Tag Archives: more

#430656 Code @ TACC robotics camp delivers on ...

On a hot and breezy June day in Austin, parents, friends, brothers and sisters navigated through main campus at The University of Texas at Austin and helped carry luggage for the new arrivals to their dorm rooms. Thirty-four high school students from mostly low-income Title I schools in Central Texas, some from as far away as Houston, said good-bye to their families. Continue reading

Posted in Human Robots

#430652 The Jobs AI Will Take Over First

11th July 2017: The robotic revolution is set to cause the biggest transformation in the world’s workforce since the industrial revolution. In fact, research suggests that over 30% of jobs in Britain are under threat from breakthroughs in artificial intelligence (AI) technology.

With pioneering advances in technology many jobs that weren’t considered ripe for automation suddenly are. RS Components have used PWC Data to reveal how many jobs per sector are at risk of being taken by robots by 2030, a mere 13 years away. Did you think you were exempt from the robot revolution?

The top three sectors who are most exposed to the threats of robots are Transport and Storage, Manufacturing and Wholesale and Retail with 56%, 46% and 44% risk of automation respectively. The PWC report states that the differentiating factor between losing jobs to automation probability is education; those with a GCSE-level education or lower face a 46% risk, whilst those with undergraduate degrees or higher face a 12% risk. If a job is repetitive, physical and requires minimum effort to train for, this will have a higher likelihood to become automated by machines.

The manufacturing industry has the 3rd highest likelihood potential at 46.6%, shortly behind Transportation and Storage (56.4%) and Water, Sewage and Waste Management (62.6%). Although the manufacturing sector has the 3rd highest likelihood, it has the second largest number of jobs at risk of being taken by robots; an astonishing 1.22 million jobs are at risk in the near future. Repetitive manual labour and routine tasks can be taught to fixed machines and mimicked easily, saving employers both time and money.

The three sectors least at risk are Education, Health and Social and Agriculture, Forestry and Fishing with 9%, 17% and 19% risk of automation respectively. These operations are non-repetitive and consist of characteristics that cannot be taught and are harder to replicate with AI and robotics.

These are not the only fields where the introduction of AI will have an impact on employment prospects; Administrative and Support Services, Accommodation and Food Services, Finance and Insurance, Construction, Real Estate, Public Administration and Defence, and Arts and Entertainment are not out of the woods either.

The future is not all doom and gloom. Automation is set to boost productivity to enable workers to focus on higher value, more rewarding jobs; leaving repetitive and uncomplicated ones to the robots. An increase in sectors that are less easy to automate is also expected due to lower running costs. Wealth and spending will also be boosted by the initiation of AI seizing work. Also, there are just some things AI cannot learn so these jobs will be safe.

In some sectors half of the jobs could be taken by a fully automated system. Is your job next?

The post The Jobs AI Will Take Over First appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#430649 Robotherapy for children with autism

New Robotherapy for children with autism could reduce patient supervision by therapists.
05.07.2017
Autism treatments and therapies routinely make headlines. With robot enhanced therapies on the rise, often overlooked though, is the mental stress and physical toll the procedures take on therapists. As autism treatments can be taxing on both patient and therapists, few realize the stress and workload of those working with autistic patients.
It is against this backdrop, that researchers from the Vrije Universiteit Brussel are pioneering a new technology to aid behavioural therapy, and one with a very deliberate aspect: they are using robots to boost the basic social learning skills of children with ASD and while doing so, they hope to make the therapists’ job substantially easier.
A study, just published in PALADYN – Journal of Behavioural Robotics examines the use of social robots as tools in clinical situations by addressing the challenge of increasing robot autonomy.
The growing deployment of robot-assisted therapies in recent decades means children with Autism Spectrum Disorder (ASD) can develop and nurture social behaviour and cognitive skills. Learning skills that hold out in real life is the first and foremost goal of all autism therapies, including the Robot-Assisted Therapy (RAT), with effectiveness always considered a key concern. However, this time round the scientists have set off on the additional mission to take the load off the human therapists by letting parts of the intervention be taken over by the supervised yet autonomous robots.
The researchers developed a complete system of robot-enhanced therapy (RET) for children with ASD. The therapy works by teaching behaviours during repeated sessions of interactive games. Since the individuals with ASD tend to be more responsive to feedback coming from an interaction with technology, robots are often used for this therapy. In this approach, the social robot acts as a mediator and typically remains remote-controlled by a human operator. The technique, called Wizard of Oz, requires the robot to be operated by an additional person and the robot is not recording the performance during the therapy. In order to reduce operator workload, authors introduced a system with a supervised autonomous robot – which is able to understand the psychological disposition of the child and use it to select actions appropriate to the current state of the interaction.
Admittedly, robots with supervised autonomy can substantially benefit behavioural therapy for children with ASD – diminishing the therapist workload on the one hand, and achieving more objective measurements of therapy outcomes on the other. Yet, complex as it is, this therapy requires a multidisciplinary approach, as RET provides mixed effectiveness for primary tasks: the turn-taking, joint attention and imitation task comparing to Standard Human Treatment (SHT).
Results are likely to prompt a further development of the robot assisted therapy with increasing robot’s autonomy. With many outstanding conceptual and technical issues yet to tackle –it is definitely the ethical questions that pose one of the major challenges as far as the potential and maximal degree of robot autonomy is concerned.
The article is fully available in open access to read, download and share on De Gruyter Online.
Research was conducted as a part of DREAM (Development of Robot-Enhanced therapy for children with Autism spectrum disorders) project.
DOI: 10.1515/pjbr-2017-0002
Image credit: P.G. Esteban
About the Journal: PALADYN – Journal of Behavioural Robotics is a fully peer-reviewed, electronic-only journal that publishes original, high-quality research on topics broadly related to neuronally and psychologically inspired robots and other behaving autonomous systems.
About De Gruyter Open: De Gruyter Open is a leading publisher of Open Access academic content. Publishing in all major disciplines, De Gruyter Open is home to more than 500 scholarly journals and over 100 books. The company is part of the De Gruyter Group (www.degruyter.com) and a member of the Association of Learned and Professional Society Publishers (ALPSP). De Gruyter Open’s book and journal programs have been endorsed by the international research community and some of the world’s top scientists, including Nobel laureates. The company’s mission is to make the very best in academic content freely available to scholars and lay readers alike.
The post Robotherapy for children with autism appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#430645 How a One-Man Team from California Won ...

By mastering a Mars robot simulator, an engineer and stay-at-home dad took home the $125,000 top prize Continue reading

Posted in Human Robots

#430640 RE2 Robotics Receives Air Force Funding ...

PITTSBURGH, PA – June 21, 2017 – RE2 Robotics announced today that the Company was selected by the Air Force to develop a drop-in robotic system to rapidly convert a variety of traditionally manned aircraft to robotically piloted, autonomous aircraft under the Small Business Innovation Research (SBIR) program. This robotic system, named “Common Aircraft Retrofit for Novel Autonomous Control” (CARNAC), will operate the aircraft similarly to a human pilot and will not require any modifications to the aircraft.
Automation and autonomy have broad value to the Department of Defense with the potential to enhance system performance of existing platforms, reduce costs, and enable new missions and capabilities, especially with reduced human exposure to dangerous or life-threatening situations. The CARNAC project leverages existing aviation assets and advances in vehicle automation technologies to develop a cutting-edge drop-in robotic flight system.
During the program, RE2 Robotics will demonstrate system architecture feasibility, humanoid-like robotic manipulation capabilities, vision-based flight-status recognition, and cognitive architecture-based decision making.
“Our team is excited to incorporate the Company’s robotic manipulation expertise with proven technologies in applique systems, vision processing algorithms, and decision making to create a customized application that will allow a wide variety of existing aircraft to be outfitted with a robotic pilot,” stated Jorgen Pedersen, president and CEO of RE2 Robotics. “By creating a drop-in robotic pilot, we have the ability to insert autonomy into and expand the capabilities of not only traditionally manned air vehicles, but ground and underwater vehicles as well. This application will open up a whole new market for our mobile robotic manipulator systems.”
###
About RE2 RoboticsRE2 Robotics develops mobile robotic technologies that enable robot users to remotely interact with their world from a safe distance — whether on the ground, in the air, or underwater. RE2 creates interoperable robotic manipulator arms with human-like performance, intuitive human robot interfaces, and advanced autonomy software for mobile robotics. For more information, please visit www.resquared.com or call 412.681.6382.
Media Contact: RE2 Public Relations, pr@resquared.com, 412.681.6382.
The post RE2 Robotics Receives Air Force Funding to Develop Robotic Pilot appeared first on Roboticmagazine. Continue reading

Posted in Human Robots