Tag Archives: Off

#437912 “Boston Dynamics Will Continue to ...

Last week’s announcement that Hyundai acquired Boston Dynamics from SoftBank left us with a lot of questions. We attempted to answer many of those questions ourselves, which is typically bad practice, but sometimes it’s the only option when news like that breaks.

Fortunately, yesterday we were able to speak with Michael Patrick Perry, vice president of business development at Boston Dynamics, who candidly answered our questions about Boston Dynamics’ new relationship with Hyundai and what the near future has in store.

IEEE Spectrum: Boston Dynamics is worth 1.1 billion dollars! Can you put that valuation into context for us?

Michael Patrick Perry: Since 2018, we’ve shifted to becoming a commercial organization. And that’s included a number of things, like taking our existing technology and bringing it to market for the first time. We’ve gone from zero to 400 Spot robots deployed, building out an ecosystem of software developers, sensor providers, and integrators. With that scale of deployment and looking at the pipeline of opportunities that we have lined up over the next year, I think people have started to believe that this isn’t just a one-off novelty—that there’s actual value that Spot is able to create. Secondly, with some of our efforts in the logistics market, we’re getting really strong signals both with our Pick product and also with some early discussions around Handle’s deployment in warehouses, which we think are going to be transformational for that industry.

So, the thing that’s really exciting is that two years ago, we were talking about this vision, and people said, “Wow, that sounds really cool, let’s see how you do.” And now we have the validation from the market saying both that this is actually useful, and that we’re able to execute. And that’s where I think we’re starting to see belief in the long-term viability of Boston Dynamics, not just as a cutting-edge research shop, but also as a business.

Photo: Boston Dynamics

Boston Dynamics says it has deployed 400 Spot robots, building out an “ecosystem of software developers, sensor providers, and integrators.”

How would you describe Hyundai’s overall vision for the future of robotics, and how do they want Boston Dynamics to fit into that vision?

In the immediate term, Hyundai’s focus is to continue our existing trajectories, with Spot, Handle, and Atlas. They believe in the work that we’ve done so far, and we think that combining with a partner that understands many of the industries in which we’re targeting, whether its manufacturing, construction, or logistics, can help us improve our products. And obviously as we start thinking about producing these robots at scale, Hyundai’s expertise in manufacturing is going to be really helpful for us.

Looking down the line, both Boston Dynamics and Hyundai believe in the value of smart mobility, and they’ve made a number of plays in that space. Whether it’s urban air mobility or autonomous driving, they’ve been really thinking about connecting the digital and the physical world through moving systems, whether that’s a car, a vertical takeoff and landing multi-rotor vehicle, or a robot. We are well positioned to take on robotics side of that while also connecting to some of these other autonomous services.

Can you tell us anything about the kind of robotics that the Hyundai Motor Group has going on right now?

So they’re working on a lot of really interesting stuff—exactly how that connects, you know, it’s early days, and we don’t have anything explicitly to share. But they’ve got a smart and talented robotics team that’s working in a variety of directions that shares overlap with us. Obviously, a lot of things related to autonomous driving shares some DNA with the work that we’re doing in autonomy for Spot and Handle, so it’s pretty exciting to see.

What are you most excited about here? How do you think this deal will benefit Boston Dynamics?

I think there are a number of things. One is that they have an expertise in hardware, in a way that’s unique. They understand and appreciate the complexity of creating large complex robotic systems. So I think there’s some shared understanding of what it takes to create a great hardware product. And then also they have the resources to help us actually build those products with them together—they have manufacturing resources and things like that.

“Robotics isn’t a short term game. We’ve scaled pretty rapidly but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision”

Another thing that’s exciting is that Hyundai has some pretty visionary bets for autonomous driving and unmanned aerial systems, and all of that fits very neatly into the connected vision of robotics that we were talking about before. Robotics isn’t a short term game. We’ve scaled pretty rapidly for a robotics company in terms of the scale of robots we’ve able to deploy in the field, but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision.

And when you’ve been talking with Hyundai, what are they most excited about?

I think they’re really excited about our existing products and our technology. Looking at some of the things that Spot, Pick, and Handle are able to do now, there are applications that many of Hyundai’s customers could benefit from in terms of mobility, remote sensing, and material handling. Looking down the line, Hyundai is also very interested in smart city technology, and mobile robotics is going to be a core piece of that.

We tend to focus on Spot and Handle and Atlas in terms of platform capabilities, but can you talk a bit about some of the component-level technology that’s unique to Boston Dynamics, and that could be of interest to Hyundai?

Creating very power-dense actuator design is something that we’ve been successful at for several years, starting back with BigDog and LS3. And Handle has some hydraulic actuators and valves that are pretty unique in terms of their design and capability. Fundamentally, we have a systems engineering approach that brings together both hardware and software internally. You’ll often see different groups that specialize in something, like great mechanical or electrical engineering groups, or great controls teams, but what I think makes Boston Dynamics so special is that we’re able to put everything on the table at once to create a system that’s incredibly capable. And that’s why with something like Spot, we’re able to produce it at scale, while also making it flexible enough for all the different applications that the robot is being used for right now.

It’s hard to talk specifics right now, but there are obviously other disciplines within mechanical engineering or electrical engineering or controls for robots or autonomous systems where some of our technology could be applied.

Photo: Boston Dynamics

Boston Dynamics is in the process of commercializing Handle, iterating on its design and planning to get box-moving robots on-site with customers in the next year or two.

While Boston Dynamics was part of Google, and then SoftBank, it seems like there’s been an effort to maintain independence. Is it going to be different with Hyundai? Will there be more direct integration or collaboration?

Obviously it’s early days, but right now, we have support to continue executing against all the plans that we have. That includes all the commercialization of Spot, as well as things for Atlas, which is really going to be pushing the capability of our team to expand into new areas. That’s going to be our immediate focus, and we don’t see anything that’s going to pull us away from that core focus in the near term.

As it stands right now, Boston Dynamics will continue to be Boston Dynamics under this new ownership.

How much of what you do at Boston Dynamics right now would you characterize as fundamental robotics research, and how much is commercialization? And how do you see that changing over the next couple of years?

We have been expanding our commercial team, but we certainly keep a lot of the core capabilities of fundamental robotics research. Some of it is very visible, like the new behavior development for Atlas where we’re pushing the limits of perception and path planning. But a lot of the stuff that we’re working on is a little bit under the hood, things that are less obvious—terrain handling, intervention handling, how to make safe faults, for example. Initially when Spot started slipping on things, it would flail around trying to get back up. We’ve had to figure out the right balance between the robot struggling to stand, and when it should decide to just lock its limbs and fall over because it’s safer to do that.

I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us. So we’ve been ramping up a lot of work over the last several years trying to get to an early but still valuable iteration of the technology, and we’ll continue pushing on that as we start learning what’s most useful to our customers.

“I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us”

Looking back, Spot as a commercial robot has a history that goes back to robots like LS3 and BigDog, which were very ambitious projects funded by agencies like DARPA without much in the way of commercial expectations. Do you think these very early stage, very expensive, very technical projects are still things that Boston Dynamics can take on?

Yes—I would point to a lot of the things we do with Atlas as an example of that. While we don’t have immediate plans to commercialize Atlas, we can point to technologies that come out of Atlas that have enabled some of our commercial efforts over time. There’s not necessarily a clear roadmap of how every piece of Atlas research is going to feed over into a commercial product; it’s more like, this is a really hard fundamental robotics challenge, so let’s tackle it and learn things that we can then benefit from across the company.

And fundamentally, our team loves doing cool stuff with robots, and you’ll continue seeing that in the months to come.

Photo: Boston Dynamics

Spot’s arm with gripper is coming out early next year, and Boston Dynamics says that’s going to “unlock a new set of capabilities for us.”

What would it take to commercialize Atlas? And are you getting closer with Handle?

We’re in the process of commercializing Handle. We’re at a relatively early stage, but we have a plan to get the first versions for box moving on-site with customers in the next year or two. Last year, we did some on-site deployments as proof-of-concept trials, and using the feedback from that, we did a new design pass on the robot, and we’re looking at increasing our manufacturing capability. That’s all in progress.

For Atlas, it’s like the Formula 1 of robots—you’re not going to take a Formula 1 car and try to make it less capable so that you can drive it on the road. We’re still trying to see what are some applications that would necessitate an energy and computationally intensive humanoid robot as opposed to something that’s more inherently stable. Trying to understand that application space is something that we’re interested in, and then down the line, we could look at creating new morphologies to help address specific applications. In many ways, Handle is the first version of that, where we said, “Atlas is good at moving boxes but it’s very complicated and expensive, so let’s create a simpler and smaller design that can achieve some of the same things.”

The press release mentioned a mobile robot for warehouses that will be introduced next year—is that Handle?

Yes, that’s the work that we’re doing on Handle.

As we start thinking about a whole robotic solution for the warehouse, we have to look beyond a high power, low footprint, dynamic platform like Handle and also consider things that are a little less exciting on video. We need a vision system that can look at a messy stack of boxes and figure out how to pick them up, we need an interface between a robot and an order building system—things where people might question why Boston Dynamics is focusing on them because it doesn’t fit in with our crazy backflipping robots, but it’s really incumbent on us to create that full end-to-end solution.

Are you confident that under Hyundai’s ownership, Boston Dynamics will be able to continue taking the risks required to remain on the cutting edge of robotics?

I think we will continue to push the envelope of what robots are capable of, and I think in the near term, you’ll be able to see that realized in our products and the research that we’re pushing forward with. 2021 is going to be a great year for us. Continue reading

Posted in Human Robots

#437905 New Deep Learning Method Helps Robots ...

One of the biggest things standing in the way of the robot revolution is their inability to adapt. That may be about to change though, thanks to a new approach that blends pre-learned skills on the fly to tackle new challenges.

Put a robot in a tightly-controlled environment and it can quickly surpass human performance at complex tasks, from building cars to playing table tennis. But throw these machines a curve ball and they’re in trouble—just check out this compilation of some of the world’s most advanced robots coming unstuck in the face of notoriously challenging obstacles like sand, steps, and doorways.

The reason robots tend to be so fragile is that the algorithms that control them are often manually designed. If they encounter a situation the designer didn’t think of, which is almost inevitable in the chaotic real world, then they simply don’t have the tools to react.

Rapid advances in AI have provided a potential workaround by letting robots learn how to carry out tasks instead of relying on hand-coded instructions. A particularly promising approach is deep reinforcement learning, where the robot interacts with its environment through a process of trial-and-error and is rewarded for carrying out the correct actions. Over many repetitions it can use this feedback to learn how to accomplish the task at hand.

But the approach requires huge amounts of data to solve even simple tasks. And most of the things we would want a robot to do are actually comprised of many smaller tasks—for instance, delivering a parcel involves learning how to pick an object up, how to walk, how to navigate, and how to pass an object to someone else, among other things.

Training all these sub-tasks simultaneously is hugely complex and far beyond the capabilities of most current AI systems, so many experiments so far have focused on narrow skills. Some have tried to train AI on multiple skills separately and then use an overarching system to flip between these expert sub-systems, but these approaches still can’t adapt to completely new challenges.

Building off this research, though, scientists have now created a new AI system that can blend together expert sub-systems specialized for a specific task. In a paper in Science Robotics, they explain how this allows a four-legged robot to improvise new skills and adapt to unfamiliar challenges in real time.

The technique, dubbed multi-expert learning architecture (MELA), relies on a two-stage training approach. First the researchers used a computer simulation to train two neural networks to carry out two separate tasks: trotting and recovering from a fall.

They then used the models these two networks learned as seeds for eight other neural networks specialized for more specific motor skills, like rolling over or turning left or right. The eight “expert networks” were trained simultaneously along with a “gating network,” which learns how to combine these experts to solve challenges.

Because the gating network synthesizes the expert networks rather than switching them on sequentially, MELA is able to come up with blends of different experts that allow it to tackle problems none could solve alone.

The authors liken the approach to training people in how to play soccer. You start out by getting them to do drills on individual skills like dribbling, passing, or shooting. Once they’ve mastered those, they can then intelligently combine them to deal with more dynamic situations in a real game.

After training the algorithm in simulation, the researchers uploaded it to a four-legged robot and subjected it to a battery of tests, both indoors and outdoors. The robot was able to adapt quickly to tricky surfaces like gravel or pebbles, and could quickly recover from being repeatedly pushed over before continuing on its way.

There’s still some way to go before the approach could be adapted for real-world commercially useful robots. For a start, MELA currently isn’t able to integrate visual perception or a sense of touch; it simply relies on feedback from the robot’s joints to tell it what’s going on around it. The more tasks you ask the robot to master, the more complex and time-consuming the training will get.

Nonetheless, the new approach points towards a promising way to make multi-skilled robots become more than the sum of their parts. As much fun as it is, it seems like laughing at compilations of clumsy robots may soon be a thing of the past.

Image Credit: Yang et al., Science Robotics Continue reading

Posted in Human Robots

#437901 How computer simulation will accelerate ...

Jeffrey C. Trinkle has always had a keen interest in robot hands. And, though it may be a long way off, Trinkle, who has studied robotics for more than thirty years, says he's most compelled by the prospect of robots performing “dexterous manipulation” at the level of a human “or beyond.” Continue reading

Posted in Human Robots

#437864 Video Friday: Jet-Powered Flying ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRA 2020 – June 1-15, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

ICRA 2020, the world’s best, biggest, longest virtual robotics conference ever, kicked off last Sunday with an all-star panel on a critical topic: “COVID-19: How Can Roboticists Help?”

Watch other ICRA keynotes on IEEE.tv.

We’re getting closer! Well, kinda. iRonCub, the jet-powered flying humanoid, is still a simulation for now, but not only are the simulations getting better—the researchers have begun testing real jet engines!

This video shows the latest results on Aerial Humanoid Robotics obtained by the Dynamic Interaction Control Lab at the Italian Institute of Technology. The video simulates robot and jet dynamics, where the latter uses the results obtained in the paper “Modeling, Identification and Control of Model Jet Engines for Jet Powered Robotics” published in IEEE Robotics and Automation Letters.

This video presents the paper entitled “Modeling, Identification and Control of Model Jet Engines for Jet Powered Robotics” published in IEEE Robotics and Automation Letters (Volume: 5 , Issue: 2 , April 2020 ) Page(s): 2070 – 2077. Preprint at https://arxiv.org/pdf/1909.13296.pdf.​

[ IIT ]

In a new pair of papers, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) came up with new tools to let robots better perceive what they’re interacting with: the ability to see and classify items, and a softer, delicate touch.

[ MIT CSAIL ]

UBTECH’s anti-epidemic solutions greatly relieve the workload of front-line medical staff and cut the consumption of personal protective equipment (PPE).

[ UBTECH ]

We demonstrate a method to assess the concrete deterioration in sewers by performing a tactile inspection motion with a sensorized foot of a legged robot.

[ THING ] via [ ANYmal Research ]

Get a closer look at the Virtual competition of the Urban Circuit and how teams can use the simulated environments to better prepare for the physical courses of the Subterranean Challenge.

[ SubT ]

Roboticists at the University of California San Diego have developed flexible feet that can help robots walk up to 40 percent faster on uneven terrain, such as pebbles and wood chips. The work has applications for search-and-rescue missions as well as space exploration.

[ UCSD ]

Thanks Ioana!

Tsuki is a ROS-enabled, highly dynamic quadruped robot developed by Lingkang Zhang.

And as far as we know, Lingkang is still chasing it.

[ Quadruped Tsuki ]

Thanks Lingkang!

Watch this.

This video shows an impressive demo of how YuMi’s superior precision, using precise servo gripper fingers and vacuum suction tool to pick up extremely small parts inside a mechanical watch. The video is not a final application used in production, it is a demo of how such an application can be implemented.

[ ABB ]

Meet Presso, the “5-minute dry cleaning robot.” Can you really call this a robot? We’re not sure. The company says it uses “soft robotics to hold the garment correctly, then clean, sanitize, press and dry under 5 minutes.” The machine was initially designed for use in the hospitality industry, but after adding a disinfectant function for COVID-19, it is now being used on movie and TV sets.

[ Presso ]

The next Mars rover launches next month (!), and here’s a look at some of the instruments on board.

[ JPL ]

Embodied Lead Engineer, Peter Teel, describes why we chose to build Moxie’s computing system from scratch and what makes it so unique.

[ Embodied ]

I did not know that this is where Pepper’s e-stop is. Nice design!

[ Softbank Robotics ]

State of the art in the field of swarm robotics lacks systems capable of absolute decentralization and is hence unable to mimic complex biological swarm systems consisting of simple units. Our research interconnects fields of swarm robotics and computer vision, and introduces novel use of a vision-based method UVDAR for mutual localization in swarm systems, allowing for absolute decentralization found among biological swarm systems. The developed methodology allows us to deploy real-world aerial swarming systems with robots directly localizing each other instead of communicating their states via a communication network, which is a typical bottleneck of current state of the art systems.

[ CVUT ]

I’m almost positive I could not do this task.

It’s easy to pick up objects using YuMi’s integrated vacuum functionality, it also supports ABB Robot’s Conveyor Tracking and Pickmaster 3 functionality, enabling it to track a moving conveyor and pick up objects using vision. Perfect for consumer products handling applications.

[ ABB ]

Cycling safety gestures, such as hand signals and shoulder checks, are an essential part of safe manoeuvring on the road. Child cyclists, in particular, might have difficulties performing safety gestures on the road or even forget about them, given the lack of cycling experience, road distractions and differences in motor and perceptual-motor abilities compared with adults. To support them, we designed two methods to remind about safety gestures while cycling. The first method employs an icon-based reminder in heads-up display (HUD) glasses and the second combines vibration on the handlebar and ambient light in the helmet. We investigated the performance of both methods in a controlled test-track experiment with 18 children using a mid-size tricycle, augmented with a set of sensors to recognize children’s behavior in real time. We found that both systems are successful in reminding children about safety gestures and have their unique advantages and disadvantages.

[ Paper ]

Nathan Sam and Robert “Red” Jensen fabricate and fly a Prandtl-M aircraft at NASA’s Armstrong Flight Research Center in California. The aircraft is the second of three prototypes of varying sizes to provide scientists with options to fly sensors in the Martian atmosphere to collect weather and landing site information for future human exploration of Mars.

[ NASA ]

This is clever: In order to minimize time spent labeling datasets, you can use radar to identify other vehicles, not because the radar can actually recognize other vehicles, but because the radar can recognize other stuff that’s big and moving, which turns out to be almost as good.

[ ICRA Paper ]

Happy 10th birthday to the Natural Robotics Lab at the University of Sheffield.

[ NRL ] Continue reading

Posted in Human Robots

#437859 We Can Do Better Than Human-Like Hands ...

One strategy for designing robots that are capable in anthropomorphic environments is to make the robots themselves as anthropomorphic as possible. It makes sense—for example, there are stairs all over the place because humans have legs, and legs are good at stairs, so if we give robots legs like humans, they’ll be good at stairs too, right? We also see this tendency when it comes to robotic grippers, because robots need to grip things that have been optimized for human hands.

Despite some amazing robotic hands inspired by the biology of our own human hands, there are also opportunities for creativity in gripper designs that do things human hands are not physically capable of. At ICRA 2020, researchers from Stanford University presented a paper on the design of a robotic hand that has fingers made of actuated rollers, allowing it to manipulate objects in ways that would tie your fingers into knots.

While it’s got a couple fingers, this prototype “roller grasper” hand tosses anthropomorphic design out the window in favor of unique methods of in-hand manipulation. The roller grasper does share some features with other grippers designed for in-hand manipulation using active surfaces (like conveyor belts embedded in fingers), but what’s new and exciting here is that those articulated active roller fingertips (or whatever non-anthropomorphic name you want to give them) provide active surfaces that are steerable. This means that the hand can grasp objects and rotate them without having to resort to complex sequences of finger repositioning, which is how humans do it.

Photo: Stanford University

Things like picking something flat off of a table, always tricky for robotic hands (and sometimes for human hands as well), is a breeze thanks to the fingertip rollers.

Each of the hand’s fingers has three actuated degrees of freedom, which result in several different ways in which objects can be grasped and manipulated. Things like picking something flat off of a table, always tricky for robotic hands (and sometimes for human hands as well), is a breeze thanks to the fingertip rollers. The motion of an object in this gripper isn’t quite holonomic, meaning that it can’t arbitrarily reorient things without sometimes going through other intermediate steps. And it’s also not compliant in the way that many other grippers are, limiting some types of grasps. This particular design probably won’t replace every gripper out there, but it’s particularly skilled at some specific kinds of manipulations in a way that makes it unique.

We should be clear that it’s not the intent of this paper (or of this article!) to belittle five-fingered robotic hands—the point is that there are lots of things that you can do with totally different hand designs, and just because humans use one kind of hand doesn’t mean that robots need to do the same if they want to match (or exceed) some specific human capabilities. If we could make robotic hands with five fingers that had all of the actuation and sensing and control that our own hands do, that would be amazing, but it’s probably decades away. In the meantime, there are plenty of different designs to explore.

And speaking of exploring different designs, these same folks are already at work on version two of their hand, which replaces the fingertip rollers with fingertip balls:

For more on this new version of the hand (among other things), we spoke with lead author Shenli Yuan via email. And the ICRA page is here if you have questions of your own.

IEEE Spectrum: Human hands are often seen as the standard for manipulation. When adding degrees of freedom that human hands don’t have (as in your work) can make robotic hands more capable than ours in many ways, do you think we should still think of human hands as something to try and emulate?

Shenli Yuan: Yes, definitely. Not only because human hands have great manipulation capability, but because we’re constantly surrounded by objects that were designed and built specifically to be manipulated by the human hand. Anthropomorphic robot hands are still worth investigating, and still have a long way to go before they truly match the dexterity of a human hand. The design we came up with is an exploration of what unique capabilities may be achieved if we are not bound by the constraints of anthropomorphism, and what a biologically impossible mechanism may achieve in robotic manipulation. In addition, for lots of tasks, it isn’t necessarily optimal to try and emulate the human hand. Perhaps in 20 to 50 years when robot manipulators are much better, they won’t look like the human hand that much. The design constraints for robotics and biology have points in common (like mechanical wear, finite tendons stiffness) but also major differences (like continuous rotation for robots and less heat dissipation problems for humans).

“For lots of tasks, it isn’t necessarily optimal to try and emulate the human hand. Perhaps in 20 to 50 years when robot manipulators are much better, they won’t look like the human hand that much.”
—Shenli Yuan, Stanford University

What are some manipulation capabilities of human hands that are the most difficult to replicate with your system?

There are a few things that come to mind. It cannot perform a power grasp (using the whole hand for grasping as opposed to pinch grasp that uses only fingertips), which is something that can be easily done by human hands. It cannot move or rotate objects instantaneously in arbitrary directions or about arbitrary axes, though the human hand is somewhat limited in this respect as well. It also cannot perform gaiting. That being said, these limitations exist largely because this grasper only has 9 degrees of freedom, as opposed to the human hand which has more than 20. We don’t think of this grasper as a replacement for anthropomorphic hands, but rather as a way to provide unique capabilities without all of the complexity associated with a highly actuated, humanlike hand.

What’s the most surprising or impressive thing that your hand is able to do?

The most impressive feature is that it can rotate objects continuously, which is typically difficult or inefficient for humanlike robot hands. Something really surprising was that we put most of our energy into the design and analysis of the grasper, and the control strategy we implemented for demonstrations is very simple. This simple control strategy works surprisingly well with very little tuning or trial-and-error.

With this many degrees of freedom, how complicated is it to get the hand to do what you want it to do?

The number of degrees of freedom is actually not what makes controlling it difficult. Most of the difficulties we encountered were actually due to the rolling contact between the rollers and the object during manipulation. The rolling behavior can be viewed as constantly breaking and re-establishing contacts between the rollers and objects, this very dynamic behavior introduces uncertainties in controlling our grasper. Specifically, it was difficult estimating the velocity of each contact point with the object, which changes based on object and finger position, object shape (especially curvature), and slip/no slip.

What more can you tell us about Roller Grasper V2?

Roller Grasper V2 has spherical rollers, while the V1 has cylindrical rollers. We realized that cylindrical rollers are very good at manipulating objects when the rollers and the object form line contacts, but it can be unstable when the grasp geometry doesn’t allow for a line contact between each roller and the grasped object. Spherical rollers solve that problem by allowing predictable points of contact regardless of how a surface is oriented.

The parallelogram mechanism of Roller Grasper V1 makes the pivot axis offset a bit from the center of the roller, which made our control and analysis more challenging. The kinematics of the Roller Grasper V2 is simpler. The base joint intersects with the finger, which intersects with the pivot joint, and the pivot joint intersects with the roller joint. It’s symmetrical design and simpler kinematics make our control and analysis a lot more straightforward. Roller Grasper V2 also has a larger pivot range of 180 degrees, while V1 is limited to 90 degrees.

In terms of control, we implemented more sophisticated control strategies (including a hand-crafted control strategy and an imitation learning based strategy) for the grasper to perform autonomous in-hand manipulation.

“Design of a Roller-Based Dexterous Hand for Object Grasping and Within-Hand Manipulation,” by Shenli Yuan, Austin D. Epps, Jerome B. Nowak, and J. Kenneth Salisbury from Stanford University is being presented at ICRA 2020.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots