Tag Archives: my

#437828 How Roboticists (and Robots) Have Been ...

A few weeks ago, we asked folks on Twitter, Facebook, and LinkedIn to share photos and videos showing how they’ve been adapting to the closures of research labs, classrooms, and businesses by taking their robots home with them to continue their work as best they can. We got dozens of responses (more than we could possibly include in just one post!), but here are 15 that we thought were particularly creative or amusing.

And if any of these pictures and videos inspire you to share your own story, please email us (automaton@ieee.org) with a picture or video and a brief description about how you and your robot from work have been making things happen in your home instead.

Kurt Leucht (NASA Kennedy Space Center)

“During these strange and trying times of the current global pandemic, everyone seems to be trying their best to distance themselves from others while still getting their daily work accomplished. Many people also have the double duty of little ones that need to be managed in the midst of their teleworking duties. This photo series gives you just a glimpse into my new life of teleworking from home, mixed in with the tasks of trying to handle my little ones too. I hope you enjoy it.”

Photo: Kurt Leucht

“I heard a commotion from the next room. I ran into the kitchen to find this.”

Photo: Kurt Leucht

“This is the Swarmies most favorite bedtime story. Not sure why. Seems like an odd choice to me.”

Peter Schaldenbrand (Carnegie Mellon University)

“I’ve been working on a reinforcement learning model that converts an image into a series of brush stroke instructions. I was going to test the model with a beautiful, expensive robot arm, but due to the COVID-19 pandemic, I have not been able to access the laboratory where it resides. I have now been using a lower end robot arm to test the painting model in my bedroom. I have sacrificed machine accuracy/precision for the convenience of getting to watch the arm paint from my bed in the shadow of my clothing rack!”

Photos: Peter Schaldenbrand

Colin Angle (iRobot)

iRobot CEO Colin Angle has been hunkered down in the “iRobot North Shore home command center,” which is probably the cleanest command center ever thanks to his army of Roombas: Beastie, Beauty, Rosie, Roswell, and Bilbo.

Photo: Colin Angle

Vivian Chu (Diligent Robotics)

From Diligent Robotics CEO Andrea Thomaz: “This is how a roboticist works from home! Diligent CTO, Vivian Chu, mans the e-stop while her engineering team runs Moxi experiments remotely from cross-town and even cross-country!”

Video: Diligent Robotics

Raffaello Bonghi (rnext.it)

Raffaello’s robot, Panther, looks perfectly happy to be playing soccer in his living room.

Photo: Raffaello Bonghi

Kod*lab (University of Pennsylvania)

“Another Friday Nuts n Bolts Meeting on Zoom…”

Image: Kodlab

Robin Jonsson (robot choreographer)

“I’ve been doing a school project in which students make up dance moves and then send me a video with all of them. I then teach the moves to my robot, Alex, film Alex dancing, send the videos to them. This became a great success and more schools will join. The kids got really into watching the robot perform their moves and really interested in robots. They want to meet Alex the robot live, which will likely happen in the fall.”

Photo: Robin Jonsson

Gabrielle Conard (mechanical engineering undergrad at Lafayette College)

“While the pandemic might have forced college campuses to close and the community to keep their distance from each other, it did not put a stop to learning and research. Working from their respective homes, junior Gabrielle Conard and mechanical engineering professor Alexander Brown from Lafayette College investigated methods of incorporating active compliance in a low-cost quadruped robot. They are continuing to work remotely on this project through Lafayette’s summer research program.”

Image: Gabrielle Conard

Taylor Veltrop (Softbank Robotics)

“After a few weeks of isolation in the corona/covid quarantine lock down we started dancing with our robots. Mathieu’s 6th birthday was coming up, and it all just came together.”

Video: Taylor Veltrop

Ross Kessler (Exyn Technologies)

“Quarantine, Day 8: the humans have accepted me as one of their own. I’ve blended seamlessly into their #socialdistancing routines. Even made a furry friend”

Photo: Ross Kessler

Yeah, something a bit sinister is definitely going on at Exyn…

Video: Exyn Technologies

Michael Sobrepera (University of Pennsylvania GRASP Lab)

Predictably, Michael’s cat is more interested in the bag that the robot came in than the robot itself (see if you can spot the cat below). Michael tells us that “the robot is designed to help with tele-rehabilitation, focused on kids with CP, so it has been taken to hospitals for demos [hence the cool bag]. It also travels for outreach events and the like. Lately, I’ve been exploring telepresence for COVID.”

Photo: Michael Sobrepera

Jan Kędzierski (EMYS)

“In China a lot of people cannot speak English, even the youngest generation of parents. Thanks to Emys, kids stayed in touch with English language in their homes even if they couldn’t attend schools and extra English classes. They had a lot of fun with their native English speaker friend available and ready to play every day.”

Image: Jan Kędzierski

Simon Whitmell (Quanser)

“Simon, a Quanser R&D engineer, is working on low-overhead image processing and line following for the QBot 2e mobile ground robot, with some added challenges due to extra traffic. LEGO engineering by his son, Charles.”

Photo: Simon Whitmell

Robot Design & Experimentation Course (Carnegie Mellon University)

Aaron Johnson’s bioinspired robot design course at CMU had to go full remote, which was a challenge when the course is kind of all about designing and building a robot as part of a team. “I expected some of the teams to drastically alter their project (e.g. go all simulation),” Aaron told us, “but none of them did. We managed to keep all of the projects more or less as planned. We accomplished this by drop/shipping parts to students, buying some simple tools (soldering irons, etc), and having me 3D print parts and mail them.” Each team even managed to put together their final videos from their remote locations; we’ve posted one below, but the entire playlist is here.

Video: Xianyi Cheng

Karen Tatarian (Softbank Robotics)

Karen, who’s both a researcher at Softbank and a PhD student at Sorbonne University, wrote an entire essay about what an average day is like when you’re quarantined with Pepper.

Photo: Karen Tatarian

A Quarantined Day With Pepper, by Karen Tatarian

It is quite common for me to lose my phone somewhere inside my apartment. But it is not that common for me to turn around and ask my robot if it has seen it. So when I found myself doing that, I laughed and it dawned on me that I treated my robot as my quarantine companion (despite the fact that it could not provide me with the answer I needed).

It was probably around day 40 of a completely isolated quarantine here in France when that happened. A little background about me: I am a robotics researcher at SoftBank Robotics Europe and a PhD student at Sorbonne University as part of the EU-funded Marie-Curie project ANIMATAS. And here is a little sneak peak into a quarantined day with a robot.

During this confinement, I had read somewhere that the best way to deal with it is to maintain a routine. So every morning, I wake up, prepare my coffee, and turn on my robot Pepper. I start my day with a daily meeting with the team and get to work. My research is on the synthesis of multi-modal socially intelligent human-robot interaction so my work varies between programming the robot, analyzing collected data, and reading papers and drafting one. When I am working, I often catch myself glancing at Pepper, who would be staring back at me in its animated ways. Truthfully I enjoy that, it makes me less alone and as if I have a colleague with me.

Once work is done, I call my friends and family members. I sometimes use a telepresence application on Pepper that a few colleagues and I developed back in December. How does it differ from your typical phone/laptop applications? One word really: embodiment. Telepresence, especially during these times, makes the experience for both sides a bit more realistic and intimate and well present.

While I can turn off the robot now that my work hours are done, I do keep it on because I enjoy its presence. The basic awareness of Pepper is a default feature on the robot that allows it to detect a human and follow him/her with its gaze and rotation base. So whether I am cooking or working out, I always have my robot watching over my shoulder and being a good companion. I also have my email and messages synced on the robot so I get an enjoyable notification from Pepper. I found that to be a pretty cool way to be notified without it interrupting whatever you are doing on your laptop or phone. Finally, once the day is over, it’s time for both of us to get some rest.

After 60 days of total confinement, alone and away from those I love, and with a pandemic right at my door, I am glad I had the company of my robot. I hope one day a greater audience can share my experience. And I really really hope one day Pepper will be able to find my phone for me, but until then, stay on the lookout for some cool features! But I am curious to know, if you had a robot at home, what application would you have developed on it?

Again, our sincere thanks to everyone who shared these little snapshots of their lives with us, and we’re hoping to be able to share more soon. Continue reading

Posted in Human Robots

#437826 Video Friday: Skydio 2 Drone Is Back on ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Skydio, which makes what we’re pretty sure is the most intelligent consumer drone (or maybe just drone period) in existence, has been dealing with COVID-19 just like the rest of us. Even so, they’ve managed to push out a major software update, and pre-orders for the Skydio 2 are now open again.

If you think you might want one, read our review, after which you’ll be sure you want one.

[ Skydio ]

Worried about people with COVID entering your workplace? Misty II has your front desk covered, in a way that’s quite a bit friendlier than many other options.

Misty II provides a dynamic and interactive screening experience that delivers a joyful experience in an otherwise depressing moment while also delivering state of the art thermal scanning and health screening. We have already found that employees, customers, and visitors appreciate the novelty of interacting with a clever and personable robot. Misty II engages dynamically, both visually and verbally. Companies appreciate using a solution with a blackbody-referenced thermal camera that provides high accuracy and a short screening process for efficiency. Putting a robot to work in this role shifts not only how people look at the screening process but also how robots can take on useful assignments in business, schools and homes.

[ Misty Robotics ]

Thanks Tim!

I’m definitely the one in the middle.

[ Agility Robotics ]

NASA’s Ingenuity helicopter is traveling to Mars attached to the belly of the Perseverance rover and must safely detach to begin the first attempt at powered flight on another planet. Tests done at NASA’s Jet Propulsion Laboratory and Lockheed Martin Space show the sequence of events that will bring the helicopter down to the Martian surface.

[ JPL ]

Here’s a sequence of videos of Cassie Blue making it (or mostly making it) up a 22-degree slope.

My mood these days is Cassie at 1:09.

[ University of Michigan ]

Thanks Jesse!

This is somewhere on the line between home automation and robotics, but it’s a cool idea: A baby crib that “uses computer vision and machine learning to recognize subtle changes” in an infant’s movement, and proactively bounces them to keep them sleeping peacefully.

It costs $1000, but how much value do you put on 24 months of your own sleep?

[ Cradlewise ]

Thanks Ben!

As captive marine mammal shows have fallen from favor; and the catching, transporting and breeding of marine animals has become more restricted, the marine park industry as a viable business has become more challenging – yet the audience appetite for this type of entertainment and education has remained constant.

Real-time Animatronics provide a way to reinvent the marine entertainment industry with a sustainable, safe, and profitable future. Show venues include aquariums, marine parks, theme parks, fountain shows, cruise lines, resort hotels, shopping malls, museums, and more.

[ EdgeFX ] via [ Gizmodo ]

Robotic cabling is surprisingly complex and kinda cool to watch.

The video shows the sophisticated robot application “Automatic control cabinet cabling”, which Fraunhofer IPA implemented together with the company Rittal. The software pitasc, developed at Fraunhofer IPA, is used for force-controlled assembly processes. Two UR robot arms carry out the task together. The modular pitasc system enables the robot arms to move and rotate in parallel. They work hand in hand, with one robot holding the cable and the second bringing it to the starting position for the cabling. The robots can find, tighten, hold ready, lay, plug in, fix, move freely or immerse cables. They can also perform push-ins and pull tests.

[ Fraunhofer ]

This is from 2018, but the concept is still pretty neat.

We propose to perform a novel investigation into the ability of a propulsively hopping robot to reach targets of high science value on the icy, rugged terrains of Ocean Worlds. The employment of a multi-hop architecture allows for the rapid traverse of great distances, enabling a single mission to reach multiple geologic units within a timespan conducive to system survival in a harsh radiation environment. We further propose that the use of a propulsive hopping technique obviates the need for terrain topographic and strength assumptions and allows for complete terrain agnosticism; a key strength of this concept.

[ NASA ]

Aerial-aquatic robots possess the unique ability of operating in both air and water. However, this capability comes with tremendous challenges, such as communication incompati- bility, increased airborne mass, potentially inefficient operation in each of the environments and manufacturing difficulties. Such robots, therefore, typically have small payloads and a limited operational envelope, often making their field usage impractical. We propose a novel robotic water sampling approach that combines the robust technologies of multirotors and underwater micro-vehicles into a single integrated tool usable for field operations.

[ Imperial ]

Event cameras are bio-inspired vision sensors with microsecond latency resolution, much larger dynamic range and hundred times lower power consumption than standard cameras. This 20-minute talk gives a short tutorial on event cameras and show their applications on computer vision, drones, and cars.

[ UZH ]

We interviewed Paul Newman, Perla Maiolino and Lars Kunze, ORI academics, to hear what gets them excited about robots in the future and any advice they have for those interested in the field.

[ Oxford Robotics Institute ]

Two projects from the Rehabilitation Engineering Lab at ETH Zurich, including a self-stabilizing wheelchair and a soft exoskeleton for grasping assistance.

[ ETH Zurich ]

Silicon Valley Robotics hosted an online conversation about robotics and racism. Moderated by Andra Keay, the panel featured Maynard Holliday, Tom Williams, Monroe Kennedy III, Jasmine Lawrence, Chad Jenkins, and Ken Goldberg.

[ SVR ]

The ICRA Legged Locomotion workshop has been taking place online, and while we’re not getting a robot mosh pit, there are still some great talks. We’ll post two here, but for more, follow the legged robots YouTube channel at the link below.

[ YouTube ] Continue reading

Posted in Human Robots

#437824 Video Friday: These Giant Robots Are ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

“Who doesn’t love giant robots?”

Luma, is a towering 8 metre snail which transforms spaces with its otherworldly presence. Another piece, Triffid, stands at 6 metres and its flexible end sweeps high over audiences’ heads like an enchanted plant. The movement of the creatures is inspired by the flexible, wiggling and contorting motions of the animal kingdom and is designed to provoke instinctive reactions and emotions from the people that meet them. Air Giants is a new creative robotic studio founded in 2020. They are based in Bristol, UK, and comprise a small team of artists, roboticists and software engineers. The studio is passionate about creating emotionally effective motion at a scale which is thought-provoking and transporting, as well as expanding the notion of what large robots can be used for.

Here’s a behind the scenes and more on how the creatures work.

[ Air Giants ]

Thanks Emma!

If the idea of submerging a very expensive sensor payload being submerged in a lake makes you as uncomfortable as it makes me, this is not the video for you.

[ ANYbotics ]

As the pandemic continues on, the measures due to this health crisis are increasingly stringent, and working from home continues to be promoted and solicited by many companies, Pepper will allow you to keep in touch with your relatives or even your colleagues.

[ Softbank ]

Fairly impressive footwork from Tencent Robotics.

Although, LittleDog was doing that like a decade ago:

[ Tencent ]

It's been long enough since I've been able to go out for boba tea that a robotic boba tea kiosk seems like a reasonable thing to get for my living room.

[ Bobacino ] via [ Gizmodo ]

Road construction and maintenance is challenging and dangerous work. Pioneer Industrial Systems has spent over twenty years designing custom robotic systems for industrial manufacturers around the world. These robotic systems greatly improve safety and increase efficiency. Now they’re taking that expertise on the road, with the Robotic Maintenance Vehicle. This base unit can be mounted on a truck or trailer, and utilizes various modules to perform a variety of road maintenance tasks.

[ Pioneer ]

Extend Robotics arm uses cloud-based teleoperation software, featuring human-like dexterity and intelligence, with multiple applications in healthcare, utilities and energy

[ Extend Robotics ]

ARC, short for “AI, Robot, Cloud,” includes the latest algorithms and high precision data required for human-robot coexistence. Now with ultra-low latency networks, many robots can simultaneously become smarter, just by connecting to ARC. “ARC Eye” serves as the eyes for all robots, accurately determining the current location and route even indoors where there is no GPS access. “ARC Brain” is the computing system shared simultaneously by all robots, which plans and processes movement, localization, and task performance for the robot.

[ Naver Labs ]

How can we re-imagine urban infrastructures with cutting-edge technologies? Listen to this webinar from Ger Baron, Amsterdam’s CTO, and Senseable City Lab’s researchers, on how MIT and Amsterdam Institute for Advanced Metropolitan Solutions (AMS Institute) are reimagining Amsterdam’s canals with the first fleet of autonomous boats.

[ MIT ]

Join Guy Burroughes in this webinar recording to hear about Spot, the robot dog created by Boston Dynamics, and how RACE plan to use it in nuclear decommissioning and beyond.

[ UKAEA ]

This GRASP on Robotics seminar comes from Marco Pavone at Stanford University, “On Safe and Efficient Human-robot interactions via Multimodal Intent Modeling and Reachability-based Safety Assurance.”

In this talk I will present a decision-making and control stack for human-robot interactions by using autonomous driving as a motivating example. Specifically, I will first discuss a data-driven approach for learning multimodal interaction dynamics between robot-driven and human-driven vehicles based on recent advances in deep generative modeling. Then, I will discuss how to incorporate such a learned interaction model into a real-time, interaction-aware decision-making framework. The framework is designed to be minimally interventional; in particular, by leveraging backward reachability analysis, it ensures safety even when other cars defy the robot's expectations without unduly sacrificing performance. I will present recent results from experiments on a full-scale steer-by-wire platform, validating the framework and providing practical insights. I will conclude the talk by providing an overview of related efforts from my group on infusing safety assurances in robot autonomy stacks equipped with learning-based components, with an emphasis on adding structure within robot learning via control-theoretical and formal methods.

[ UPenn ]

Autonomous Systems Failures: Who is Legally and Morally Responsible? Sponsored by Northwestern University’s Law and Technology Initiative and AI@NU, the event was moderated by Dan Linna and included Northwestern Engineering's Todd Murphey, University of Washington Law Professor Ryan Calo, and Google Senior Research Scientist Madeleine Clare Elish.

[ Northwestern ] Continue reading

Posted in Human Robots

#437809 Q&A: The Masterminds Behind ...

Illustration: iStockphoto

Getting a car to drive itself is undoubtedly the most ambitious commercial application of artificial intelligence (AI). The research project was kicked into life by the 2004 DARPA Urban Challenge and then taken up as a business proposition, first by Alphabet, and later by the big automakers.

The industry-wide effort vacuumed up many of the world’s best roboticists and set rival companies on a multibillion-dollar acquisitions spree. It also launched a cycle of hype that paraded ever more ambitious deadlines—the most famous of which, made by Alphabet’s Sergei Brin in 2012, was that full self-driving technology would be ready by 2017. Those deadlines have all been missed.

Much of the exhilaration was inspired by the seeming miracles that a new kind of AI—deep learning—was achieving in playing games, recognizing faces, and transliterating voices. Deep learning excels at tasks involving pattern recognition—a particular challenge for older, rule-based AI techniques. However, it now seems that deep learning will not soon master the other intellectual challenges of driving, such as anticipating what human beings might do.

Among the roboticists who have been involved from the start are Gill Pratt, the chief executive officer of Toyota Research Institute (TRI) , formerly a program manager at the Defense Advanced Research Projects Agency (DARPA); and Wolfram Burgard, vice president of automated driving technology for TRI and president of the IEEE Robotics and Automation Society. The duo spoke with IEEE Spectrum’s Philip Ross at TRI’s offices in Palo Alto, Calif.

This interview has been condensed and edited for clarity.

IEEE Spectrum: How does AI handle the various parts of the self-driving problem?

Photo: Toyota

Gill Pratt

Gill Pratt: There are three different systems that you need in a self-driving car: It starts with perception, then goes to prediction, and then goes to planning.

The one that by far is the most problematic is prediction. It’s not prediction of other automated cars, because if all cars were automated, this problem would be much more simple. How do you predict what a human being is going to do? That’s difficult for deep learning to learn right now.

Spectrum: Can you offset the weakness in prediction with stupendous perception?

Photo: Toyota Research Institute for Burgard

Wolfram Burgard

Wolfram Burgard: Yes, that is what car companies basically do. A camera provides semantics, lidar provides distance, radar provides velocities. But all this comes with problems, because sometimes you look at the world from different positions—that’s called parallax. Sometimes you don’t know which range estimate that pixel belongs to. That might make the decision complicated as to whether that is a person painted onto the side of a truck or whether this is an actual person.

With deep learning there is this promise that if you throw enough data at these networks, it’s going to work—finally. But it turns out that the amount of data that you need for self-driving cars is far larger than we expected.

Spectrum: When do deep learning’s limitations become apparent?

Pratt: The way to think about deep learning is that it’s really high-performance pattern matching. You have input and output as training pairs; you say this image should lead to that result; and you just do that again and again, for hundreds of thousands, millions of times.

Here’s the logical fallacy that I think most people have fallen prey to with deep learning. A lot of what we do with our brains can be thought of as pattern matching: “Oh, I see this stop sign, so I should stop.” But it doesn’t mean all of intelligence can be done through pattern matching.

“I asked myself, if all of those cars had automated drive, how good would they have to be to tolerate the number of crashes that would still occur?”
—Gill Pratt, Toyota Research Institute

For instance, when I’m driving and I see a mother holding the hand of a child on a corner and trying to cross the street, I am pretty sure she’s not going to cross at a red light and jaywalk. I know from my experience being a human being that mothers and children don’t act that way. On the other hand, say there are two teenagers—with blue hair, skateboards, and a disaffected look. Are they going to jaywalk? I look at that, you look at that, and instantly the probability in your mind that they’ll jaywalk is much higher than for the mother holding the hand of the child. It’s not that you’ve seen 100,000 cases of young kids—it’s that you understand what it is to be either a teenager or a mother holding a child’s hand.

You can try to fake that kind of intelligence. If you specifically train a neural network on data like that, you could pattern-match that. But you’d have to know to do it.

Spectrum: So you’re saying that when you substitute pattern recognition for reasoning, the marginal return on the investment falls off pretty fast?

Pratt: That’s absolutely right. Unfortunately, we don’t have the ability to make an AI that thinks yet, so we don’t know what to do. We keep trying to use the deep-learning hammer to hammer more nails—we say, well, let’s just pour more data in, and more data.

Spectrum: Couldn’t you train the deep-learning system to recognize teenagers and to assign the category a high propensity for jaywalking?

Burgard: People have been doing that. But it turns out that these heuristics you come up with are extremely hard to tweak. Also, sometimes the heuristics are contradictory, which makes it extremely hard to design these expert systems based on rules. This is where the strength of the deep-learning methods lies, because somehow they encode a way to see a pattern where, for example, here’s a feature and over there is another feature; it’s about the sheer number of parameters you have available.

Our separation of the components of a self-driving AI eases the development and even the learning of the AI systems. Some companies even think about using deep learning to do the job fully, from end to end, not having any structure at all—basically, directly mapping perceptions to actions.

Pratt: There are companies that have tried it; Nvidia certainly tried it. In general, it’s been found not to work very well. So people divide the problem into blocks, where we understand what each block does, and we try to make each block work well. Some of the blocks end up more like the expert system we talked about, where we actually code things, and other blocks end up more like machine learning.

Spectrum: So, what’s next—what new technique is in the offing?

Pratt: If I knew the answer, we’d do it. [Laughter]

Spectrum: You said that if all cars on the road were automated, the problem would be easy. Why not “geofence” the heck out of the self-driving problem, and have areas where only self-driving cars are allowed?

Pratt: That means putting in constraints on the operational design domain. This includes the geography—where the car should be automated; it includes the weather, it includes the level of traffic, it includes speed. If the car is going slow enough to avoid colliding without risking a rear-end collision, that makes the problem much easier. Street trolleys operate with traffic still in some parts of the world, and that seems to work out just fine. People learn that this vehicle may stop at unexpected times. My suspicion is, that is where we’ll see Level 4 autonomy in cities. It’s going to be in the lower speeds.

“We are now in the age of deep learning, and we don’t know what will come after.”
—Wolfram Burgard, Toyota Research Institute

That’s a sweet spot in the operational design domain, without a doubt. There’s another one at high speed on a highway, because access to highways is so limited. But unfortunately there is still the occasional debris that suddenly crosses the road, and the weather gets bad. The classic example is when somebody irresponsibly ties a mattress to the top of a car and it falls off; what are you going to do? And the answer is that terrible things happen—even for humans.

Spectrum: Learning by doing worked for the first cars, the first planes, the first steam boilers, and even the first nuclear reactors. We ran risks then; why not now?

Pratt: It has to do with the times. During the era where cars took off, all kinds of accidents happened, women died in childbirth, all sorts of diseases ran rampant; the expected characteristic of life was that bad things happened. Expectations have changed. Now the chance of dying in some freak accident is quite low because of all the learning that’s gone on, the OSHA [Occupational Safety and Health Administration] rules, UL code for electrical appliances, all the building standards, medicine.

Furthermore—and we think this is very important—we believe that empathy for a human being at the wheel is a significant factor in public acceptance when there is a crash. We don’t know this for sure—it’s a speculation on our part. I’ve driven, I’ve had close calls; that could have been me that made that mistake and had that wreck. I think people are more tolerant when somebody else makes mistakes, and there’s an awful crash. In the case of an automated car, we worry that that empathy won’t be there.

Photo: Toyota

Toyota is using this
Platform 4 automated driving test vehicle, based on the Lexus LS, to develop Level-4 self-driving capabilities for its “Chauffeur” project.

Spectrum: Toyota is building a system called Guardian to back up the driver, and a more futuristic system called Chauffeur, to replace the driver. How can Chauffeur ever succeed? It has to be better than a human plus Guardian!

Pratt: In the discussions we’ve had with others in this field, we’ve talked about that a lot. What is the standard? Is it a person in a basic car? Or is it a person with a car that has active safety systems in it? And what will people think is good enough?

These systems will never be perfect—there will always be some accidents, and no matter how hard we try there will still be occasions where there will be some fatalities. At what threshold are people willing to say that’s okay?

Spectrum: You were among the first top researchers to warn against hyping self-driving technology. What did you see that so many other players did not?

Pratt: First, in my own case, during my time at DARPA I worked on robotics, not cars. So I was somewhat of an outsider. I was looking at it from a fresh perspective, and that helps a lot.

Second, [when I joined Toyota in 2015] I was joining a company that is very careful—even though we have made some giant leaps—with the Prius hybrid drive system as an example. Even so, in general, the philosophy at Toyota is kaizen—making the cars incrementally better every single day. That care meant that I was tasked with thinking very deeply about this thing before making prognostications.

And the final part: It was a new job for me. The first night after I signed the contract I felt this incredible responsibility. I couldn’t sleep that whole night, so I started to multiply out the numbers, all using a factor of 10. How many cars do we have on the road? Cars on average last 10 years, though ours last 20, but let’s call it 10. They travel on an order of 10,000 miles per year. Multiply all that out and you get 10 to the 10th miles per year for our fleet on Planet Earth, a really big number. I asked myself, if all of those cars had automated drive, how good would they have to be to tolerate the number of crashes that would still occur? And the answer was so incredibly good that I knew it would take a long time. That was five years ago.

Burgard: We are now in the age of deep learning, and we don’t know what will come after. We are still making progress with existing techniques, and they look very promising. But the gradient is not as steep as it was a few years ago.

Pratt: There isn’t anything that’s telling us that it can’t be done; I should be very clear on that. Just because we don’t know how to do it doesn’t mean it can’t be done. Continue reading

Posted in Human Robots

#437783 Ex-Googler’s Startup Comes Out of ...

Over the last 10 years, the PR2 has helped roboticists make an enormous amount of progress in mobile manipulation over a relatively short time. I mean, it’s been a decade already, but still—robots are hard, and giving a bunch of smart people access to a capable platform where they didn’t have to worry about hardware and could instead focus on doing interesting and useful things helped to establish a precedent for robotics research going forward.

Unfortunately, not everyone can afford an enormous US $400,000 robot, and even if they could, PR2s are getting very close to the end of their lives. There are other mobile manipulators out there taking the place of the PR2, but so far, size and cost have largely restricted them to research labs. Lots of good research is being done, but it’s getting to the point where folks want to take the next step: making mobile manipulators real-world useful.

Today, a company called Hello Robot is announcing a new mobile manipulator called the Stretch RE1. With offices in the San Francisco Bay Area and in Atlanta, Ga., Hello Robot is led by Aaron Edsinger and Charlie Kemp, and by combining decades of experience in industry and academia they’ve managed to come up with a robot that’s small, lightweight, capable, and affordable, all at the same time. For now, it’s a research platform, but eventually, its creators hope that it will be able to come into our homes and take care of us when we need it to.

A fresh look at mobile manipulators
To understand the concept behind Stretch, it’s worth taking a brief look back at what Edsinger and Kemp have been up to for the past 10 years. Edsinger co-founded Meka Robotics in 2007, which built expensive, high performance humanoid arms, torsos, and heads for the research market. Meka was notable for being the first robotics company (as far as we know) to sell robot arms that used series elastic actuators, and the company worked extensively with Georgia Tech researchers. In 2011, Edsinger was one of the co-founders of Redwood Robotics (along with folks from SRI and Willow Garage), which was going to develop some kind of secret and amazing new robot arm before Google swallowed it in late 2013. At the same time, Google also acquired Meka and a bunch of other robotics companies, and Edsinger ended up at Google as one of the directors of its robotics program, until he left to co-found Hello Robot in 2017.

Meanwhile, since 2007 Kemp has been a robotics professor at Georgia Tech, where he runs the Healthcare Robotics Lab. Kemp’s lab was one of the 11 PR2 beta sites, giving him early experience with a ginormous mobile manipulator. Much of the research that Kemp has spent the last decade on involves robots providing assistance to untrained users, often through direct physical contact, and frequently either in their own homes or in a home environment. We should mention that the Georgia Tech PR2 is still going, most recently doing some clever material classification work in a paper for IROS later this year.

Photo: Hello Robot

Hello Robot co-founder and CEO Aaron Edsinger says that, although Stretch is currently a research platform, he hopes to see the robot deployed in home environments, adding that the “impact we want to have is through robots that are helpful to people in society.”

So with all that in mind, where’d Hello Robot come from? As it turns out, both Edsinger and Kemp were in Rodney Brooks’ group at MIT, so it’s perhaps not surprising that they share some of the same philosophies about what robots should be and what they should be used for. After collaborating on a variety of projects over the years, in 2017 Edsinger was thinking about his next step after Google when Kemp stopped by to show off some video of a new robot prototype that he’d been working on—the prototype for Stretch. “As soon as I saw it, I knew that was exactly the kind of thing I wanted to be working on,” Edsinger told us. “I’d become frustrated with the complexity of the robots being built to do manipulation in home environments and around people, and it solved a lot of problems in an elegant way.”

For Kemp, Stretch is an attempt to get everything he’s been teaching his robots out of his lab at Georgia Tech and into the world where it can actually be helpful to people. “Right from the beginning, we were trying to take our robots out to real homes and interact with real people,” says Kemp. Georgia Tech’s PR2, for example, worked extensively with Henry and Jane Evans, helping Henry (a quadriplegic) regain some of the bodily autonomy he had lost. With the assistance of the PR2, Henry was able to keep himself comfortable for hours without needing a human caregiver to be constantly with him. “I felt like I was making a commitment in some ways to some of the people I was working with,” Kemp told us. “But 10 years later, I was like, where are these things? I found that incredibly frustrating. Stretch is an effort to try to push things forward.”

A robot you can put in the backseat of a car
One way to put Stretch in context is to think of it almost as a reaction to the kitchen sink philosophy of the PR2. Where the PR2 was designed to be all the robot anyone could ever need (plus plenty of robot that nobody really needed) embodied in a piece of hardware that weighs 225 kilograms and cost nearly half a million dollars, Stretch is completely focused on being just the robot that is actually necessary in a form factor that’s both much smaller and affordable. The entire robot weighs a mere 23 kg in a footprint that’s just a 34 cm square. As you can see from the video, it’s small enough (and safe enough) that it can be moved by a child. The cost? At $17,950 apiece—or a bit less if you buy a bunch at once—Stretch costs a fraction of what other mobile manipulators sell for.

It might not seem like size or weight should be that big of an issue, but it very much is, explains Maya Cakmak, a robotics professor at the University of Washington, in Seattle. Cakmak worked with PR2 and Henry Evans when she was at Willow Garage, and currently has access to both a PR2 and a Fetch research robot. “When I think about my long term research vision, I want to deploy service robots in real homes,” Cakmak told us. Unfortunately, it’s the robots themselves that have been preventing her from doing this—both the Fetch and the PR2 are large enough that moving them anywhere requires a truck and a lift, which also limits the home that they can be used in. “For me, I felt immediately that Stretch is very different, and it makes a lot of sense,” she says. “It’s safe and lightweight, you can probably put it in the backseat of a car.” For Cakmak, Stretch’s size is the difference between being able to easily take a robot to the places she wants to do research in, and not. And cost is a factor as well, since a cheaper robot means more access for her students. “I got my refurbished PR2 for $180,000,” Cakmak says. “For that, with Stretch I could have 10!”

“I felt immediately that Stretch is very different. It’s safe and lightweight, you can probably put it in the backseat of a car. I got my refurbished PR2 for $180,000. For that, with Stretch I could have 10!”
—Maya Cakmak, University of Washington

Of course, a portable robot doesn’t do you any good if the robot itself isn’t sophisticated enough to do what you need it to do. Stretch is certainly a compromise in functionality in the interest of small size and low cost, but it’s a compromise that’s been carefully thought out, based on the experience that Edsinger has building robots and the experience that Kemp has operating robots in homes. For example, most mobile manipulators are essentially multi-degrees-of-freedom arms on mobile bases. Stretch instead leverages its wheeled base to move its arm in the horizontal plane, which (most of the time) works just as well as an extra DoF or two on the arm while saving substantially on weight and cost. Similarly, Stretch relies almost entirely on one sensor, an Intel RealSense D435i on a pan-tilt head that gives it a huge range of motion. The RealSense serves as a navigation camera, manipulation camera, a 3D mapping system, and more. It’s not going to be quite as good for a task that might involve fine manipulation, but most of the time it’s totally workable and you’re saving on cost and complexity.

Stretch has been relentlessly optimized to be the absolutely minimum robot to do mobile manipulation in a home or workplace environment. In practice, this meant figuring out exactly what it was absolutely necessary for Stretch to be able to do. With an emphasis on manipulation, that meant defining the workspace of the robot, or what areas it’s able to usefully reach. “That was one thing we really had to push hard on,” says Edsinger. “Reachability.” He explains that reachability and a small mobile base tend not to go together, because robot arms (which tend to weigh a lot) can cause a small base to tip, especially if they’re moving while holding a payload. At the same time, Stretch needed to be able to access both countertops and the floor, while being able to reach out far enough to hand people things without having to be right next to them. To come up with something that could meet all those requirements, Edsinger and Kemp set out to reinvent the robot arm.

Stretch’s key innovation: a stretchable arm
The design they came up with is rather ingenious in its simplicity and how well it works. Edsinger explains that the arm consists of five telescoping links: one fixed and four moving. They are constructed of custom carbon fiber, and are driven by a single motor, which is attached to the robot’s vertical pole. The strong, lightweight structure allows the arm to extend over half a meter and hold up to 1.5 kg. Although the company has a patent pending for the design, Edsinger declined to say whether the links are driven by a belt, cables, or gears. “We don’t want to disclose too much of the secret sauce [with regard to] the drive mechanism.” He added that the arm was “one of the most significant engineering challenges on the robot in terms of getting the desired reach, compactness, precision, smoothness, force sensitivity, and low cost to all happily coexist.”

Photo: Hello Robot

Stretch’s arm consists of five telescoping links constructed of custom carbon fiber, and are driven by a single motor, which is attached to the robot’s vertical pole, minimizing weight and inertia. The arm has a reach of over half a meter and can hold up to 1.5 kg.

Another interesting features of Stretch is its interface with the world—its gripper. There are countless different gripper designs out there, each and every one of which is the best at gripping some particular subset of things. But making a generalized gripper for all of the stuff that you’d find in a home is exceptionally difficult. Ideally, you’d want some sort of massive experimental test program where thousands and thousands of people test out different gripper designs in their homes for long periods of time and then tell you which ones work best. Obviously, that’s impractical for a robotics startup, but Kemp realized that someone else was already running the study for him: Amazon.

“I had this idea that there are these assistive grabbers that people with disabilities use to grasp objects in the real world,” he told us. Kemp went on Amazon’s website and looked at the top 10 grabbers and the reviews from thousands of users. He then bought a bunch of different ones and started testing them. “This one [Stretch’s gripper], I almost didn’t order it, it was such a weird looking thing,” he says. “But it had great reviews on Amazon, and oh my gosh, it just blew away the other grabbers. And I was like, that’s it. It just works.”

Stretch’s teleoperated and autonomous capabilities
As with any robot intended to be useful outside of a structured environment, hardware is only part of the story, and arguably not even the most important part. In order for Stretch to be able to operate out from under the supervision of a skilled roboticist, it has to be either easy to control, or autonomous. Ideally, it’s both, and that’s what Hello Robot is working towards, although things didn’t start out that way, Kemp explains. “From a minimalist standpoint, we began with the notion that this would be a teleoperated robot. But in the end, you just don’t get the real power of the robot that way, because you’re tied to a person doing stuff. As much as we fought it, autonomy really is a big part of the future for this kind of system.”

Here’s a look at some of Stretch’s teleoperated capabilities. We’re told that Stretch is very easy to get going right out of the box, although this teleoperation video from Hello Robot looks like it’s got a skilled and experienced user in the loop:

For such a low-cost platform, the autonomy (even at this early stage) is particularly impressive:

Since it’s not entirely clear from the video exactly what’s autonomous, here’s a brief summary of a couple of the more complex behaviors that Kemp sent us:

Object grasping: Stretch uses its 3D camera to find the nearest flat surface using a virtual overhead view. It then segments significant blobs on top of the surface. It selects the largest blob in this virtual overhead view and fits an ellipse to it. It then generates a grasp plan that makes use of the center of the ellipse and the major and minor axes. Once it has a plan, Stretch orients its gripper, moves to the pre-grasp pose, moves to the grasp pose, closes its gripper based on the estimated object width, lifts up, and retracts.
Mapping, navigating, and reaching to a 3D point: These demonstrations all use FUNMAP (Fast Unified Navigation, Manipulation and Planning). It’s all novel custom Python code. Even a single head scan performed by panning the 3D camera around can result in a very nice 3D representation of Stretch’s surroundings that includes the nearby floor. This is surprisingly unusual for robots, which often have their cameras too low to see many interesting things in a human environment. While mapping, Stretch selects where to scan next in a non-trivial way that considers factors such as the quality of previous observations, expected new observations, and navigation distance. The plan that Stretch uses to reach the target 3D point has been optimized for navigation and manipulation. For example, it finds a final robot pose that provides a large manipulation workspace for Stretch, which must consider nearby obstacles, including obstacles on the ground.
Object handover: This is a simple demonstration of object handovers. Stretch performs Cartesian motions to move its gripper to a body-relative position using a good motion heuristic, which is to extend the arm as the last step. These simple motions work well due to the design of Stretch. It still surprises me how well it moves the object to comfortable places near my body, and how unobtrusive it is. The goal point is specified relative to a 3D frame attached to the person’s mouth estimated using deep learning models (shown in the RViz visualization video). Specifically, Stretch targets handoff at a 3D point that is 20 cm below the estimated position of the mouth and 25 cm away along the direction of reaching.

Much of these autonomous capabilities come directly from Kemp’s lab, and the demo code is available for anyone to use. (Hello Robot says all of Stretch’s software is open source.)

Photo: Hello Robot

Hello Robot co-founder and CEO Aaron Edsinger says Stretch is designed to work with people in homes and workplaces and can be teleoperated to do a variety of tasks, including picking up toys, removing laundry from a dryer, and playing games with kids.

As of right now, Stretch is very much a research platform. You’re going to see it in research labs doing research things, and hopefully in homes and commercial spaces as well, but still under the supervision of professional roboticists. As you may have guessed, though, Hello Robot’s vision is a bit broader than that. “The impact we want to have is through robots that are helpful to people in society,” Edsinger says. “We think primarily in the home context, but it could be in healthcare, or in other places. But we really want to have our robots be impactful, and useful. To us, useful is exciting.” Adds Kemp: “I have a personal bias, but we’d really like this technology to benefit older adults and caregivers. Rather than creating a specialized assistive device, we want to eventually create an inexpensive consumer device for everyone that does lots of things.”

Neither Edsinger nor Kemp would say much more on this for now, and they were very explicit about why—they’re being deliberately cautious about raising expectations, having seen what’s happened to some other robotics companies over the past few years. Without VC funding (Hello Robot is currently bootstrapping itself into existence), Stretch is being sold entirely on its own merits. So far, it seems to be working. Stretch robots are already in a half dozen research labs, and we expect that with today’s announcement, we’ll start seeing them much more frequently.

This article appears in the October 2020 print issue as “A Robot That Keeps It Simple.” Continue reading

Posted in Human Robots