Tag Archives: science

#431678 This Week’s Awesome Stories From ...

Can A.I. Be Taught to Explain Itself?Cliff Kuang | New York Times“Kosinski’s results suggested something stranger: that artificial intelligences often excel by developing whole new ways of seeing, or even thinking, that are inscrutable to us. It’s a more profound version of what’s often called the ‘black box’ problem—the inability to discern exactly what machines are doing when they’re teaching themselves novel skills—and it has become a central concern in artificial-intelligence research.”
Semi-Synthetic Life Form Now Fully Armed and OperationalAntonio Regalado | MIT Technology Review “By this year, the team had devised a more stable bacterium. But it wasn’t enough to endow the germ with a partly alien code—it needed to use that code to make a partly alien protein. That’s what Romesberg’s team, reporting today in the journal Nature, says it has done.”
4 Strange New Ways to ComputeSamuel K. Moore | IEEE Spectrum “With Moore’s Law slowing, engineers have been taking a cold hard look at what will keep computing going when it’s gone…What follows includes a taste of both the strange and the potentially impactful.”
Google X and the Science of Radical CreativityDerek Thompson | The Atlantic “But what X is attempting is nonetheless audacious. It is investing in both invention and innovation. Its founders hope to demystify and routinize the entire process of making a technological breakthrough—to nurture each moonshot, from question to idea to discovery to product—and, in so doing, to write an operator’s manual for radical creativity.”
Uber Paid Hackers to Delete Stolen Data on 57 Million PeopleEric Newcomer | Bloomberg “Hackers stole the personal data of 57 million customers and drivers from Uber Technologies Inc., a massive breach that the company concealed for more than a year. This week, the ride-hailing firm ousted its chief security officer and one of his deputies for their roles in keeping the hack under wraps, which included a $100,000 payment to the attackers.”
Image Credit: singpentinkhappy / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431669 Technologically enhanced humans—a look ...

What exactly do we mean by an "enhanced" human? When this possibility is brought up, what is generally being referred to is the addition of human and machine-based performances (expanding on the figure of the cyborg popularised by science fiction). But enhanced in relation to what? According to which reference values and criteria? How, for example, can happiness be measured? A good life? Sensations, like smells or touch which connect us to the world? How happy we feel when we are working? All these dimensions that make life worth living. We must be careful here not to give in to the magic of figures. A plus can hide a minus; something gained may conceal something lost. What is gained or lost, however, is difficult to identify as it is neither quantifiable nor measurable. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431599 8 Ways AI Will Transform Our Cities by ...

How will AI shape the average North American city by 2030? A panel of experts assembled as part of a century-long study into the impact of AI thinks its effects will be profound.
The One Hundred Year Study on Artificial Intelligence is the brainchild of Eric Horvitz, technical fellow and a managing director at Microsoft Research.
Every five years a panel of experts will assess the current state of AI and its future directions. The first panel, comprised of experts in AI, law, political science, policy, and economics, was launched last fall and decided to frame their report around the impact AI will have on the average American city. Here’s how they think it will affect eight key domains of city life in the next fifteen years.
1. Transportation
The speed of the transition to AI-guided transport may catch the public by surprise. Self-driving vehicles will be widely adopted by 2020, and it won’t just be cars — driverless delivery trucks, autonomous delivery drones, and personal robots will also be commonplace.
Uber-style “cars as a service” are likely to replace car ownership, which may displace public transport or see it transition towards similar on-demand approaches. Commutes will become a time to relax or work productively, encouraging people to live further from home, which could combine with reduced need for parking to drastically change the face of modern cities.
Mountains of data from increasing numbers of sensors will allow administrators to model individuals’ movements, preferences, and goals, which could have major impact on the design city infrastructure.
Humans won’t be out of the loop, though. Algorithms that allow machines to learn from human input and coordinate with them will be crucial to ensuring autonomous transport operates smoothly. Getting this right will be key as this will be the public’s first experience with physically embodied AI systems and will strongly influence public perception.
2. Home and Service Robots
Robots that do things like deliver packages and clean offices will become much more common in the next 15 years. Mobile chipmakers are already squeezing the power of last century’s supercomputers into systems-on-a-chip, drastically boosting robots’ on-board computing capacity.
Cloud-connected robots will be able to share data to accelerate learning. Low-cost 3D sensors like Microsoft’s Kinect will speed the development of perceptual technology, while advances in speech comprehension will enhance robots’ interactions with humans. Robot arms in research labs today are likely to evolve into consumer devices around 2025.
But the cost and complexity of reliable hardware and the difficulty of implementing perceptual algorithms in the real world mean general-purpose robots are still some way off. Robots are likely to remain constrained to narrow commercial applications for the foreseeable future.
3. Healthcare
AI’s impact on healthcare in the next 15 years will depend more on regulation than technology. The most transformative possibilities of AI in healthcare require access to data, but the FDA has failed to find solutions to the difficult problem of balancing privacy and access to data. Implementation of electronic health records has also been poor.
If these hurdles can be cleared, AI could automate the legwork of diagnostics by mining patient records and the scientific literature. This kind of digital assistant could allow doctors to focus on the human dimensions of care while using their intuition and experience to guide the process.
At the population level, data from patient records, wearables, mobile apps, and personal genome sequencing will make personalized medicine a reality. While fully automated radiology is unlikely, access to huge datasets of medical imaging will enable training of machine learning algorithms that can “triage” or check scans, reducing the workload of doctors.
Intelligent walkers, wheelchairs, and exoskeletons will help keep the elderly active while smart home technology will be able to support and monitor them to keep them independent. Robots may begin to enter hospitals carrying out simple tasks like delivering goods to the right room or doing sutures once the needle is correctly placed, but these tasks will only be semi-automated and will require collaboration between humans and robots.
4. Education
The line between the classroom and individual learning will be blurred by 2030. Massive open online courses (MOOCs) will interact with intelligent tutors and other AI technologies to allow personalized education at scale. Computer-based learning won’t replace the classroom, but online tools will help students learn at their own pace using techniques that work for them.
AI-enabled education systems will learn individuals’ preferences, but by aggregating this data they’ll also accelerate education research and the development of new tools. Online teaching will increasingly widen educational access, making learning lifelong, enabling people to retrain, and increasing access to top-quality education in developing countries.
Sophisticated virtual reality will allow students to immerse themselves in historical and fictional worlds or explore environments and scientific objects difficult to engage with in the real world. Digital reading devices will become much smarter too, linking to supplementary information and translating between languages.
5. Low-Resource Communities
In contrast to the dystopian visions of sci-fi, by 2030 AI will help improve life for the poorest members of society. Predictive analytics will let government agencies better allocate limited resources by helping them forecast environmental hazards or building code violations. AI planning could help distribute excess food from restaurants to food banks and shelters before it spoils.
Investment in these areas is under-funded though, so how quickly these capabilities will appear is uncertain. There are fears valueless machine learning could inadvertently discriminate by correlating things with race or gender, or surrogate factors like zip codes. But AI programs are easier to hold accountable than humans, so they’re more likely to help weed out discrimination.
6. Public Safety and Security
By 2030 cities are likely to rely heavily on AI technologies to detect and predict crime. Automatic processing of CCTV and drone footage will make it possible to rapidly spot anomalous behavior. This will not only allow law enforcement to react quickly but also forecast when and where crimes will be committed. Fears that bias and error could lead to people being unduly targeted are justified, but well-thought-out systems could actually counteract human bias and highlight police malpractice.
Techniques like speech and gait analysis could help interrogators and security guards detect suspicious behavior. Contrary to concerns about overly pervasive law enforcement, AI is likely to make policing more targeted and therefore less overbearing.
7. Employment and Workplace
The effects of AI will be felt most profoundly in the workplace. By 2030 AI will be encroaching on skilled professionals like lawyers, financial advisers, and radiologists. As it becomes capable of taking on more roles, organizations will be able to scale rapidly with relatively small workforces.
AI is more likely to replace tasks rather than jobs in the near term, and it will also create new jobs and markets, even if it’s hard to imagine what those will be right now. While it may reduce incomes and job prospects, increasing automation will also lower the cost of goods and services, effectively making everyone richer.
These structural shifts in the economy will require political rather than purely economic responses to ensure these riches are shared. In the short run, this may include resources being pumped into education and re-training, but longer term may require a far more comprehensive social safety net or radical approaches like a guaranteed basic income.
8. Entertainment
Entertainment in 2030 will be interactive, personalized, and immeasurably more engaging than today. Breakthroughs in sensors and hardware will see virtual reality, haptics and companion robots increasingly enter the home. Users will be able to interact with entertainment systems conversationally, and they will show emotion, empathy, and the ability to adapt to environmental cues like the time of day.
Social networks already allow personalized entertainment channels, but the reams of data being collected on usage patterns and preferences will allow media providers to personalize entertainment to unprecedented levels. There are concerns this could endow media conglomerates with unprecedented control over people’s online experiences and the ideas to which they are exposed.
But advances in AI will also make creating your own entertainment far easier and more engaging, whether by helping to compose music or choreograph dances using an avatar. Democratizing the production of high-quality entertainment makes it nearly impossible to predict how highly fluid human tastes for entertainment will develop.
Image Credit: Asgord / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431424 A ‘Google Maps’ for the Mouse Brain ...

Ask any neuroscientist to draw you a neuron, and it’ll probably look something like a star with two tails: one stubby with extensive tree-like branches, the other willowy, lengthy and dotted with spindly spikes.
While a decent abstraction, this cartoonish image hides the uncomfortable truth that scientists still don’t know much about what many neurons actually look like, not to mention the extent of their connections.
But without untangling the jumbled mess of neural wires that zigzag across the brain, scientists are stumped in trying to answer one of the most fundamental mysteries of the brain: how individual neuronal threads carry and assemble information, which forms the basis of our thoughts, memories, consciousness, and self.
What if there was a way to virtually trace and explore the brain’s serpentine fibers, much like the way Google Maps allows us to navigate the concrete tangles of our cities’ highways?
Thanks to an interdisciplinary team at Janelia Research Campus, we’re on our way. Meet MouseLight, the most extensive map of the mouse brain ever attempted. The ongoing project has an ambitious goal: reconstructing thousands—if not more—of the mouse’s 70 million neurons into a 3D map. (You can play with it here!)
With map in hand, neuroscientists around the world can begin to answer how neural circuits are organized in the brain, and how information flows from one neuron to another across brain regions and hemispheres.
The first release, presented Monday at the Society for Neuroscience Annual Conference in Washington, DC, contains information about the shape and sizes of 300 neurons.
And that’s just the beginning.
“MouseLight’s new dataset is the largest of its kind,” says Dr. Wyatt Korff, director of project teams. “It’s going to change the textbook view of neurons.”

Brain Atlas
MouseLight is hardly the first rodent brain atlasing project.
The Mouse Brain Connectivity Atlas at the Allen Institute for Brain Science in Seattle tracks neuron activity across small circuits in an effort to trace a mouse’s connectome—a complete atlas of how the firing of one neuron links to the next.
MICrONS (Machine Intelligence from Cortical Networks), the $100 million government-funded “moonshot” hopes to distill brain computation into algorithms for more powerful artificial intelligence. Its first step? Brain mapping.
What makes MouseLight stand out is its scope and level of detail.
MICrONS, for example, is focused on dissecting a cubic millimeter of the mouse visual processing center. In contrast, MouseLight involves tracing individual neurons across the entire brain.
And while connectomics outlines the major connections between brain regions, the birds-eye view entirely misses the intricacies of each individual neuron. This is where MouseLight steps in.
Slice and Dice
With a width only a fraction of a human hair, neuron projections are hard to capture in their native state. Tug or squeeze the brain too hard, and the long, delicate branches distort or even shred into bits.
In fact, previous attempts at trying to reconstruct neurons at this level of detail topped out at just a dozen, stymied by technological hiccups and sky-high costs.
A few years ago, the MouseLight team set out to automate the entire process, with a few time-saving tweaks. Here’s how it works.
After injecting a mouse with a virus that causes a handful of neurons to produce a green-glowing protein, the team treated the brain with a sugar alcohol solution. This step “clears” the brain, transforming the beige-colored organ to translucent, making it easier for light to penetrate and boosting the signal-to-background noise ratio. The brain is then glued onto a small pedestal and ready for imaging.
Building upon an established method called “two-photon microscopy,” the team then tweaked several parameters to reduce imaging time from days (or weeks) down to a fraction of that. Endearingly known as “2P” by the experts, this type of laser microscope zaps the tissue with just enough photos to light up a single plane without damaging the tissue—sharper plane, better focus, crisper image.
After taking an image, the setup activates its vibrating razor and shaves off the imaged section of the brain—a waspy slice about 200 micrometers thick. The process is repeated until the whole brain is imaged.
This setup increased imaging speed by 16 to 48 times faster than conventional microscopy, writes team leader Dr. Jayaram Chandrashekar, who published a version of the method early last year in eLife.
The resulting images strikingly highlight every crook and cranny of a neuronal branch, popping out against a pitch-black background. But pretty pictures come at a hefty data cost: each image takes up a whopping 20 terabytes of data—roughly the storage space of 4,000 DVDs, or 10,000 hours of movies.
Stitching individual images back into 3D is an image-processing nightmare. The MouseLight team used a combination of computational power and human prowess to complete this final step.
The reconstructed images are handed off to a mighty team of seven trained neuron trackers. With the help of tracing algorithms developed in-house and a keen eye, each member can track roughly a neuron a day—significantly less time than the week or so previously needed.
A Numbers Game
Even with just 300 fully reconstructed neurons, MouseLight has already revealed new secrets of the brain.
While it’s widely accepted that axons, the neurons’ outgoing projection, can span the entire length of the brain, these extra-long connections were considered relatively rare. (In fact, one previously discovered “giant neuron” was thought to link to consciousness because of its expansive connections).
Images captured from two-photon microscopy show an axon and dendrites protruding from a neuron’s cell body (sphere in center). Image Credit: Janelia Research Center, MouseLight project team
MouseLight blows that theory out of the water.
The data clearly shows that “giant neurons” are far more common than previously thought. For example, four neurons normally associated with taste had wiry branches that stretched all the way into brain areas that control movement and process touch.
“We knew that different regions of the brain talked to each other, but seeing it in 3D is different,” says Dr. Eve Marder at Brandeis University.
“The results are so stunning because they give you a really clear view of how the whole brain is connected.”
With a tested and true system in place, the team is now aiming to add 700 neurons to their collection within a year.
But appearance is only part of the story.
We can’t tell everything about a person simply by how they look. Neurons are the same: scientists can only infer so much about a neuron’s function by looking at their shape and positions. The team also hopes to profile the gene expression patterns of each neuron, which could provide more hints to their roles in the brain.
MouseLight essentially dissects the neural infrastructure that allows information traffic to flow through the brain. These anatomical highways are just the foundation. Just like Google Maps, roads form only the critical first layer of the map. Street view, traffic information and other add-ons come later for a complete look at cities in flux.
The same will happen for understanding our ever-changing brain.
Image Credit: Janelia Research Campus, MouseLight project team Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431412 3 Dangerous Ideas From Ray Kurzweil

Recently, I interviewed my friend Ray Kurzweil at the Googleplex for a 90-minute webinar on disruptive and dangerous ideas, a prelude to my fireside chat with Ray at Abundance 360 this January.

Ray is my friend and cofounder and chancellor of Singularity University. He is also an XPRIZE trustee, a director of engineering at Google, and one of the best predictors of our exponential future.
It’s my pleasure to share with you three compelling ideas that came from our conversation.
1. The nation-state will soon be irrelevant.
Historically, we humans don’t like change. We like waking up in the morning and knowing that the world is the same as the night before.
That’s one reason why government institutions exist: to stabilize society.
But how will this change in 20 or 30 years? What role will stabilizing institutions play in a world of continuous, accelerating change?
“Institutions stick around, but they change their role in our lives,” Ray explained. “They already have. The nation-state is not as profound as it was. Religion used to direct every aspect of your life, minute to minute. It’s still important in some ways, but it’s much less important, much less pervasive. [It] plays a much smaller role in most people’s lives than it did, and the same is true for governments.”
Ray continues: “We are fantastically interconnected already. Nation-states are not islands anymore. So we’re already much more of a global community. The generation growing up today really feels like world citizens much more than ever before, because they’re talking to people all over the world, and it’s not a novelty.”
I’ve previously shared my belief that national borders have become extremely porous, with ideas, people, capital, and technology rapidly flowing between nations. In decades past, your cultural identity was tied to your birthplace. In the decades ahead, your identify is more a function of many other external factors. If you love space, you’ll be connected with fellow space-cadets around the globe more than you’ll be tied to someone born next door.
2. We’ll hit longevity escape velocity before we realize we’ve hit it.
Ray and I share a passion for extending the healthy human lifespan.
I frequently discuss Ray’s concept of “longevity escape velocity”—the point at which, for every year that you’re alive, science is able to extend your life for more than a year.
Scientists are continually extending the human lifespan, helping us cure heart disease, cancer, and eventually, neurodegenerative disease. This will keep accelerating as technology improves.
During my discussion with Ray, I asked him when he expects we’ll reach “escape velocity…”
His answer? “I predict it’s likely just another 10 to 12 years before the general public will hit longevity escape velocity.”
“At that point, biotechnology is going to have taken over medicine,” Ray added. “The next decade is going to be a profound revolution.”
From there, Ray predicts that nanorobots will “basically finish the job of the immune system,” with the ability to seek and destroy cancerous cells and repair damaged organs.
As we head into this sci-fi-like future, your most important job for the next 15 years is to stay alive. “Wear your seatbelt until we get the self-driving cars going,” Ray jokes.
The implications to society will be profound. While the scarcity-minded in government will react saying, “Social Security will be destroyed,” the more abundance-minded will realize that extending a person’s productive earning life space from 65 to 75 or 85 years old would be a massive boon to GDP.
3. Technology will help us define and actualize human freedoms.
The third dangerous idea from my conversation with Ray is about how technology will enhance our humanity, not detract from it.
You may have heard critics complain that technology is making us less human and increasingly disconnected.
Ray and I share a slightly different viewpoint: that technology enables us to tap into the very essence of what it means to be human.
“I don’t think humans even have to be biological,” explained Ray. “I think humans are the species that changes who we are.”
Ray argues that this began when humans developed the earliest technologies—fire and stone tools. These tools gave people new capabilities and became extensions of our physical bodies.
At its base level, technology is the means by which we change our environment and change ourselves. This will continue, even as the technologies themselves evolve.
“People say, ‘Well, do I really want to become part machine?’ You’re not even going to notice it,” Ray says, “because it’s going to be a sensible thing to do at each point.”
Today, we take medicine to fight disease and maintain good health and would likely consider it irresponsible if someone refused to take a proven, life-saving medicine.
In the future, this will still happen—except the medicine might have nanobots that can target disease or will also improve your memory so you can recall things more easily.
And because this new medicine works so well for so many, public perception will change. Eventually, it will become the norm… as ubiquitous as penicillin and ibuprofen are today.
In this way, ingesting nanorobots, uploading your brain to the cloud, and using devices like smart contact lenses can help humans become, well, better at being human.
Ray sums it up: “We are the species that changes who we are to become smarter and more profound, more beautiful, more creative, more musical, funnier, sexier.”
Speaking of sexuality and beauty, Ray also sees technology expanding these concepts. “In virtual reality, you can be someone else. Right now, actually changing your gender in real reality is a pretty significant, profound process, but you could do it in virtual reality much more easily and you can be someone else. A couple could become each other and discover their relationship from the other’s perspective.”
In the 2030s, when Ray predicts sensor-laden nanorobots will be able to go inside the nervous system, virtual or augmented reality will become exceptionally realistic, enabling us to “be someone else and have other kinds of experiences.”
Why Dangerous Ideas Matter
Why is it so important to discuss dangerous ideas?
I often say that the day before something is a breakthrough, it’s a crazy idea.
By consuming and considering a steady diet of “crazy ideas,” you train yourself to think bigger and bolder, a critical requirement for making impact.
As humans, we are linear and scarcity-minded.
As entrepreneurs, we must think exponentially and abundantly.
At the end of the day, the formula for a true breakthrough is equal to “having a crazy idea” you believe in, plus the passion to pursue that idea against all naysayers and obstacles.
Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment