of Washington – Deep Dream Generator Continue reading

Posted in Human Robots

#430761 How Robots Are Getting Better at Making ...

The multiverse of science fiction is populated by robots that are indistinguishable from humans. They are usually smarter, faster, and stronger than us. They seem capable of doing any job imaginable, from piloting a starship and battling alien invaders to taking out the trash and cooking a gourmet meal.
The reality, of course, is far from fantasy. Aside from industrial settings, robots have yet to meet The Jetsons. The robots the public are exposed to seem little more than over-sized plastic toys, pre-programmed to perform a set of tasks without the ability to interact meaningfully with their environment or their creators.
To paraphrase PayPal co-founder and tech entrepreneur Peter Thiel, we wanted cool robots, instead we got 140 characters and Flippy the burger bot. But scientists are making progress to empower robots with the ability to see and respond to their surroundings just like humans.
Some of the latest developments in that arena were presented this month at the annual Robotics: Science and Systems Conference in Cambridge, Massachusetts. The papers drilled down into topics that ranged from how to make robots more conversational and help them understand language ambiguities to helping them see and navigate through complex spaces.
Improved Vision
Ben Burchfiel, a graduate student at Duke University, and his thesis advisor George Konidaris, an assistant professor of computer science at Brown University, developed an algorithm to enable machines to see the world more like humans.
In the paper, Burchfiel and Konidaris demonstrate how they can teach robots to identify and possibly manipulate three-dimensional objects even when they might be obscured or sitting in unfamiliar positions, such as a teapot that has been tipped over.
The researchers trained their algorithm by feeding it 3D scans of about 4,000 common household items such as beds, chairs, tables, and even toilets. They then tested its ability to identify about 900 new 3D objects just from a bird’s eye view. The algorithm made the right guess 75 percent of the time versus a success rate of about 50 percent for other computer vision techniques.
In an email interview with Singularity Hub, Burchfiel notes his research is not the first to train machines on 3D object classification. How their approach differs is that they confine the space in which the robot learns to classify the objects.
“Imagine the space of all possible objects,” Burchfiel explains. “That is to say, imagine you had tiny Legos, and I told you [that] you could stick them together any way you wanted, just build me an object. You have a huge number of objects you could make!”
The infinite possibilities could result in an object no human or machine might recognize.
To address that problem, the researchers had their algorithm find a more restricted space that would host the objects it wants to classify. “By working in this restricted space—mathematically we call it a subspace—we greatly simplify our task of classification. It is the finding of this space that sets us apart from previous approaches.”
Following Directions
Meanwhile, a pair of undergraduate students at Brown University figured out a way to teach robots to understand directions better, even at varying degrees of abstraction.
The research, led by Dilip Arumugam and Siddharth Karamcheti, addressed how to train a robot to understand nuances of natural language and then follow instructions correctly and efficiently.
“The problem is that commands can have different levels of abstraction, and that can cause a robot to plan its actions inefficiently or fail to complete the task at all,” says Arumugam in a press release.
In this project, the young researchers crowdsourced instructions for moving a virtual robot through an online domain. The space consisted of several rooms and a chair, which the robot was told to manipulate from one place to another. The volunteers gave various commands to the robot, ranging from general (“take the chair to the blue room”) to step-by-step instructions.
The researchers then used the database of spoken instructions to teach their system to understand the kinds of words used in different levels of language. The machine learned to not only follow instructions but to recognize the level of abstraction. That was key to kickstart its problem-solving abilities to tackle the job in the most appropriate way.
The research eventually moved from virtual pixels to a real place, using a Roomba-like robot that was able to respond to instructions within one second 90 percent of the time. Conversely, when unable to identify the specificity of the task, it took the robot 20 or more seconds to plan a task about 50 percent of the time.
One application of this new machine-learning technique referenced in the paper is a robot worker in a warehouse setting, but there are many fields that could benefit from a more versatile machine capable of moving seamlessly between small-scale operations and generalized tasks.
“Other areas that could possibly benefit from such a system include things from autonomous vehicles… to assistive robotics, all the way to medical robotics,” says Karamcheti, responding to a question by email from Singularity Hub.
More to Come
These achievements are yet another step toward creating robots that see, listen, and act more like humans. But don’t expect Disney to build a real-life Westworld next to Toon Town anytime soon.
“I think we’re a long way off from human-level communication,” Karamcheti says. “There are so many problems preventing our learning models from getting to that point, from seemingly simple questions like how to deal with words never seen before, to harder, more complicated questions like how to resolve the ambiguities inherent in language, including idiomatic or metaphorical speech.”
Even relatively verbose chatbots can run out of things to say, Karamcheti notes, as the conversation becomes more complex.
The same goes for human vision, according to Burchfiel.
While deep learning techniques have dramatically improved pattern matching—Google can find just about any picture of a cat—there’s more to human eyesight than, well, meets the eye.
“There are two big areas where I think perception has a long way to go: inductive bias and formal reasoning,” Burchfiel says.
The former is essentially all of the contextual knowledge people use to help them reason, he explains. Burchfiel uses the example of a puddle in the street. People are conditioned or biased to assume it’s a puddle of water rather than a patch of glass, for instance.
“This sort of bias is why we see faces in clouds; we have strong inductive bias helping us identify faces,” he says. “While it sounds simple at first, it powers much of what we do. Humans have a very intuitive understanding of what they expect to see, [and] it makes perception much easier.”
Formal reasoning is equally important. A machine can use deep learning, in Burchfiel’s example, to figure out the direction any river flows once it understands that water runs downhill. But it’s not yet capable of applying the sort of human reasoning that would allow us to transfer that knowledge to an alien setting, such as figuring out how water moves through a plumbing system on Mars.
“Much work was done in decades past on this sort of formal reasoning… but we have yet to figure out how to merge it with standard machine-learning methods to create a seamless system that is useful in the actual physical world.”
Robots still have a lot to learn about being human, which should make us feel good that we’re still by far the most complex machines on the planet.
Image Credit: Alex Knight via Unsplash Continue reading

Posted in Human Robots

#430743 Teaching Machines to Understand, and ...

We humans are swamped with text. It’s not just news and other timely information: Regular people are drowning in legal documents. The problem is so bad we mostly ignore it. Every time a person uses a store’s loyalty rewards card or connects to an online service, his or her activities are governed by the equivalent of hundreds of pages of legalese. Most people pay no attention to these massive documents, often labeled “terms of service,” “user agreement,” or “privacy policy.”
These are just part of a much wider societal problem of information overload. There is so much data stored—exabytes of it, as much stored as has ever been spoken by people in all of human history—that it’s humanly impossible to read and interpret everything. Often, we narrow down our pool of information by choosing particular topics or issues to pay attention to. But it’s important to actually know the meaning and contents of the legal documents that govern how our data is stored and who can see it.
As computer science researchers, we are working on ways artificial intelligence algorithms could digest these massive texts and extract their meaning, presenting it in terms regular people can understand.
Can computers understand text?
Computers store data as 0s and 1s—data that cannot be directly understood by humans. They interpret these data as instructions for displaying text, sound, images, or videos that are meaningful to people. But can computers actually understand the language, not only presenting the words but also their meaning?
One way to find out is to ask computers to summarize their knowledge in ways that people can understand and find useful. It would be best if AI systems could process text quickly enough to help people make decisions as they are needed—for example, when you’re signing up for a new online service and are asked to agree with the site’s privacy policy.
What if a computerized assistant could digest all that legal jargon in a few seconds and highlight key points? Perhaps a user could even tell the automated assistant to pay particular attention to certain issues, like when an email address is shared, or whether search engines can index personal posts. Companies could use this capability, too, to analyze contracts or other lengthy documents.
To do this sort of work, we need to combine a range of AI technologies, including machine learning algorithms that take in large amounts of data and independently identify connections among them; knowledge representation techniques to express and interpret facts and rules about the world; speech recognition systems to convert spoken language to text; and human language comprehension programs that process the text and its context to determine what the user is telling the system to do.
Examining privacy policies
A modern internet-enabled life today more or less requires trusting for-profit companies with private information (like physical and email addresses, credit card numbers and bank account details) and personal data (photos and videos, email messages and location information).
These companies’ cloud-based systems typically keep multiple copies of users’ data as part of backup plans to prevent service outages. That means there are more potential targets—each data center must be securely protected both physically and electronically. Of course, internet companies recognize customers’ concerns and employ security teams to protect users’ data. But the specific and detailed legal obligations they undertake to do that are found in their impenetrable privacy policies. No regular human—and perhaps even no single attorney—can truly understand them.
In our study, we ask computers to summarize the terms and conditions regular users say they agree to when they click “Accept” or “Agree” buttons for online services. We downloaded the publicly available privacy policies of various internet companies, including Amazon AWS, Facebook, Google, HP, Oracle, PayPal, Salesforce, Snapchat, Twitter, and WhatsApp.
Summarizing meaning
Our software examines the text and uses information extraction techniques to identify key information specifying the legal rights, obligations and prohibitions identified in the document. It also uses linguistic analysis to identify whether each rule applies to the service provider, the user or a third-party entity, such as advertisers and marketing companies. Then it presents that information in clear, direct, human-readable statements.
For example, our system identified one aspect of Amazon’s privacy policy as telling a user, “You can choose not to provide certain information, but then you might not be able to take advantage of many of our features.” Another aspect of that policy was described as “We may also collect technical information to help us identify your device for fraud prevention and diagnostic purposes.”

We also found, with the help of the summarizing system, that privacy policies often include rules for third parties—companies that aren’t the service provider or the user—that people might not even know are involved in data storage and retrieval.
The largest number of rules in privacy policies—43 percent—apply to the company providing the service. Just under a quarter of the rules—24 percent—create obligations for users and customers. The rest of the rules govern behavior by third-party services or corporate partners, or could not be categorized by our system.

The next time you click the “I Agree” button, be aware that you may be agreeing to share your data with other hidden companies who will be analyzing it.
We are continuing to improve our ability to succinctly and accurately summarize complex privacy policy documents in ways that people can understand and use to access the risks associated with using a service.

This article was originally published on The Conversation. Read the original article. Continue reading

Posted in Human Robots

#430734 Why XPRIZE Is Asking Writers to Take Us ...

In a world of accelerating change, educating the public about the implications of technological advancements is extremely important. We can continue to write informative articles and speculate about the kind of future that lies ahead. Or instead, we can take readers on an immersive journey by using science fiction to paint vivid images of the future for society.
The XPRIZE Foundation recently announced a science fiction storytelling competition. In recent years, the organization has backed and launched a range of competitions to propel innovation in science and technology. These have been aimed at a variety of challenges, such as transforming the lives of low-literacy adults, tackling climate change, and creating water from thin air.
Their sci-fi writing competition asks participants to envision a groundbreaking future for humanity. The initiative, in partnership with Japanese airline ANA, features 22 sci-fi stories from noteworthy authors that are now live on the website. Each of these stories is from the perspective of a different passenger on a plane that travels 20 years into the future through a wormhole. Contestants will compete to tell the story of the passenger in Seat 14C.
In addition to the competition, XPRIZE has brought together a science fiction advisory council to work with the organization and imagine what the future will look like. According to Peter Diamandis, founder and executive chairman, “As the future becomes harder and harder to predict, we look forward to engaging some of the world’s most visionary storytellers to help us imagine what’s just beyond the horizon and chart a path toward a future of abundance.”
The Importance of Science Fiction
Why is an organization like XPRIZE placing just as much importance on fiction as it does on reality? As Isaac Asimov has pointed out, “Modern science fiction is the only form of literature that consistently considers the nature of the changes that face us.” While the rest of the world reports on a new invention, sci-fi authors examine how these advancements affect the human condition.
True science fiction is distinguished from pure fantasy in that everything that happens is within the bounds of the physical laws of the universe. We’ve already seen how sci-fi can inspire generations and shape the future. 3D printers, wearable technology, and smartphones were first seen in Star Trek. Targeted advertising and air touch technology was first seen in Philip K. Dick’s 1958 story “The Minority Report.” Tanning beds, robot vacuums, and flatscreen TVs were seen in The Jetsons. The internet and a world of global instant communication was predicted by Arthur C. Clarke in his work long before it became reality.
Sci-fi shows like Black Mirror or Star Trek aren’t just entertainment. They allow us to imagine and explore the influence of technology on humanity. For instance, how will artificial intelligence impact human relationships? How will social media affect privacy? What if we encounter alien life? Good sci-fi stories take us on journeys that force us to think critically about the societal impacts of technological advancements.
As sci-fi author Yaasha Moriah points out, the genre is universal because “it tackles hard questions about human nature, morality, and the evolution of society, all through the narrative of speculation about the future. If we continue to do A, will it necessarily lead to problems B and C? What implicit lessons are being taught when we insist on a particular policy? When we elevate the importance of one thing over another—say, security over privacy—what could be the potential benefits and dangers of that mentality? That’s why science fiction has such an enduring appeal. We want to explore deep questions, without being preached at. We want to see the principles in action, and observe their results.”
An Extension of STEAM Education
At its core, this genre is a harmonious symbiosis between two distinct disciplines: science and literature. It is an extension of STEAM education, an educational approach that combines science, technology, engineering, the arts, and mathematics. Story-telling with science fiction allows us to use the arts in order to educate and engage the public about scientific advancements and its implications.
According to the National Science Foundation, research on art-based learning of STEM, including the use of narrative writing, works “beyond expectation.” It has been shown to have a powerful impact on creative thinking, collaborative behavior and application skills.
What does it feel like to travel through a wormhole? What are some ethical challenges of AI? How could we terraform Mars? For decades, science fiction writers and producers have answered these questions through the art of storytelling.
What better way to engage more people with science and technology than through sparking their imaginations? The method makes academic subject areas many traditionally perceived as boring or dry far more inspiring and engaging.
A Form of Time Travel
XPRIZE’s competition theme of traveling 20 years into the future through a wormhole is an appropriate beacon for the genre. In many ways, sci-fi is a precautionary form of time travel. Before we put a certain technology, scientific invention, or policy to use, we can envision and explore what our world would be like if we were to do so.
Sci-fi lets us explore different scenarios for the future of humanity before deciding which ones are more desirable. Some of these scenarios may be radically beyond our comfort zone. Yet when we’re faced with the seemingly impossible, we must remind ourselves that if something is within the domain of the physical laws of the universe, then it’s absolutely possible.
Stock Media provided by NASA_images / Pond5 Continue reading

Posted in Human Robots

#430668 Why Every Leader Needs to Be Obsessed ...

This article is part of a series exploring the skills leaders must learn to make the most of rapid change in an increasingly disruptive world. The first article in the series, “How the Most Successful Leaders Will Thrive in an Exponential World,” broadly outlines four critical leadership skills—futurist, technologist, innovator, and humanitarian—and how they work together.
Today’s post, part five in the series, takes a more detailed look at leaders as technologists. Be sure to check out part two of the series, “How Leaders Dream Boldly to Bring New Futures to Life,” part three of the series, “How All Leaders Can Make the World a Better Place,” and part four of the series, “How Leaders Can Make Innovation Everyone’s Day Job”.
In the 1990s, Tower Records was the place to get new music. Successful and popular, the California chain spread far and wide, and in 1998, they took on $110 million in debt to fund aggressive further expansion. This wasn’t, as it turns out, the best of timing.
The first portable digital music player went on sale the same year. The following year brought Napster, a file sharing service allowing users to freely share music online. By 2000, Napster hosted 20 million users swapping songs. Then in 2001, Apple’s iPod and iTunes arrived, and when the iTunes Music Store opened in 2003, Apple sold over a million songs the first week.
As music was digitized, hard copies began to go out of style, and sales and revenue declined.
Tower first filed for bankruptcy in 2004 and again (for the last time) in 2006. The internet wasn’t the only reason for Tower’s demise. Mismanagement and price competition from electronics retailers like Best Buy also played a part. Still, today, the vast majority of music is purchased or streamed entirely online, and record stores are for the most part a niche market.
The writing was on the wall, but those impacted most had trouble reading it.
Why is it difficult for leaders to see technological change coming and right the ship before it’s too late? Why did Tower go all out on expansion just as the next big thing took the stage?
This is one story of many. Digitization has moved beyond music and entertainment, and now many big retailers operating physical stores are struggling to stay relevant. Meanwhile, the pace of change is accelerating, and new potentially disruptive technologies are on the horizon.
More than ever, leaders need to develop a strong understanding of and perspective on technology. They need to survey new innovations, forecast their pace, gauge the implications, and adopt new tools and strategy to change course as an industry shifts, not after it’s shifted.
Simply, leaders need to adopt the mindset of a technologist. Here’s what that means.
Survey the Landscape
Nurturing curiosity is the first step to understanding technological change. To know how technology might disrupt your industry, you have to know what’s in the pipeline and identify which new inventions are directly or indirectly related to your industry.
Becoming more technologically minded takes discipline and focus as well as unstructured time to explore the non-obvious connections between what is right in front of us and what might be. It requires a commitment to ongoing learning and discovery.
Read outside your industry and comfort zone, not just Fast Company and Wired, but Science and Nature to expand your horizons. Identify experts with the ability to demystify specific technology areas—many have a solid following on Twitter or a frequently cited blog.
But it isn’t all about reading. Consider going where the change is happening too.
Visit one of the technology hubs around the world or a local university research lab in your own back yard. Or bring the innovation to you by building an internal exploration lab stocked with the latest technologies, creating a technology advisory board, hosting an internal innovation challenge, or a local pitch night where aspiring entrepreneurs can share their newest ideas.
You might even ask the crowd by inviting anyone to suggest what innovation is most likely to disrupt your product, service, or sector. And don’t hesitate to engage younger folks—the digital natives all around you—by asking questions about what technology they are using or excited about. Consider going on a field trip with them to see how they use technology in different aspects of their lives. Invite the seasoned executives on your team to explore long-term “reverse mentoring” with someone who can expose them to the latest technology and teach them to use it.
Whatever your strategy, the goal should be to develop a healthy obsession with technology.
By exploring fresh perspectives outside traditional work environments and then giving ourselves permission to see how these new ideas might influence existing products and strategies, we have a chance to be ready for what we’re not ready for—but is likely right around the corner.
Estimate the Pace of Progress
The next step is forecasting when a technology will mature.
One of the most challenging aspects of the changes underway is that in many technology arenas, we are quickly moving from a linear to an exponential pace. It is hard enough to envision what is needed in an industry buffeted by progress that is changing 10% per year, but what happens when technological progress doubles annually? That is another world altogether.
This kind of change can be deceiving. For example, machine learning and big data are finally reaching critical momentum after more than twenty years of being right around the corner. The advances in applications like speech and image recognition that we’ve seen in recent years dwarf what came before and many believe we’ve just begun to understand the implications.
Even as we begin to embrace disruptive change in one technology arena, far more exciting possibilities unfold when we explore how multiple arenas are converging.
Artificial intelligence and big data are great examples. As Hod Lipson, professor of Mechanical Engineering and Data Science at Columbia University and co-author of Driverless: Intelligent Cars and the Road Ahead, says, “AI is the engine, but big data is the fuel. They need each other.”
This convergence paired with an accelerating pace makes for surprising applications.
To keep his research lab agile and open to new uses of advancing technologies, Lipson routinely asks his PhD students, “How might AI disrupt this industry?” to prompt development of applications across a wide spectrum of sectors from healthcare to agriculture to food delivery.
Explore the Consequences
New technology inevitably gives rise to new ethical, social, and moral questions that we have never faced before. Rather than bury our heads in the sand, as leaders we must explore the full range of potential consequences of whatever is underway or still to come.
We can add AI to kids’ toys, like Mattel’s Hello Barbie or use cutting-edge gene editing technology like CRISPR-Cas9 to select for preferred gene sequences beyond basic health. But just because we can do something doesn’t mean we should.
Take time to listen to skeptics and understand the risks posed by technology.
Elon Musk, Stephen Hawking, Steve Wozniak, Bill Gates, and other well-known names in science and technology have expressed concern in the media and via open letters about the risks posed by AI. Microsoft’s CEO, Satya Nadella, has even argued tech companies shouldn’t build artificial intelligence systems that will replace people rather than making them more productive.
Exploring unintended consequences goes beyond having a Plan B for when something goes wrong. It requires broadening our view of what we’re responsible for. Beyond customers, shareholders, and the bottom line, we should understand how our decisions may impact employees, communities, the environment, our broader industry, and even our competitors.
The minor inconvenience of mitigating these risks now is far better than the alternative. Create forums to listen to and value voices outside of the board room and C-Suite. Seek out naysayers, ethicists, community leaders, wise elders, and even neophytes—those who may not share our preconceived notions of right and wrong or our narrow view of our role in the larger world.
The question isn’t: If we build it, will they come? It’s now: If we can build it, should we?
Adopt New Technologies and Shift Course
The last step is hardest. Once you’ve identified a technology (or technologies) as a potential disruptor and understand the implications, you need to figure out how to evolve your organization to make the most of the opportunity. Simply recognizing disruption isn’t enough.
Take today’s struggling brick-and-mortar retail business. Online shopping isn’t new. Amazon isn’t a plucky startup. Both have been changing how we buy stuff for years. And yet many who still own and operate physical stores—perhaps most prominently, Sears—are now on the brink of bankruptcy.
There’s hope though. Netflix began as a DVD delivery service in the 90s, but quickly realized its core business didn’t have staying power. It would have been laughable to stream movies when Netflix was founded. Still, computers and bandwidth were advancing fast. In 2007, the company added streaming to its subscription. Even then it wasn’t a totally compelling product.
But Netflix clearly saw a streaming future would likely end their DVD business.
In recent years, faster connection speeds, a growing content library, and the company’s entrance into original programming have given Netflix streaming the upper hand over DVDs. Since 2011, DVD subscriptions have steadily declined. Yet the company itself is doing fine. Why? It anticipated the shift to streaming and acted on it.
Never Stop Looking for the Next Big Thing
Technology is and will increasingly be a driver of disruption, destabilizing entrenched businesses and entire industries while also creating new markets and value not yet imagined.
When faced with the rapidly accelerating pace of change, many companies still default to old models and established practices. Leading like a technologist requires vigilant understanding of potential sources of disruption—what might make your company’s offering obsolete? The answers may not always be perfectly clear. What’s most important is relentlessly seeking them.
Stock Media provided by MJTierney / Pond5 Continue reading

Posted in Human Robots