Tag Archives: muscle

#434569 From Parkour to Surgery, Here Are the ...

The robot revolution may not be here quite yet, but our mechanical cousins have made some serious strides. And now some of the leading experts in the field have provided a rundown of what they see as the 10 most exciting recent developments.

Compiled by the editors of the journal Science Robotics, the list includes some of the most impressive original research and innovative commercial products to make a splash in 2018, as well as a couple from 2017 that really changed the game.

1. Boston Dynamics’ Atlas doing parkour

It seems like barely a few months go by without Boston Dynamics rewriting the book on what a robot can and can’t do. Last year they really outdid themselves when they got their Atlas humanoid robot to do parkour, leaping over logs and jumping between wooden crates.

Atlas’s creators have admitted that the videos we see are cherry-picked from multiple attempts, many of which don’t go so well. But they say they’re meant to be inspirational and aspirational rather than an accurate picture of where robotics is today. And combined with the company’s dog-like Spot robot, they are certainly pushing boundaries.

2. Intuitive Surgical’s da Vinci SP platform
Robotic surgery isn’t new, but the technology is improving rapidly. Market leader Intuitive’s da Vinci surgical robot was first cleared by the FDA in 2000, but since then it’s come a long way, with the company now producing three separate systems.

The latest addition is the da Vinci SP (single port) system, which is able to insert three instruments into the body through a single 2.5cm cannula (tube) bringing a whole new meaning to minimally invasive surgery. The system was granted FDA clearance for urological procedures last year, and the company has now started shipping the new system to customers.

3. Soft robot that navigates through growth

Roboticists have long borrowed principles from the animal kingdom, but a new robot design that mimics the way plant tendrils and fungi mycelium move by growing at the tip has really broken the mold on robot navigation.

The editors point out that this is the perfect example of bio-inspired design; the researchers didn’t simply copy nature, they took a general principle and expanded on it. The tube-like robot unfolds from the front as pneumatic pressure is applied, but unlike a plant, it can grow at the speed of an animal walking and can navigate using visual feedback from a camera.

4. 3D printed liquid crystal elastomers for soft robotics
Soft robotics is one of the fastest-growing sub-disciplines in the field, but powering these devices without rigid motors or pumps is an ongoing challenge. A variety of shape-shifting materials have been proposed as potential artificial muscles, including liquid crystal elastomeric actuators.

Harvard engineers have now demonstrated that these materials can be 3D printed using a special ink that allows the designer to easily program in all kinds of unusual shape-shifting abilities. What’s more, their technique produces actuators capable of lifting significantly more weight than previous approaches.

5. Muscle-mimetic, self-healing, and hydraulically amplified actuators
In another effort to find a way to power soft robots, last year researchers at the University of Colorado Boulder designed a series of super low-cost artificial muscles that can lift 200 times their own weight and even heal themselves.

The devices rely on pouches filled with a liquid that makes them contract with the force and speed of mammalian skeletal muscles when a voltage is applied. The most promising for robotics applications is the so-called Peano-HASEL, which features multiple rectangular pouches connected in series that contract linearly, just like real muscle.

6. Self-assembled nanoscale robot from DNA

While you may think of robots as hulking metallic machines, a substantial number of scientists are working on making nanoscale robots out of DNA. And last year German researchers built the first remote-controlled DNA robotic arm.

They created a length of tightly-bound DNA molecules to act as the arm and attached it to a DNA base plate via a flexible joint. Because DNA carries a charge, they were able to get the arm to swivel around like the hand of a clock by applying a voltage and switch direction by reversing that voltage. The hope is that this arm could eventually be used to build materials piece by piece at the nanoscale.

7. DelFly nimble bioinspired robotic flapper

Robotics doesn’t only borrow from biology—sometimes it gives back to it, too. And a new flapping-winged robot designed by Dutch engineers that mimics the humble fruit fly has done just that, by revealing how the animals that inspired it carry out predator-dodging maneuvers.

The lab has been building flapping robots for years, but this time they ditched the airplane-like tail used to control previous incarnations. Instead, they used insect-inspired adjustments to the motions of its twin pairs of flapping wings to hover, pitch, and roll with the agility of a fruit fly. That has provided a useful platform for investigating insect flight dynamics, as well as more practical applications.

8. Soft exosuit wearable robot

Exoskeletons could prevent workplace injuries, help people walk again, and even boost soldiers’ endurance. Strapping on bulky equipment isn’t ideal, though, so researchers at Harvard are working on a soft exoskeleton that combines specially-designed textiles, sensors, and lightweight actuators.

And last year the team made an important breakthrough by combining their novel exoskeleton with a machine-learning algorithm that automatically tunes the device to the user’s particular walking style. Using physiological data, it is able to adjust when and where the device needs to deliver a boost to the user’s natural movements to improve walking efficiency.

9. Universal Robots (UR) e-Series Cobots
Robots in factories are nothing new. The enormous mechanical arms you see in car factories normally have to be kept in cages to prevent them from accidentally crushing people. In recent years there’s been growing interest in “co-bots,” collaborative robots designed to work side-by-side with their human colleagues and even learn from them.

Earlier this year saw the demise of ReThink robotics, the pioneer of the approach. But the simple single arm devices made by Danish firm Universal Robotics are becoming ubiquitous in workshops and warehouses around the world, accounting for about half of global co-bot sales. Last year they released their latest e-Series, with enhanced safety features and force/torque sensing.

10. Sony’s aibo
After a nearly 20-year hiatus, Sony’s robotic dog aibo is back, and it’s had some serious upgrades. As well as a revamp to its appearance, the new robotic pet takes advantage of advances in AI, with improved environmental and command awareness and the ability to develop a unique character based on interactions with its owner.

The editors note that this new context awareness mark the device out as a significant evolution in social robots, which many hope could aid in childhood learning or provide companionship for the elderly.

Image Credit: DelFly Nimble / CC BY – SA 4.0 Continue reading

Posted in Human Robots

#434508 The Top Biotech and Medicine Advances to ...

2018 was bonkers for science.

From a woman who gave birth using a transplanted uterus, to the infamous CRISPR baby scandal, to forensics adopting consumer-based genealogy test kits to track down criminals, last year was a factory churning out scientific “whoa” stories with consequences for years to come.

With CRISPR still in the headlines, Britain ready to bid Europe au revoir, and multiple scientific endeavors taking off, 2019 is shaping up to be just as tumultuous.

Here are the science and health stories that may blow up in the new year. But first, a note of caveat: predicting the future is tough. Forecasting is the lovechild between statistics and (a good deal of) intuition, and entire disciplines have been dedicated to the endeavor. But January is the perfect time to gaze into the crystal ball for wisps of insight into the year to come. Last year we predicted the widespread approval of gene therapy products—on the most part, we nailed it. This year we’re hedging our bets with multiple predictions.

Gene Drives Used in the Wild
The concept of gene drives scares many, for good reason. Gene drives are a step up in severity (and consequences) from CRISPR and other gene-editing tools. Even with germline editing, in which the sperm, egg, or embryos are altered, gene editing affects just one genetic line—one family—at least at the beginning, before they reproduce with the general population.

Gene drives, on the other hand, have the power to wipe out entire species.

In a nutshell, they’re little bits of DNA code that help a gene transfer from parent to child with almost 100 percent perfect probability. The “half of your DNA comes from dad, the other comes from mom” dogma? Gene drives smash that to bits.

In other words, the only time one would consider using a gene drive is to change the genetic makeup of an entire population. It sounds like the plot of a supervillain movie, but scientists have been toying around with the idea of deploying the technology—first in mosquitoes, then (potentially) in rodents.

By releasing just a handful of mutant mosquitoes that carry gene drives for infertility, for example, scientists could potentially wipe out entire populations that carry infectious scourges like malaria, dengue, or Zika. The technology is so potent—and dangerous—the US Defense Advances Research Projects Agency is shelling out $65 million to suss out how to deploy, control, counter, or even reverse the effects of tampering with ecology.

Last year, the U.N. gave a cautious go-ahead for the technology to be deployed in the wild in limited terms. Now, the first release of a genetically modified mosquito is set for testing in Burkina Faso in Africa—the first-ever field experiment involving gene drives.

The experiment will only release mosquitoes in the Anopheles genus, which are the main culprits transferring disease. As a first step, over 10,000 male mosquitoes are set for release into the wild. These dudes are genetically sterile but do not cause infertility, and will help scientists examine how they survive and disperse as a preparation for deploying gene-drive-carrying mosquitoes.

Hot on the project’s heels, the nonprofit consortium Target Malaria, backed by the Bill and Melinda Gates foundation, is engineering a gene drive called Mosq that will spread infertility across the population or kill out all female insects. Their attempt to hack the rules of inheritance—and save millions in the process—is slated for 2024.

A Universal Flu Vaccine
People often brush off flu as a mere annoyance, but the infection kills hundreds of thousands each year based on the CDC’s statistical estimates.

The flu virus is actually as difficult of a nemesis as HIV—it mutates at an extremely rapid rate, making effective vaccines almost impossible to engineer on time. Scientists currently use data to forecast the strains that will likely explode into an epidemic and urge the public to vaccinate against those predictions. That’s partly why, on average, flu vaccines only have a success rate of roughly 50 percent—not much better than a coin toss.

Tired of relying on educated guesses, scientists have been chipping away at a universal flu vaccine that targets all strains—perhaps even those we haven’t yet identified. Often referred to as the “holy grail” in epidemiology, these vaccines try to alert our immune systems to parts of a flu virus that are least variable from strain to strain.

Last November, a first universal flu vaccine developed by BiondVax entered Phase 3 clinical trials, which means it’s already been proven safe and effective in a small numbers and is now being tested in a broader population. The vaccine doesn’t rely on dead viruses, which is a common technique. Rather, it uses a small chain of amino acids—the chemical components that make up proteins—to stimulate the immune system into high alert.

With the government pouring $160 million into the research and several other universal candidates entering clinical trials, universal flu vaccines may finally experience a breakthrough this year.

In-Body Gene Editing Shows Further Promise
CRISPR and other gene editing tools headed the news last year, including both downers suggesting we already have immunity to the technology and hopeful news of it getting ready for treating inherited muscle-wasting diseases.

But what wasn’t widely broadcasted was the in-body gene editing experiments that have been rolling out with gusto. Last September, Sangamo Therapeutics in Richmond, California revealed that they had injected gene-editing enzymes into a patient in an effort to correct a genetic deficit that prevents him from breaking down complex sugars.

The effort is markedly different than the better-known CAR-T therapy, which extracts cells from the body for genetic engineering before returning them to the hosts. Rather, Sangamo’s treatment directly injects viruses carrying the edited genes into the body. So far, the procedure looks to be safe, though at the time of reporting it was too early to determine effectiveness.

This year the company hopes to finally answer whether it really worked.

If successful, it means that devastating genetic disorders could potentially be treated with just a few injections. With a gamut of new and more precise CRISPR and other gene-editing tools in the works, the list of treatable inherited diseases is likely to grow. And with the CRISPR baby scandal potentially dampening efforts at germline editing via regulations, in-body gene editing will likely receive more attention if Sangamo’s results return positive.

Neuralink and Other Brain-Machine Interfaces
Neuralink is the stuff of sci fi: tiny implanted particles into the brain could link up your biological wetware with silicon hardware and the internet.

But that’s exactly what Elon Musk’s company, founded in 2016, seeks to develop: brain-machine interfaces that could tinker with your neural circuits in an effort to treat diseases or even enhance your abilities.

Last November, Musk broke his silence on the secretive company, suggesting that he may announce something “interesting” in a few months, that’s “better than anyone thinks is possible.”

Musk’s aspiration for achieving symbiosis with artificial intelligence isn’t the driving force for all brain-machine interfaces (BMIs). In the clinics, the main push is to rehabilitate patients—those who suffer from paralysis, memory loss, or other nerve damage.

2019 may be the year that BMIs and neuromodulators cut the cord in the clinics. These devices may finally work autonomously within a malfunctioning brain, applying electrical stimulation only when necessary to reduce side effects without requiring external monitoring. Or they could allow scientists to control brains with light without needing bulky optical fibers.

Cutting the cord is just the first step to fine-tuning neurological treatments—or enhancements—to the tune of your own brain, and 2019 will keep on bringing the music.

Image Credit: angellodeco / Shutterstock.com Continue reading

Posted in Human Robots

#433474 How to Feed Global Demand for ...

“You really can’t justify tuna in Chicago as a source of sustenance.” That’s according to Dr. Sylvia Earle, a National Geographic Society Explorer who was the first female chief scientist at NOAA. She came to the Good Food Institute’s Good Food Conference to deliver a call to action around global food security, agriculture, environmental protection, and the future of consumer choice.

It seems like all options should be on the table to feed an exploding population threatened by climate change. But Dr. Earle, who is faculty at Singularity University, drew a sharp distinction between seafood for sustenance versus seafood as a choice. “There is this widespread claim that we must take large numbers of wildlife from the sea in order to have food security.”

A few minutes later, Dr. Earle directly addressed those of us in the audience. “We know the value of a dead fish,” she said. That’s market price. “But what is the value of a live fish in the ocean?”

That’s when my mind blew open. What is the value—or put another way, the cost—of using the ocean as a major source of protein for humans? How do you put a number on that? Are we talking about dollars and cents, or about something far larger?

Dr. Liz Specht of the Good Food Institute drew the audience’s attention to a strange imbalance. Currently, about half of the yearly global catch of seafood comes from aquaculture. That means that the other half is wild caught. It’s hard to imagine half of your meat coming directly from the forests and the plains, isn’t it? And yet half of the world’s seafood comes from direct harvesting of the oceans, by way of massive overfishing, a terrible toll from bycatch, a widespread lack of regulation and enforcement, and even human rights violations such as slavery.

The search for solutions is on, from both within the fishing industry and from external agencies such as governments and philanthropists. Could there be another way?

Makers of plant-based seafood and clean seafood think they know how to feed the global demand for seafood without harming the ocean. These companies are part of a larger movement harnessing technology to reduce our reliance on wild and domesticated animals—and all the environmental, economic, and ethical issues that come with it.

Producers of plant-based seafood (20 or so currently) are working to capture the taste, texture, and nutrition of conventional seafood without the limitations of geography or the health of a local marine population. Like with plant-based meat, makers of plant-based seafood are harnessing food science and advances in chemistry, biology, and engineering to make great food. The industry’s strategy? Start with what the consumer wants, and then figure out how to achieve that great taste through technology.

So how does plant-based seafood taste? Pretty good, as it turns out. (The biggest benefit of a food-oriented conference is that your mouth is always full!)

I sampled “tuna” salad made from Good Catch Food’s fish-free tuna, which is sourced from legumes; the texture was nearly indistinguishable from that of flaked albacore tuna, and there was no lingering fishy taste to overpower my next bite. In a blind taste test, I probably wouldn’t have known that I was eating a plant-based seafood alternative. Next I reached for Ocean Hugger Food’s Ahimi, a tomato-based alternative to raw tuna. I adore Hawaiian poke, so I was pleasantly surprised when my Ahimi-based poke captured the bite of ahi tuna. It wasn’t quite as delightfully fatty as raw tuna, but with wild tuna populations struggling to recover from a 97% decline in numbers from 40 years ago, Ahimi is a giant stride in the right direction.

These plant-based alternatives aren’t the only game in town, however.

The clean meat industry, which has also been called “cultured meat” or “cellular agriculture,” isn’t seeking to lure consumers away from animal protein. Instead, cells are sampled from live animals and grown in bioreactors—meaning that no animal is slaughtered to produce real meat.

Clean seafood is poised to piggyback off platforms developed for clean meat; growing fish cells in the lab should rely on the same processes as growing meat cells. I know of four companies currently focusing on seafood (Finless Foods, Wild Type, BlueNalu, and Seafuture Sustainable Biotech), and a few more are likely to emerge from stealth mode soon.

Importantly, there’s likely not much difference between growing clean seafood from the top or the bottom of the food chain. Tuna, for example, are top predators that must grow for at least 10 years before they’re suitable as food. Each year, a tuna consumes thousands of pounds of other fish, shellfish, and plankton. That “long tail of groceries,” said Dr. Earle, “is a pretty expensive choice.” Excitingly, clean tuna would “level the trophic playing field,” as Dr. Specht pointed out.

All this is only the beginning of what might be possible.

Combining synthetic biology with clean meat and seafood means that future products could be personalized for individual taste preferences or health needs, by reprogramming the DNA of the cells in the lab. Industries such as bioremediation and biofuels likely have a lot to teach us about sourcing new ingredients and flavors from algae and marine plants. By harnessing rapid advances in automation, robotics, sensors, machine vision, and other big-data analytics, the manufacturing and supply chains for clean seafood could be remarkably safe and robust. Clean seafood would be just that: clean, without pathogens, parasites, or the plastic threatening to fill our oceans, meaning that you could enjoy it raw.

What about price? Dr. Mark Post, a pioneer in clean meat who is also faculty at Singularity University, estimated that 80% of clean-meat production costs come from the expensive medium in which cells are grown—and some ingredients in the medium are themselves sourced from animals, which misses the point of clean meat. Plus, to grow a whole cut of food, like a fish fillet, the cells need to be coaxed into a complex 3D structure with various cell types like muscle cells and fat cells. These two technical challenges must be solved before clean meat and seafood give consumers the experience they want, at the price they want.

In this respect clean seafood has an unusual edge. Most of what we know about growing animal cells in the lab comes from the research and biomedical industries (from tissue engineering, for example)—but growing cells to replace an organ has different constraints than growing cells for food. The link between clean seafood and biomedicine is less direct, empowering innovators to throw out dogma and find novel reagents, protocols, and equipment to grow seafood that captures the tastes, textures, smells, and overall experience of dining by the ocean.

Asked to predict when we’ll be seeing clean seafood in the grocery store, Lou Cooperhouse the CEO of BlueNalu, explained that the challenges aren’t only in the lab: marketing, sales, distribution, and communication with consumers are all critical. As Niya Gupta, the founder of Fork & Goode, said, “The question isn’t ‘can we do it’, but ‘can we sell it’?”

The good news is that the clean meat and seafood industry is highly collaborative; there are at least two dozen companies in the space, and they’re all talking to each other. “This is an ecosystem,” said Dr. Uma Valeti, the co-founder of Memphis Meats. “We’re not competing with each other.” It will likely be at least a decade before science, business, and regulation enable clean meat and seafood to routinely appear on restaurant menus, let alone market shelves.

Until then, think carefully about your food choices. Meditate on Dr. Earle’s question: “What is the real cost of that piece of halibut?” Or chew on this from Dr. Ricardo San Martin, of the Sutardja Center at the University of California, Berkeley: “Food is a system of meanings, not an object.” What are you saying when you choose your food, about your priorities and your values and how you want the future to look? Do you think about animal welfare? Most ethical regulations don’t extend to marine life, and if you don’t think that ocean creatures feel pain, consider the lobster.

Seafood is largely an acquired taste, since most of us don’t live near the water. Imagine a future in which children grow up loving the taste of delicious seafood but without hurting a living animal, the ocean, or the global environment.

Do more than imagine. As Dr. Earle urged us, “Convince the public at large that this is a really cool idea.”

Widely available
Medium availability
Emerging

Gardein
Ahimi (Ocean Hugger)
New Wave Foods

Sophie’s Kitchen
Cedar Lake
To-funa Fish

Quorn
SoFine Foods
Seamore

Vegetarian Plus
Akua
Good Catch

Heritage
Hungry Planet
Odontella

Loma Linda
Heritage Health Food
Terramino Foods

The Vegetarian Butcher
May Wah

VBites

Table based on Figure 5 of the report “An Ocean of Opportunity: Plant-based and clean seafood for sustainable oceans without sacrifice,” from The Good Food Institute.

Image Credit: Tono Balaguer / Shutterstock.com Continue reading

Posted in Human Robots

#432893 These 4 Tech Trends Are Driving Us ...

From a first-principles perspective, the task of feeding eight billion people boils down to converting energy from the sun into chemical energy in our bodies.

Traditionally, solar energy is converted by photosynthesis into carbohydrates in plants (i.e., biomass), which are either eaten by the vegans amongst us, or fed to animals, for those with a carnivorous preference.

Today, the process of feeding humanity is extremely inefficient.

If we could radically reinvent what we eat, and how we create that food, what might you imagine that “future of food” would look like?

In this post we’ll cover:

Vertical farms
CRISPR engineered foods
The alt-protein revolution
Farmer 3.0

Let’s dive in.

Vertical Farming
Where we grow our food…

The average American meal travels over 1,500 miles from farm to table. Wine from France, beef from Texas, potatoes from Idaho.

Imagine instead growing all of your food in a 50-story tall vertical farm in downtown LA or off-shore on the Great Lakes where the travel distance is no longer 1,500 miles but 50 miles.

Delocalized farming will minimize travel costs at the same time that it maximizes freshness.

Perhaps more importantly, vertical farming also allows tomorrow’s farmer the ability to control the exact conditions of her plants year round.

Rather than allowing the vagaries of the weather and soil conditions to dictate crop quality and yield, we can now perfectly control the growing cycle.

LED lighting provides the crops with the maximum amount of light, at the perfect frequency, 24 hours a day, 7 days a week.

At the same time, sensors and robots provide the root system the exact pH and micronutrients required, while fine-tuning the temperature of the farm.

Such precision farming can generate yields that are 200% to 400% above normal.

Next let’s explore how we can precision-engineer the genetic properties of the plant itself.

CRISPR and Genetically Engineered Foods
What food do we grow?

A fundamental shift is occurring in our relationship with agriculture. We are going from evolution by natural selection (Darwinism) to evolution by human direction.

CRISPR (the cutting edge gene editing tool) is providing a pathway for plant breeding that is more predictable, faster and less expensive than traditional breeding methods.

Rather than our crops being subject to nature’s random, environmental whim, CRISPR unlocks our capability to modify our crops to match the available environment.

Further, using CRISPR we will be able to optimize the nutrient density of our crops, enhancing their value and volume.

CRISPR may also hold the key to eliminating common allergens from crops. As we identify the allergen gene in peanuts, for instance, we can use CRISPR to silence that gene, making the crops we raise safer for and more accessible to a rapidly growing population.

Yet another application is our ability to make plants resistant to infection or more resistant to drought or cold.

Helping to accelerate the impact of CRISPR, the USDA recently announced that genetically engineered crops will not be regulated—providing an opening for entrepreneurs to capitalize on the opportunities for optimization CRISPR enables.

CRISPR applications in agriculture are an opportunity to help a billion people and become a billionaire in the process.

Protecting crops against volatile environments, combating crop diseases and increasing nutrient values, CRISPR is a promising tool to help feed the world’s rising population.

The Alt-Protein/Lab-Grown Meat Revolution
Something like a third of the Earth’s arable land is used for raising livestock—a massive amount of land—and global demand for meat is predicted to double in the coming decade.

Today, we must grow an entire cow—all bones, skin, and internals included—to produce a steak.

Imagine if we could instead start with a single muscle stem cell and only grow the steak, without needing the rest of the cow? Think of it as cellular agriculture.

Imagine returning millions, perhaps billions, of acres of grazing land back to the wilderness? This is the promise of lab-grown meats.

Lab-grown meat can also be engineered (using technology like CRISPR) to be packed with nutrients and be the healthiest, most delicious protein possible.

We’re watching this technology develop in real time. Several startups across the globe are already working to bring artificial meats to the food industry.

JUST, Inc. (previously Hampton Creek) run by my friend Josh Tetrick, has been on a mission to build a food system where everyone can get and afford delicious, nutritious food. They started by exploring 300,000+ species of plants all around the world to see how they can make food better and now are investing heavily in stem-cell-grown meats.

Backed by Richard Branson and Bill Gates, Memphis Meats is working on ways to produce real meat from animal cells, rather than whole animals. So far, they have produced beef, chicken, and duck using cultured cells from living animals.

As with vertical farming, transitioning production of our majority protein source to a carefully cultivated environment allows for agriculture to optimize inputs (water, soil, energy, land footprint), nutrients and, importantly, taste.

Farmer 3.0
Vertical farming and cellular agriculture are reinventing how we think about our food supply chain and what food we produce.

The next question to answer is who will be producing the food?

Let’s look back at how farming evolved through history.

Farmers 0.0 (Neolithic Revolution, around 9000 BCE): The hunter-gatherer to agriculture transition gains momentum, and humans cultivated the ability to domesticate plants for food production.

Farmers 1.0 (until around the 19th century): Farmers spent all day in the field performing backbreaking labor, and agriculture accounted for most jobs.

Farmers 2.0 (mid-20th century, Green Revolution): From the invention of the first farm tractor in 1812 through today, transformative mechanical biochemical technologies (fertilizer) boosted yields and made the job of farming easier, driving the US farm job rate down to less than two percent today.

Farmers 3.0: In the near future, farmers will leverage exponential technologies (e.g., AI, networks, sensors, robotics, drones), CRISPR and genetic engineering, and new business models to solve the world’s greatest food challenges and efficiently feed the eight-billion-plus people on Earth.

An important driver of the Farmer 3.0 evolution is the delocalization of agriculture driven by vertical and urban farms. Vertical farms and urban agriculture are empowering a new breed of agriculture entrepreneurs.

Let’s take a look at an innovative incubator in Brooklyn, New York called Square Roots.

Ten farm-in-a-shipping-containers in a Brooklyn parking lot represent the first Square Roots campus. Each 8-foot x 8.5-foot x 20-foot shipping container contains an equivalent of 2 acres of produce and can yield more than 50 pounds of produce each week.

For 13 months, one cohort of next-generation food entrepreneurs takes part in a curriculum with foundations in farming, business, community and leadership.

The urban farming incubator raised a $5.4 million seed funding round in August 2017.

Training a new breed of entrepreneurs to apply exponential technology to growing food is essential to the future of farming.

One of our massive transformative purposes at the Abundance Group is to empower entrepreneurs to generate extraordinary wealth while creating a world of abundance. Vertical farms and cellular agriculture are key elements enabling the next generation of food and agriculture entrepreneurs.

Conclusion
Technology is driving food abundance.

We’re already seeing food become demonetized, as the graph below shows.

From 1960 to 2014, the percent of income spent on food in the U.S. fell from 19 percent to under 10 percent of total disposable income—a dramatic decrease over the 40 percent of household income spent on food in 1900.

The dropping percent of per-capita disposable income spent on food. Source: USDA, Economic Research Service, Food Expenditure Series
Ultimately, technology has enabled a massive variety of food at a significantly reduced cost and with fewer resources used for production.

We’re increasingly going to optimize and fortify the food supply chain to achieve more reliable, predictable, and nutritious ways to obtain basic sustenance.

And that means a world with abundant, nutritious, and inexpensive food for every man, woman, and child.

What an extraordinary time to be alive.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital.

Abundance-Digital is my ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Nejron Photo / Shutterstock.com Continue reading

Posted in Human Robots

#432539 10 Amazing Things You Can Learn From ...

Hardly a day goes by without a research study or article published talking sh*t—or more precisely, talking about the gut microbiome. When it comes to cutting-edge innovations in medicine, all signs point to the microbiome. Maybe we should have listened to Hippocrates: “All disease begins in the gut.”

Your microbiome is mostly located in your gut and contains trillions of little guys and gals called microbes. If you want to optimize your health, biohack your body, make progress against chronic disease, or know which foods are right for you—almost all of this information can be found in your microbiome.

My company, Viome, offers technology to measure your microscopic organisms and their behavior at a molecular level. Think of it as the Instagram of your inner world. A snapshot of what’s happening inside your body. New research about the microbiome is changing our understanding of who we are as humans and how the human body functions.

It turns out the microbiome may be mission control for your body and mind. Your healthy microbiome is part best friend, part power converter, part engine, and part pharmacist. At Viome, we’re working to analyze these microbial functions and recommend a list of personalized food and supplements to keep these internal complex machines in a finely tuned balance.

We now have more information than ever before about what your microbiome is doing, and it’s going to help you and the rest of the world do a whole lot better. The new insights emerging from microbiome research are changing our perception of what keeps us healthy and what makes us sick. This new understanding of the microbiome activities may put an end to conflicting food advice and make fad diets a thing of the past.

What are these new insights showing us? The information is nothing short of mind-blowing. The value of your poop just got an upgrade.

Here are some of the amazing things we’ve learned from our work at Viome.

1. Was Popeye wrong? Why “health food” isn’t necessarily healthy.
Each week there is a new fad diet released, discussed, and followed. The newest “research” shows that this is now the superfood to eat for everyone. But, too often, the fad diet is just a regurgitation of what worked for one person and shouldn’t be followed by everyone else.

For example, we’ve been told to eat our greens and that greens and nuts are “anti-inflammatory,” but this is actually not always true. Spinach, bran, rhubarb, beets, nuts, and nut butters all contain oxalate. We now know that oxalate-containing food can be harmful, unless you have the microbes present that can metabolize it into a non-harmful substance.

30% of Viome customers do not have the microbes to metabolize oxalates properly. In other words, “healthy foods” like spinach are actually not healthy for these people.

Looks like not everyone should follow Popeye’s food plan.

2. Aren’t foods containing “antioxidants” always good for everyone?
Just like oxalates, polyphenols in foods are usually considered very healthy, but unless you have microbes that utilize specific polyphenols, you may not get full benefit from them. One example is a substance found in these foods called ellagic acid. We can detect if your microbiome is metabolizing ellagic acid and converting it into urolithin A. It is only the urolithin A that has anti-inflammatory and antioxidant effects. Without the microbes to do this conversion you will not benefit from the ellagic acid in foods.

Examples: Walnuts, raspberries, pomegranate, blackberries, pecans, and cranberries all contain ellagic acid.

We have analyzed tens of thousands of people, and only about 50% of the people actually benefit from eating more foods containing ellagic acid.

3. You’re probably eating too much protein (and it may be causing inflammation).
When you think high-protein diet, you think paleo, keto, and high-performance diets.

Protein is considered good for you. It helps build muscle and provide energy—but if you eat too much, it can cause inflammation and decrease longevity.

We can analyze the activity of your microbiome to determine if you are eating too much protein that feeds protein-fermenting bacteria like Alistipes putredinis and Tannerella forsythia, and if these organisms are producing harmful substances such as ammonia, hydrogen sulfide, p-cresol, or putrescine. These substances can damage your gut lining and lead to things like leaky gut.

4. Something’s fishy. Are “healthy foods” causing heart disease?
Choline in certain foods can get converted by bacteria into a substance called trimethylamine (TMA) that is associated with heart disease when it gets absorbed into your body and converted to TMAO. However, TMA conversion doesn’t happen in individuals without these types of bacteria in their microbiome.

We can see the TMA production pathways and many of the gammaproteobacteria that do this conversion.

What foods contain choline? Liver, salmon, chickpeas, split peas, eggs, navy beans, peanuts, and many others.

Before you decide to go full-on pescatarian or paleo, you may want to check if your microbiome is producing TMA with that salmon or steak.

5. Hold up, Iron Man. We can see inflammation from too much iron.
Minerals like iron in your food can, in certain inflammatory microbial environments, promote growth of pathogens like Esherichia, Shigella, and Salmonella.

Maybe it wasn’t just that raw chicken that gave you food poisoning, but your toxic microbiome that made you sick.

On the other hand, when you don’t have enough iron, you could become anemic leading to weakness and shortness of breath.

So, just like Iron Man, it’s about finding your balance so that you can fly.

6. Are you anxious or stressed? Your poop will tell you.
Our gut and brain are connected via the vagus nerve. A large majority of neurotransmitters are either produced or consumed by our microbiome. In fact, some 90% of all serotonin (a feel-good neurotransmitter) is produced by your gut microbiome and not by your brain.

When you have a toxic microbiome that’s producing a large amount of toxins like hydrogen sulfide, the lining of your gut starts to deteriorate into what’s known as leaky gut. Think of leaky gut as your gut not having healthy borders or boundaries. And when this happens, all kinds of disease can emerge. When the barrier of the gut breaks down, it starts a chain reaction causing low-grade chronic inflammation—which has been identified as a potential source of depression and higher levels of anxiety, in addition to many other chronic diseases.

We’re not saying you shouldn’t meditate, but if you want to get the most out of your meditation and really reduce your stress levels, make sure you are eating the right food that promotes a healthy microbiome.

7. Your microbiome is better than Red Bull.
If you want more energy, get your microbiome back into balance.

No you don’t need three pots of coffee to keep you going, you just need a balanced microbiome.

Your microbiome is responsible for calorie extraction, or creating energy, through pathways such as the Tricarboxylic acid cycle. Our bodies depend on the energy that our microbiome produces.

How much energy we get from our food is dependent on how efficient our microbiome is at converting the food into energy. High-performing microbiomes are excellent at converting food into energy. This is great when you are an athlete and need the extra energy, but if you don’t use up the energy it may be the source of some of those unwanted pounds.

If the microbes can’t or won’t metabolize the glucose (sugar) that you eat, it will be stored as fat. If the microbes are extracting too many calories from your food or producing lipopolysaccharides (LPS) and causing metabolic endotoxemia leading to activation of toll-like receptors and insulin resistance you may end up storing what you eat as fat.

Think of your microbiome as Doc Brown’s car from the future—it can take pretty much anything and turn it into fuel if it’s strong and resilient enough.

8. We can see your joint pain in your poop.
Got joint pain? Your microbiome can tell you why.

Lipopolysaccharide (LPS) is a key pro-inflammatory molecule made by some of your microbes. If your microbes are making too much LPS, it can wreak havoc on your immune system by putting it into overdrive. When your immune system goes on the warpath there is often collateral damage to your joints and other body parts.

Perhaps balancing your microbiome is a better solution than reaching for the glucosamine. Think of your microbiome as the top general of your immune army. It puts your immune system through basic training and determines when it goes to war.

Ideally, your immune system wins the quick battle and gets some rest, but sometimes if your microbiome keeps it on constant high alert it becomes a long, drawn-out war resulting in chronic inflammation and chronic diseases.

Are you really “getting older” or is your microbiome just making you “feel” older because it keeps giving warnings to your immune system ultimately leading to chronic pain?

Before you throw in the towel on your favorite activities, check your microbiome. And, if you have anything with “itis” in it, it’s possible that when you balance your microbiome the inflammation from your “itis” will be reduced.

9. Your gut is doing the talking for your mouth.
When you have low stomach acid, your mouth bacteria makes it down to your GI tract.

Stomach acid is there to protect you from the bacteria in your mouth and the parasites and fungi that are in your food. If you don’t have enough of it, the bacteria in your mouth will invade your gut. This invasion is associated with and a risk factor for autoimmune disease and inflammation in the gut.

We are learning that low stomach acid is perhaps one of the major causes of chronic disease. This stomach acid is essential to kill mouth bacteria and help us digest our food.

What kinds of things cause low stomach acid? Stress and antacids like Nexium, Zantac, and Prilosec.

10. Carbs can be protein precursors.
Rejoice! Perhaps carbs aren’t as bad as we thought (as long as your microbiome is up to the task). We can see if some of the starches you eat can be made into amino acids by the microbiome.

Our microbiome makes 20% of our branched-chain amino acids (BCAAs) for us, and it will adapt to make these vital BCAAs for us in almost any way it can.

Essentially, your microbiome is hooking up carbons and hydrogens into different formulations of BCAAs, depending on what you feed it. The microbiome is excellent at adapting and pivoting based on the food you feed it and the environment that it’s in.

So, good news: Carbs are protein precursors, as long as you have the right microbiome.

Stop Talking Sh*t Now
Your microbiome is a world class entrepreneur that can take low-grade sources of food and turn them into valuable and useable energy.

You have a best friend and confidant within you that is working wonders to make sure you have energy and that all of your needs are met.

And, just like a best friend, if you take great care of your microbiome, it will take great care of you.

Given the research emerging daily about the microbiome and its importance on your quality of life, prioritizing the health of your microbiome is essential.

When you have a healthy microbiome, you’ll have a healthy life.

It’s now clear that some of the greatest insights for your health will come from your poop.

It’s time to stop talking sh*t and get your sh*t together. Your life may depend on it.

Viome can help you identify what your microbiome is actually doing. The combination of Viome’s metatranscriptomic technology and cutting-edge artificial intelligence is paving a brand new path forward for microbiome health.

Image Credit: WhiteDragon / Shutterstock.com Continue reading

Posted in Human Robots